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Abstract

   This paper is a written version of my lecture "Rings and varieties"

at the Kinosaki algebraic geometry workshop in Oct 2000, and a series

ef two }ectuyes at Tokyo University in Dec 2000. It is lnteRded to be
infoymative axd attract}ve, rather thak strictly ace:rate, aRd I expect
it to stimulate work in a rapidly deveioping fieid (as did its predecessox'

Reid [R3]). The paper was prepared in a hurry to meet a deadline,
and one or two sections remain in first draft. Iapologise to the reader

and the referee for aRy IRconveRience caused.

   The caRgnical }'ing of a regular aigebraic sgrfaÅíe oÅí geReral type,

the graded ring over a K3 surface with Du Val singularities polarised

by an ample Weil divisor, or the anticanonical ring of a Fano variety is

a Gorenstein ring. In simple cases, a Gorenstein ring is a hypersurface,

a codlmeRsioR 2 cemplete intersectigR, or a codig}eksieg 3 PfaMau.
We Bew have addiÅíioitai techBique$ based efi the idea ef prejection
in birational geometry that produce results in codimension 4 (and 5,
etc.), even though there is at present no useable structure theory for

the graded ring.

   Tkis paper applles gyaded riRg metheds, especl311y uaprojeetign, to
the existence of Falle 3-folds and of Sarkisov biratioRal links between

them. The 3-fold technology applies also to some extent to construet
canonical surfaces. A recurring theme is that unprojection often acts

as a working substltute for a structure theory of Gorenstein rings ln
lew codlmeksioft. I discuss what l!ttle I :xderstaRd of the stygctRre

of codimension 4 Gorenstein rings, aBd present a generai and entire}y

useless structure theorem, The final section of the paper contains
a brief outline of forthcoming joint work with Gavin Brown on C*
cgvers of Mori flips of Type A, intended to illustrate the use of seria}

waprcjectieR.
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1 Introduction
Qn the geometric side, I am interested in the following problems:

  1. Existence of Fano 3-folds

  2. Sarkisov birational links between Fano 3-folds

  3. Applications of 3-fold technology to canonical surfaces

  4. Structure theory of Gorenstein rings in low codimension

  5. C' covers of Mori flips.
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Questiofi 1 ls biregula,r as sta.ted, but is freqtteitt}y studied in bii'a,tioRa} terms,

notably by projection methods. As a first introduction to this idea, I spend
some time in Section 2 below on the trivial algebraic trick

              (Bx- Ay :O) H (xs :A, ys -= B)

that goes from a hypersurface to a codimension 2 complete intersection (c.i.),

contraeting a divi$or x = y = O. This has many applications to constructing
new Fano varieties, and links between them. As described in Papadakis--Reid
iPR] axd iR 2.1-2.5, a}} the quadratlc IRvoluticRs gf Cowi-Pxkhllkov--Reid
[CPR] aRd most of the construetion of links in Corti and Me}}a [CM] are
here.

  The main methods of constructing Fano 3-folds are:

 (a) Graded ring methgds,

 (b) Birational methods,

 (c) Embedding a variety in a symmetric space in the style of Mukai.

Methed (a) is closely related ee the qgesticR of prejective efftbedding$. Ok

the algebraic side, the simplest cases are graded rings in low codimension with

a known structure: hypersurfaces, codimension 2 c.i.s, and codimension 3
PfaMans.
   Method (c) i$ c:rrektly a distaRt}y perceived aspiratioR: we hepe that
we ean evektually understand the usually complicated system of equatioms
defining a variety in geometric terms, for example, as a section of a kety
variety having an interpretation, say in terms of linear algebra or algebraic

groups. The key variety is often simpler and has more $tructure thaxt its
lgwer dimeksigxal sectiegs. IR this vein, Exaixple$ 7.l-7.6 obtain several
classic and modem constructions of surfaces and 3-folds as general sections
of bigger "key varieties". Thjs is perhaps a model for applieations of 3-fojd
techniques to older branches of geometry, such as canoniÅëal surfaces.

Defir}itlgR 1.1 A EGne 3-fogd (also Q-FaRo 3-feld) is a variety X in tke
Mori category (that is, X is projective and has at worst Q-factorial terminal

singularities) with p = rank PicX == 1 and -Kx ample, The anticanonmal
ring of X is

              R = R(X,-Kx) == eHe(Ox(-nKx)).
                              n)O
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It i$ kkewR gc be a GqreRsteiR ring (see fer example iGWI).

   An important case i$ when -Kx generates the class group of X, tha.t
is, C}X = Z • (--Kx), corresponding to Fano's varietd di prima specie. The
alteyllative ls that -Kx i$ divisible iR CIX, er that Cl X has a fuite torsloR
subgroup (for example, if X is an Enriques-Fano variety); it is then normally
more eMcient to work with the slightly bigger ring emcixHO(Ox(D)),
which i$ .qraded by N e tor$ick.

   See [CPR], 3.1 for the definition of Sarkisov link of type II and Corti
[Co] fer more genera} Saxkisov }inks. A$ explalRed the}e, a link X --. X'
of type II between FaBo 3-foids involves fust making an extremal extra,ction
Y - X (usually a point blowup), then running a 2-ray game or minimal
mode} program on Y until k fina}ly coRtracts a divisor back dowR. A}! ehe
}inks comstructed in [CPR] are made by ca}eulating the antacanoRical ring of

Y. That is, the birational question is attacked by biregula,r or graded ring

methods.

1.2 Projection through the ages

It ls interesting that siiccessive generatioxx$ of a}gebraic geometers interpret

proo'eetion in several remarkably different ways.

  (i) Hlstorically, prgjectio= a}ways meaRs ll=ear projectioR cf a variety in
    (unweighted) projective space IPrri to a smaller P"'. Projection from a

    general linear centre disjoint from the variety is used in proving foun-
    datleRa} re$glts s}keh as Noether Rerma}i$atioR, er the existexce cf a
    birational projection to a hypersurface, or to define the dimension,
    function field or canonical divisor of a variety.

 (ii) Generic projection a}iows us to assert that any variety has a bira,tional

    morphism to a hypersurface with ordinary singularities. Italian projec-
    tion is a techRiqite for stadying a calleRical surface S that gces back to

    Enriques and was }ater deveioped by Ciiiberto ICij and Catanese [Ca]-
    [Ca2] and others. In modern terms, it consists of analysing the canoni-
    cal riRg R(S, Ks) of S as a modgle over a polynomial ring k[x2, . . . , x.]
    (preferably with n ur= 4,5, etc.), where xi E HC(Ks) or Hg(2Ks) corre-

    spond to some initial set of generators that define a generic projection
    X -År IXi c ge3 or ?4. For sgrfaces wlth p, = 4, takiRg abasis of HO(Ks)

    as generators (the 1-canonical map) is so natural and instinctive that
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    it is often not perceived as a choice. If X is a canonical surface then

    Kx = Ox(1), and the image X of a projection X -+ X c P3 has
    KJr = O(d- 4), so tha•t the difference between Kx and Kr has to be
    accounted for by the normalisation of X along its double locus (called
    "subadjunction"), the intersection of X with the adjoint of smallest
    degree. See [Ca]-[Ca2] for details.

    While in the hands of the maestri this method gives very interesting
    examples and results, it is conceptually messy and computationally
    unpleasant, and probably intractable. See Problem 7.7 for a compal'ison

   between Italian and Gorenstein projection.

(iii) Meanwhile, del Pezzo exploited linear projections Sd --ÅÄ Sd-i between

    del Pezzo surfaces from a point P E Sd, and Fano and later Iskovskikh
    worked with linear projection of a Fane 3--fold V from a centre contained

    in V, notably projection from a line TL: V --ÅÄ V'. These talÅqe one
    anticanonical variety t,o another, that is,

Kv == Ov(-1) and Kv, = Ov, (-1)

    and are cases of Gorenstein pToo'ection: for this to work involves the
    discrepancy of the blowup cojncjdjng exactly with the multip}icity of
   the c:entre subtracted from the linear system (compare [PR], 2.7).

(iv) Mori and his followers (notably Takeuchi and Takagi) reworked Fano
   and Iskovskikh's study of Fano 3-folds in terms of extremal rays or
   MMP. Instead of just doing the linear projection that comes instjnc-
   tively to someone versed in projeetive geometry, I.vfori views Fano's
   projection V --ÅÄ V' as first the blowup of a line V - V, followed by
    a MMP or 2-ray game in the Mori cone of V, that finds and contracts
   extremal rays to obtain first a flop, then a divisorial contraction to V'.

(v) My view of projection is based on the work on Sarkisov links in [C•PR]:

   if X is a Fano 3-fold, a•nd Xi ---År X a Mori extraction (usually a point
   blowup), say with exceptional divisor E of discrepancy ;, the anti-

   canonical ring Ri := R(Xi,-Kx,) is a subring of R = R(X,-Kx),
   consisting of forms of degree d vanishing g times on E (see Exam-
   ple 9.13 for aparticular case, and compare [CPR], 3.4). This ties in
   closely both with Fano projections and with the Mori 2-ray game, but
   in general, it does not directly predict anything- about the algebra ot"
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     & cr the geog}etry efY ue Proj&, cr the raticxal raap X --" Y. Ix
     good cases, X --+ Y may be a projection from one weighted projective
     space (w.p.s.) to another, obtained by eliminating a single generator of

     R of high weight; bnt we de xgt start ext by assllming that, and more
     complicated things happen in applications (see Examples 9.13-9.14).

   IR higher codimeRsiok, the idea of Kljstin-Mil}er eRprojectioll [KM], IPRI
often acts as a workable substitute for a structure theorem. I discuss t,his in

Sections 5-8 with some pretty applications. More complicated unprojecbion$
Ret of KustiR-Mi}ler type, with exeeptignal divisor that i$ got projectiveiy
Gorenstein, can be used to simiiar effeet (see Seetion 9), even when the
algebra is complicated and not really properly understood. The examples
of Type II uRprejectioRs discRssed in SectioR 9 arising fTom Se}ma A}t}gok's
work [A] are real}y nentrivial applications of these methods.
   In Section 10, I explain an application of geemetric ideas to the structure

theory of riRgs iB codiraeltsioR 4. A}tho"gh I state a "structetre theoreg}",

the answer is still eiusive, and my result is not yet explieit enough to have

any predictive power.
   The idea of unprDjectiQn is just made foy serial use. That, is, k e.tm be

used many times over in an inductive way to produce Gorenstein rings of
arbitrary codimension, whose properties are nevertheless controlled by just a
few equaÅíioRs a$ a Rew unprcjection vasiab}e is adjoined. SectioR 1l disc.usses

briefiy how this applies to the Z--graded rings over Mori fiips (forthcoming

joint work with Gavin Brown).

1.3 Acknowledgments
Several lterr}s in what fol}ows are derived from coRversatioRs wlth Selma
Altmok, Gavin Browk, A}essie Corti, Mori Shigefumi, Mukai Shigeru, Stavros
Papadakis and Takagi Hiromichi, and I refer in several places to results from
Papadakis' forthcoming thesis iP]. I thank Takag} for providing me wkh
exeellent lecture notes. My stay in japaR was generoas}y supported by Kyoto
Univ., RIMS, and I am extremely grateful to Professors Kawamata, Miyaoka,
Mori aRd Sako Kyoji for inva}uab}e assistance and frieRd}y hospkalky. This
paper was written during a shert summer solstice visit to .john CaBnen's
Magma group at the University of Sydney; I thank them for the invitation,
and for alkhe wonderfu} meals.
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2 The Bx - Ay argument
The most basic example of unprojection con$ists simply of replacing a hyper-

surface Bx - Ay :: O that conmiRs a codimensioll 2 c.i. x = •y = O by the
eodimexsicx 2 c.l. ms = A,yb" ur B. Despite its trMal &ppea,ragce, this k'ick

has many applications.

2.1 The unprojection variable s=A/x=B/y
Write P = li"'} (ae, . . . , a.) = Prej k[xe, . . . , x.] for the w.p.s. wi th we ights

wt xi := ai. Let D : (x =y = O) a Pn be a eodimension 2 c.i.; here x,y could

be two of the coorclinates x'. xj, or any two hypersurfaces wit,h no common
components. Then any hypersurface contalning' D ls of the form

X : (Bx - Ay == e) c me"(ao,...,a.).

Assume that degA År wt x. Now define

          Y : (xs = A, ys me B) c ?nÅÄi -- Proj klxc, . . . , :., s],

where wt s = degA - wt x. rl)hen Y contains the point "at infinity" of the
w.p.s. P. == (O:•••:O:1), where xi =O for all i, but s# O.
   There aJre two inverse b}ration3} maps: X --ÅÄ Y i$ the uRprojection, or
the graph gf s, ebtaiRed by adjemiRg the "kprojecticR variable

                             AB                         s-- -= -. (2.2)
                             xy
'I"he iRverse Y ---År X ecrrespoxds algebrajcaily tc elimixatigg s. IR terms ct'

geometry, it blows P. up to a divisor D c X.
   The following familiar setup is a special case of the Bx - Ay trick: let

                         Lc S3 c ew3

be a cubic del Pezzo surface containing the line L: (x rmk- y == O). Then the

defining equation of S3 is Bx -di- Ay, where A,B are quadratic polynomjals
in P3. The condition for S3 to be nonsingular along L is that A,B have no

cgmmeR zeros gg L, so tha,t s glveg by (2.2) is well defiRed, axd defiRes g
morphisrfi S3 - T4 = Qi fi Q2 c IP4 to a del Pezzo surface of degree 4. This

is the contraction morphism of L provided by Castelnuovo's criterion.
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   However, the same equations apply much more generally: the hyper-
surface X : (Bx - Ay = O) can be of any de.qree in a w.p.s. of any dimension,

and can be aArbitrarily singular, provided only that x,y remains a regular

sequence. If A,B do not both vanish along any component of x = y = O
(that is, if D : (x =y = O) c X is a Weil divisor, or a Cartier divisor at
every generic point), then X --ÅÄ Y is birational.

2.3 Application to Sarkisov links

Consider an anticanonically embedded hypersurface

                P(1, al, aL)) c Xd C P(1, al, a2, a3, a4)

of degree d= degX= ai +--•+a4 containing aplane P(1,ai,a2). Here X
is one of the "famous 95", but is not in the Mori categor'y: it has equation
Bx3 - Ax4 == O, and is not Q-factorial at points with A = B = x3 = x4.
   Assume that a4 År a3. Then X is the midpointof a Sarkisov link of type II

                        ZÅÄ-X--ÅÄ Y, (2.4)
which is either one of the quadratic involutions of [CPR], 4.4-4.9, or of the

type studied by Corti and Mella [CM]. Both broken arrows are given by the
Bx-Ay trick: suppose that X is the hypersurface X : (Bx3-Ax4 = O). The
rational map X --" Y contracts the plane P(1, ai,a2) to the point P, E Y,
with Y the graph of s = ;2; = Åí, and

       Yd-a3,d-.4 : (S ir :3 == A, sx4 =r B) C P(1, ai , . . . , a4 , ai + a2 ).

This is a general codimension 2 c.i. of the stated de.crr'ees. If A = x4, then

the first equation sx3 = A eliminates x4, and Y is a general hypersurface
in P(1,ai,...,a3,ai + a2). In this case X : (x2 +••• = O) has a biregulat'

involution, Y :-Y Z, and the link (2.4) is one of the quadratic involutions of
[CPR] , 4.4-4.9.
   On the other hand, Z is the graph oft == Å}' = fi (recall that a4 År a3).

Then X --ÅÄ Z contracts the divisor D : (x3 == A == O), and Z is defined by
the equations x4 = tx3, At = B. Because of the first equation, Z is still a

hypersurface

                  Zd-., C P(1, al, a2, a3, a4 - a3)
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with defining equation F :xx" A(xo,...,x3,tx3)t --- B(xo,•,.,x3,tx3), that is,

At-B after the substitution x4 H tx3. Because of this, Zd-., is not a general
hypersurface of the $tated de.grree. It is a Fano 3-fold in the ]VIori category,

but has a funny terminal singularity at the point Pt, At this point, the clas•-

sificatien of Sarkisov links gets tEmgled up with the classification of divisorial

extraetion$ iR the Mori category, oR which there has beelt coksiderab}e urecent
progre$s; see Cgwi-Mella ICM], KawakiS& iKa]-IKa21 gRd Takagi [Tl.

2.5 Corti-Mella
The typical case, and the starting point of [CM], is when Z == Z4 c P` is a
quartic hypersurface with a singularity of analytie type xy = z3' + t'3. Then

Z is algebraically factorial, so in the Mori category. Corti and Mella prove
that the (2,1,1,1) and (1,2,1,1) weighted blowups of the singular point
are divisoria} extractions. Each of these blowups leads to a Sarkisov }ink ef
type II asjgst described:

             B} Z4

          /x                                                       (2.6)        Z4 (Xs c P(14, 2)) --" Y3,4 c P(14, 22)
                cont'g P2:(xo =y= O) general element

  I have only described the easy part of Corti and Mella's argument, con-
structing the }ink (2.6) as an application of a fairly trivial piece of algebra.

The hard part of their work is te show that k and Y3,4 are g birGt2o'kalby
tigid pgir: that is, axy pafori fibre space blyaticxa•l to them is blregul3,r to &

or Y3,4. This is the prob}em of excludiRg links to aay other Mer3 fihre spaces.

For this, in additjon to the technology of [CPR] and Corti [Co2], they need to
prove that the only extremal extractions from the singular point xy = z3 + t'X

are the (2,1, 1, 1) and (1,2, 1, 1) weighted blowups.

3 Varieties and graded rings, Proj R, Hilbert
    tserles

Everyolle kBows the corre$polldeRce

           X = Proj R, Ox(1) - R = 0 HO(X, Ox(n))

                                  n)O

(3.i)
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betweefi prejective varieties and graded rings. See for exa,mple [EGA2] er
[Hartshorne], Chapter II. With the exception of Section 11, I assume that
the ring is N-graded, that is, R. S O only for 'n -År O, and Ro = k (the ground

fie}d k := (C). The riRg R is almost never generated in de.qree l, so that
Ox(k) is Ret kecessarily determiRed by Ox(1), axd l she=ld real}y specify
(X, (ff})bez Ox(k)) on the I-h.s. of (3.1); for our purposes it is usually enough

to take Ox(k) == Ox(kD) for some ample Weil divisor.

3.2 Tllterial en Hilbert series

One of the standard applications of graded rings is when the Hilberti series

P(t) -mm- Åí P.t" is known, where P. = dimR. (typically, by the Riemann-
Roch formula), and we can use it to guess a plausible form of R by gei}erators

&Rd equatigxs, aRd he"ee a pla:$ible mede} of X aÅí a variety IR a w.p.s. wkh

those generators and defining equations.

Example 3.3 X is a surface of general type with invariants p, = hO(Kx),
q = hi(Ox) aBd K2. I assume that q == O, so that X is regu}a}'l u$iRg Kodaira

vakishSng, this implies that Hi(X,nKx) me O fer all 7}, so that the graded

ring R(X, Kx) is Gorenstein by [GW]. Then by Riemann-Roch

Pn=
1

pfi

p, +1+ (:) K2 for n2 2.

The Hilbert series .P(t) ::= 2 .R.t" is thus

P(t) == l+p,t+ ip, +1+ K2)t2 +•••+ (p, + (g) K2)tn +••-

I calculate (1 - t)P(t) by long multiplication; this amounts simply to differ-

egciRg the coeMeieats ef the power series:

      (1 - t)P(t) := 1 + lp, - 1)t+ (1 + K2)t2 + ••• + nK2t" + .. .

  iThe letter P stands for Poincar6. T"he technique is so cal}ed because it was first used

systematically by Cay}ey aRd Sylvester iR the context of invayiant theQry. I recently asked
a coeple Qf math historiai}s whe:e to fiRd Cayley and Sylvesteer'$ treatmeRt, and I am
indebted to them for the handy tip: read their collected works in the Iibrary.
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Agaik rcultiply by l - t:

    (1 - t)2P(t) :L- 1+ (ge, - 2)t+ (K2 -p, + 2)t2 +•••+KL'tn+•.. ,

aRd again, tg get

   (1 --- t)3P(t) ::':" 1 + (Pg - 3)t+ (K2 - 2Pg + 4)t2 + @g - 3)t3 + t4- (3.4)

Netice that the polyitomial is symmetric ("Gcrenstein symmetry"), and the
sum of the coethcients is K2 = degX.

   An important ease is when p, k 3 and IKx Ps heel then there are elements
xi,x2,x3 E Hg(Kx) that form a regular sequekce for R(X, K.y), aRd (3.4) i$

the Hilbert function of the Artinian quotient ring R,(X, Kx)/(xi, LrcLÅr, ag-). In

particular, all the coefficients of (3.4) are ) O. However, (3.4) holds wjthout

aay as$umptiek eni Kxl, fer example, evek if p, =: O.

   Igave the above treat,ment of Hilbert series in a very simple case to
il}ustrate the methDd, but tkere are similair fcrmula$ and }[y}ethods ixgch
more genera}ly. There is already, for example, quite a lot of experience of
working with Hilbert series on surfaees with quotient sjngularities or 3-fold$

with caRoRical singu}aiities; ccmpaxe Akmok iAl] or Kawakita [Ka]-[Ka2].

Example 3.5 In Reid (R], I considered the algebraie surfaee X with p, =- 3,
G = O and K2 :=ur 4 arising as the universal cover of a Z/4 Godeaux sgirface.

Wrlte R(X, Kx) for the canenica} ring of X. Its multiplied out Hilbert
polynomia12 is

     (i - t)3P(t) = l + (p. - 3)t + (K2 - 2p, + 4)t2 + (p, --- 3)t3 + t4

               := 1 + 2t2 + t4.

Thgs the riRg Reeds 3 generagers xi,x2,x3 in degree i, aRd 2 gexerators yi,y3
in degree 2 (at least). Putting jn these generators gives •

            (1 --- t)3(1 - t2)2.p(t) == 1 - 2t4 + t8 ,,,, (1 - t4)2.

  2I apoiogise for this unconventional use of terminology. Hilbert polymomial traditionally

means the polynomial Pf(n) =ny- x(X, jP(n)), which coincides with hO(X, f(n)) after all the

cohome}ogy has died out, when ?} ÅrÅr e. Here I am usiRg multipgied out thS5ert pogymoma'aS
for the numerater of the Hilbert series P(t) = XP(n)t" after a denominator fi(1 - tai )

has been chosen, corresponding to a choice of generators (xi,...,x.), Maybe it would be
better to say Hilbert numeratony or Cayley-Sylvester polynomtaL
 IR mesg cases of ipteye$g for w.p.s., O(l) is Rot a lige b"itdle, sg Px(7t) ls R$"al}y Ret a

polynomiai, but one of a choice of poiynomials depending oxx n modulo the index.
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We note that this coincides with the multiplied up Hilbert polynomial of a,
c.i. of two hypersurfaces3 of degree 4:

k[Xi, X2, X3, Yi, Y3]/(fO, f2 )•

Thus aplausible model for R(X, Kx) is X = X4,4 c P(13, 22). One sees that

a suitable choice of the two relations makes X nonsingular, and setting

xi H e' xi for i= 1, 2,3 and yi H ei yi for i = 1,3

defines a fixed point free action of Z/4 on X, where en = exp(27ri/4) is a
primitive 4th root of 1. In [Rl,I showed that every Z/4 Godeaux surface
is obtained in this way by dividing a surface X = X4,4 c P(13,22) by this

group action.

Remark 3.6 I conclude this brief tutorial on Hilbert series with the relation
between the mult,iplied out Hilbert polynomial HI.,,(1 -tai)PR(t) = Q(t) and
the free resolution of the graded ring R :::: R(X, Ox(1)) over the polynomial

ring A = k[xo,...,x.]. The generators xi are always chosen so that R is a
finite module over A. Geometrically, this means that the xi have no common
zeros on X and define a finite morphism T: X --År X c P(ao,... , a.). Then

T*0x is a sheaf on P or on the image X whose Serre module is the ring
R = (D HO(Ox(n)). I write the sheaf r.Ox even when I mean the ring R.
(As explained in [PR], 2,4, the rigorous algebraic treatment works via the
coherent Lefschetz principle with the vertex of the affine cone over X, t,hat is,

R Iocalised at, the "irrelevant" maximal ideal, but I don't want to spend time

on this.) By the Hilbert syzygies theorem, there exists a finite free resolution

O- r*Ox - Lo e Li e••• e L. t-- O, (3.7)

where each Li is a free graded module, that is, Li = e Op(-b,i,j). Here Lo =

Op if and only if X = X is embedded as a projectively normal subvariety,
that is, k'[xo,...,x.] R(X,Ox(1)). Each homomorphism Li+i --- Li is

  3This is a basic exercise. [Hint: expand ILI i-i., as the sum of all monomials in

k[xi,x2,...], each with coeMcient 1. Substitute xi - tai, where wtx = ai to prove
that the Hilbert series of the weighted polynomial ring is n ii., . Cutting by a regular

element of degree d multiplies by (1 - td), so a weighted c.i. has Hilbert series R[iintmld.l' j .]

For more practice, do the [Homeworkl.
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a matrix whose entries are homogeneous of de.qrees bi+i,j - bi,k, so tha•t the

homomorphism can be considered to be homogeneous of degree O. Then

q(t)
  n- H(i - tai)pR(t) == 2(-i)itbi•j.

  i==o

In other words, each direct summand Op(-bi,j) contributes a term tbi•j, with

the generators of Ox (that is, ,Co) counting positively, the relations Li neg-

atively, the first syzygies positively, second syzygies negatively and so on.
Unfortunately, the polynomial expression Q(t) does not entirely determine
the shape of the resolution (3.7). For examp}e, a positive term may mean a
new generator, or a first, syzygy between the relations, etc. See the sidestep

in Example 7.1 for a typical instance.

  The really usefu} thing is Gorenstein symmetry. If R is Gorenstein, the
resolution (3.7) has Iength equal to the codimension m = c. Moreover,
L. C! (Lo)V op Op(-k), where k is the ad2'unction number, that is,

              cvx = cvffbn (E3) Ox (k) = Ox (k - 2 a,),

and L.-i "-V- L,V• op O(-k), In particu}ar, the polynomial Q(t) is symmetric:
tm and (-1)ctk-M appear with the same coefficient. In writing out Q(t), I
usually indicate the final term (-1)Ctk, but only write out the terms up to the

centre of Gorenstein syrnmetry, say something like 1-t3-3t4+ 12t4-• • •-t9.

Examp}e 3.8 If X c P(ao,•••, an) is a5Å~5 PfaMan then

ll(i - taz)px(t) -= i - 2
     5
t?,i + 2te. -bi in tk

    i=::1

where bt = degPfi. For example, if X is a K3 surface in weighted P5 then
Kx = O, so that k = 2 ai, and the entries in the skew matrix are k- br bj.
Thus the Pfaffian Pfi == Pfij.i,j, (where {l,i,ji,i',i} = {1,2,3,4,5}) has

degree

and hence 2

        b, = 2k - b, - bj - b,, - bj,,

2•=i bi -- 2k = 2E2•..i ai•
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4 Constructing Fane 3-foId$ by unprojection,
    first examples

Example 4.1 Given IZ[ : (xi = x2 = x3 == O) c P5, construct a c.i. XL),3 c
P5 ccRtaiRiRg IZI aRd as gexxer33 as pggsible (preferab}y RoksiR.eq21ar, b!}t see

below). Suppose that

                 x,,, (Zl a,3 a,g) (k)-o, (42)

with deg ai = 2, deg bi = 1.

  [l]g coRtract fi tg a pelkt, I eeR$truct a functieg (homcgeReo=s form) with
pole on ll. There is a clever way of doing this (see Seetion 5), but I want to

start by explaiRing a seupid way. IfI view (4.2) as 2 }iRear eqgatiogs iR 3

variables, they have a unique solution up to proportionality

                    xi N g2b3 - a3b2, etc.,

by Cramer's rule. This suggests setting yxi == Ai, with Ai the 2 Å~ 2 minors
of (4.2), se that

                   y := AYxi for i = 1, 2, 3

gives the required rational homogeneous form of degree 2 with ideal of de-
xomixators (x2,x2,x3), the ideal ef R.

  Adjoining y with the new equations yxi = Ai gives rise to a new variety
Y c P(16,2) defued by the 5 Pfaff}an$ of

y al
  bl

a2 a3
b2 b,
X3 -ewX2

    Xl

of degrees

2222
  ll
     1

(4.3)

4.4 Notation
I write

      M12

M=
M13 M14 Mi5
M23 M24 M25
    M34 M35
         M45
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for a skew 5 Å~ 5 matrix. That is, I omit the diagonal terms (which are zero)

and the mji = -mij with i Åqi If you axe a beginner, yott may prefer to
write out the diagonal zeros for a while until you get used to it. The 4 Å~ 4

PfaMans are say, deleting the 5th row and coiumn,

Pfs : Pf12.34 : M12M34 - M13M24 + M14M23-

   In the above construction, y appears linearly in 3 of the PfaMans (4.3),
such as Pf!2.4s = y:i - a2b3 + a3b2, as the coRstaRt of propoytienality iR
Cramer's mie, and the 2 PfaMans not invoiving y are the equations (4.2).

   Of course, Hied abont X2,3 beiRg noRsiRgular. in fact, slace X ceR-
tajns the plane ll, it has a number of singularjties and cannot be factorial.
Gexerically, the siag"}arities are 7 xxcdes at the poiRts Ai == A2 rm A3 :4' e.

We do not admit X as a Fano 3-fold in the Mori category because it is not
Q-factorial (compare [CPR], 4.1). At these peikts every rmmerator and de-
nominator of y =: A/xi vanishes, so that y is not defined, and the rational

map X --" Y involves first blowing up fi to make it a Cartier divisor before

contracting it.

   As in 2.3, the nonfactorial variety X2,3 is the midpoint, of a Sarkisov link:

                        P2 ÅÄ- X2,3 -" Y. (4.5)

Here the Ieft-hand map is obtained by restricting the linear projection map
P5 --" ?2 giveR by xi,x2,x3. Since over (){i,A2,A3) E P2 the two eq:atioRs

                      2Aiai ue 2Aibi :=e

are linear aftd quadratie in x.i,, this is a coptc bukdle.

   To be polite, I write out the broken axrows in the Sarkisov link (4.5):

                        Z "-- Y
                      /Å~ /Å~
                   P2 X2,3 Y3,4

Here Y - X is the blowup of the plane n, a flopping extraction that makes
II Cartier. Y e Y is jEtst the coRtractieit gf P2 in the paR$ixgRlar Y te a,
singularity of type S(1, 1, 1). The map Y --ÅÄ Z is the flop of the curves over
the ReBfactorial pciRts ef III, aBd Z . P2 ls the eonie buxdle.
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Example 4.6 This example starts simiIarly, but with the .qra,dings slightly
changed. However, the different grading makes a crucial difference to the
left hand side of the link. Let xi,...,x4,yi,y2 be homogeneous coordinates
on the w.p.s. P(14,22), and consider the plane n = P2(x2,x3,x4) defined
by (xi = yi == y2 = O). A general c.i. X3,4 c P5(14,22) containing- ll has

equations
                  X,,, (g Sl ,b;) (I,l)-o, (47)

with dega =: 3, deg bi == degc == 2 and deg di == 1. As before,I introduce a

new variable

    bld2 - b,dl

y3= =etc.Xl

as the constant of proport,ionality in Cramer's rule. This gives the new va,riety

Y c P(1`, 23) defined by the PfaMans of

a c -• y2 yl
  y3 bl b2
      dl d2
          a:1

of degrees
3222
  222
     11 '
       1

As before, the rational map X --ÅÄ Y c P(14, 23) contracts the plane n to a
singularity of type S. (I write } as an abbreviation for the index 2 singuiarity

5(1, 1, 1) since no ambiguity is possible. The degrees can easily be predicted

from the multiplied out Hilbert polynomial 1 - 2t3 - 3t4 + 3t5 + 2t6 - t9,

compare [CPR], 7.2.2.)
   So far, this is exactly the same as Example 4.1. However, the other side
of the link

Z ÅÄ-- (H c X3,4 c P(14,22)) --. y c p(14,23)

is completely different, mainly because the plane R has defining equations
xi = yi = y2 = O of differenti weights: xi has de.qree l and vanishes once on

", whereas the yi have degree 2 and still vanish only once on H. Weight-for-
weight, xi vanishes more. This is crucial in the strategy explained in 1.2, (v)

of construeting links via graded rings.
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  What happexs ls tha,tthe hyperplEme xi = O egts X3,4 IB fi UF, where
the residual surface F is defined by

                xi=:o, raltk(-Yy2, 21 da,i)si

This is a scro}l passiRg through the two g singu!axities of X, wkh (yi:y2)

the coordiRate in the fihre. 1['he other side of the link Z "-- X contraets F
to a line on a Fano 3-fold Z2,3 c IFD(16) passing through 2 ordinary double

poiRts (Takagi, [Tl, Case 2.1). I take up this stery agaln in Exa}nple 9.I6 a$

all examp}e ef an ufiprojectieR of lrype III.

5 Kustin--Mil}er unprojection

The common theme of all the examples of Sections 2-4 was to make a new
variety as the .grraph cf a, hgmogexeegs form s wlth pgle aleng a divlsc;'.
Unprojection does this syg,tematically. The simplest case of unprojection
("Type I") is due to Kustin-Miller IKM] in the early 1980s and PapadaJtis-

Reid [PR].

5.1 The unprojection variable sE 7tom(ZD,wx)

The main idea is as foilows: suppose that X and D c X are projectively
Gorenstein varieties, D has codimension 1 in X and dimX ) 2. Then the
adjRRctioR fermula fgr the Grothelldleck dualislRg sheaf w,o aptercaticaliy

provides a homogeneous form on X with pole along D. More precisely,
assume that

cvx = Ox (kx) and wD == OD(kD), with kx År kD.

Theerem 5.2 ([KM], [PR]) There is a rational seetie•n s of Ox(k'x -k")
with pole on D that aefines a rationat map

X --" Y c P"[s] == Proj k[xo,. . . ,x., s]

tajodng D to P. rm (O : ••- :O: 1). Moreover, Y is again pro]"ectitvely Goren-

stein.
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Sketch proof The dualising sheaf of D is given by the adjunction formula,:

Lv. = Sxtb. (OD, cu.).

Here the Sxt is calculated by applying the derived functor of 7-tlom to the

short exact sequence ID - Ox - OD. Clearly 7htom(OD,wx) == O and
8xti(Ox,wx) = O because Ox is locally projective, so that we obtain the

exact sequence

O- wx - 7-tl om( ZD,wx) - wD - O,

where the last map is the Poincare residue map: if D is a Weil divisor,
it can be written in the vulgar form Ox(K + D) - OD(KD). Now since
cvD = OD(kD), we can twist back to obtain

7tom(ZD, Ox(kx - kD)) -. OD - O.

Since also H'(wx(i)) = O for all i by the projectively Gorenstein assumption,

we deduce that there exists an element

s E 7-t om(ZD, Ox(kx - k.))

that has residue 1 E OD. Thus s has divisor of poles exactly D. It is our
unprojection variable; it is t,he same thing as the elements s calculated in an

ad hoc way in Sections 2-4, but here it is derived in a systematic way from
Grothendieck duality, without any direct calculation.
   See [PR] for the proof that Y is projectively Gorenstein. Note that if we
write ZN(kx - kD) :=: s(ZD) c Ox(kx - kD) then Ai is the divisor of zeros of

s. Under X --ÅÄ Y, D is contracted to a point, and N maps isomorphically
to the hypersurface section s == O of Y. The point of the proof in [PR] is
that the isomorphism s: ZD.x :-;Y ZN,x(kx - kD) (as ideals in the Gorenstein

scheme X) implies that D is projectively Gorenstein if and only if N is, and

then Y is projectively Gorenstein because its hypersurface section s := O is
isomorphic to N, hence projectively Gorenstein.

Remark 5.3 When contracting a divisor D in a normal variety X, it is
traditional to assume that OD(-D) is positive in some sense; here I express

this as the comparison kx År kD between wx and wD. This comes to the
same thing for a Cartier divisor D by the adjunction formula, but is much
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more powerfu1 in genera,l. We do not need to assume that X is normal (or
even reduced), or that D is even a Weil divisor (see [PR], Example 2.2).

  The standard proof of Castelnuovo's contractibility cyiterion consists of

persuading a line bundle L to be very ample outside D but trivial on D,
and to have a section that restricts to the generator 1 E 0D. This involves
nonsingularity, intersection numbers and cohomology vanishing.
  The construction of Theorem 5.2 works instead by finding a section

s E Hom(ZD,cvx X Ox(-kD))

whose residue on D generates wD op Ox(-kD). There are no considerations
of nonsingTularity, intersection numbers or cohomology vanishing, just djrect

use of the projectively Gorenstein assumption on X. The extra power, as
so often in my experience, comes from using the raw form of Grothendieck-
Serre duality, without trying to interpret wx and wD in terms of differentials

st& or line bundles Ox(Kx + D) as we used to do in centuries past with
nonsingular varieties. See Section 9 for generalisations.

6 Applications to Fano 3-folds

Iano-Fletcher [Fl] lists the K3s and anticanonical Fano varieties whose graded

rings are hypersurfaces or codimension 2 c.i.s. There are the "famous 95"
families of hypersurfaces, and 84 (respectively 85) families of codimension 2

c.i.s. The odd one out here is the remarkable codimension 2 Fano 3-fold

Xi2,i4 C P(2, 3, 4, 5,6, 7)

that does not correspond to a family of K3s, because HO(-Kx) = O.
   Examples 4.1 and 4.6 above are typical cases of unprojection from codi-
mension 2 c.i. to codimension 3 Pfaffian. Several dozen more can be found
by choosing a codimension 2 c.i. from [Fll, 16.7, Table 6 containing asuitable

plane P(ai, a2, a3) as a divisor. Altmok [A] lists the K3s whose .qraded rings

are codimension 3 Pfaffians (69 families) and codimension 4 rings (115 con-
firmed families, and another 23 plausible candidates that still require more
work). Many of her cases of codimension 4 K3s extend to Fano 3-folds (with
some effort). All but a handful of her codimension 3 and confirmed codimen-
sion 4 cases are obtained as Type I unprojections.
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Remark 6.1 Both Fletcher's and A}tmok's }ists coRtain animplicit gener-
ality assumption that exclude, fer example, the monogonal and hyperelliptic
degenerations such as XL),6 (: IE"(13,2,3) and X2,4 c llP(14,2). It would be

interesting to plug this gap; linear systems on K3s are we}l behaved with
a small xumber of exceptigRs that aye themselves c}ear-egt dlchctemies, se
there should only be a couple of dozen new cases.
  While not so interesting in themselves, these huge lists of Fano 3--folds
are now acquiring some importance, and we search them repeatedly to dis-
cgver regular pgtterxs (fgr examp}e, cgdimensieR 2 c.i.s that coktain a plaRe
?(1, ai, a2) and have eniy termina} slRgularities, gellera}i$ing Examp}es 4.l-

4.6), and then to find the first few cases where that pattern breaks down.
Compare Altmok's Example 9.13, which looks like a weighted 5 Å~ 5 Pfaffian
on the basis of its Hilbert polynomial, but fai}s one }ittle test; a}} of th}$ can

easi}y be antgg}ated. It is a real}y wgrthwhile preject to make g compxtey
database containing all the known information about the lists in searchable
form --- at present, it might take several hours' search and ealculation to find,

say, a codimension 4 example X c P(12,24,a7, as) having 7 Å~ S and some

siRgularity of index ) 5, with multiplled ont Hilbert polynomigi startlgg iR
1 - 3t2 - 4t5 + • • • , aRd expeRsive taste in eigars. A working first versioit of

this database, programmed by Gavin Brown but based largely on Altinok's
thesis [A] , will be included in the next export of Magma [Ma] in early summer

2eol.

6.2 Takagi's lists

In his Tokyo thesis [T], Takagi Hiromichi gives a systematic treatment of
Fako 3-fo}ds wkh sing"larities of Gorenstein IRdex 2 and hQ(-Kx) =-::-- g + 2

wkh genus g ) 2. This is a majer aehievemeBt, cemparab}e to the work
of Fano, Iskovskikh and others over several decades in the nonsingular case.
To simplify, assume that the only singularities are quotient singularities g.
Takagi's lists include several cakges of anticanenical 3--folds X embedded in

?7(i",2b) wlth a + b = 8 as prejeetlvely Gcregstein codimeg$igx 4 sg}zÅr-
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va2rieties. Cegsider i= particniar the fcl}ewing itgmerlcakypes:

genus sing;ularities embedding Hilbertpolynomial

9=:4 2Å~i XcP(16,22) i-t2---7t3+7t4-•••+tg

9=me3 3Å~g XcP(15,23) 1-6t3-t4+12t5-...+tlO

9xx2 4Å~} Xctw(14,24) i-3t3-6t4+st5+...+tii

   Takagi gives a rigorous geometnc treatment of every variety with these
ixvariants. His werk is in terms ef Mcri thegry, se that, fcr examp}e, he
constructs varieties, their blowups and morphisms between them using the
MMP, rather than by calculating graded rings. However, he pointed out
to ff}e that each cf these Rxmerieal cases iR ccdimeksieit 4 gives rlse to 2
different types of variety, and made the beautiful and almost certainly correct

prediction that these probably correspond to the two families of unprojection
treated by Papadaki$ IP], that we call Tem and Jer?zsi. I verify thi$ here ik

the g =: 4 cases (the g :.= 2 and g = 3 cases would make fun exercises).
In this case, projecting from either of the g singularities giveg. a Fano 3-fold

X C ?(16,2) with mRltiplied egt M}bert po}yRgmial 1-t2-4t3+4t4+t5-t7,
which is a 5 Å~ 5 PfaMan given by a matrix of degrees

222
  11
     1

(6.3)

This family of 3--folds X was constructed in Example 4.1 by unprojecting
a plane, but now I require that it contains another plane II. By choosing
eoerdiRates, I as$ume I{ ha' P'2(x4,xs,x6), defiRed by xi = x2 -+ 2'3 = yi = O•

  The point of Tom and Jerry is this:

     There are two quite aifferent ways ofputting ll inside X.

Example 6.4 (Takagi, No. 4.4) The fust method is to assume that the
bottom right 4 Å~ 4 block of the 5 Å~ 5 matrix consists of ljnear combinations

of t}}e giveR regular seqtienÅëe Xl,X2,X3,Yl:

M=
X4 X5 X'6 P

Xl X2 Yl
   x3 ax2
       bxl

, with degp-- 2, dega,b== 1. (6.5)
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The Pfaffians of M theri clearly belong to the ideal generated by xi, xL), ar,3, yi.

One sees in this case that (6.5) is the generalsolution: xi,xL),x3 and y mu$t

appear with unit coefficients for reasons of degree, and any other terms can
be eliminated by row and column operations. (The terms that survive cannot
be eliminated: m24 =: x2 and m3s = ax2 are "Pfailian paxtners" , with no row
er columa iB cemmgx, and the same foT m23 = xi and m4s := bxi.)
   This ls the $etgp feer g Tgm uaprojectien. Theerem 5.2 asserts that there
exi$ts an unprojectlen variab}e y2, a ratioR&l homogeneoi2s form of degree 2
with fi as its divisor of poies; however, it does not say how to construct yL),

This problem is solved for the general Tom unprojection in Papadakis' t,hesis
[P]. Here the answer specialises to

y2xl =: ax4x6 - pxs,

y2x2 = bX4xs - pX6,

y2x3 = bxg + ax3,

Y2yi == GbxX - p2.

Remark 6.6 In this case, the whole set of9equation$ can be given as the
4 Å~ 4 Pfaffians of the following 6 Å~ 6 extrasymmetric matrix

X4 X5 X6 P Y2
   Xl X2 Yl P
       x3 ax2 ax6
          bxl bxs
               abx4

The unprojection variable y2 goes in the top right-hand corner, from whence
it multiplies the 4Å~ 4 block containing the regular sequence xi, x2, x3,yi. The

matrix is symmetric about the antidiagonal, except that t,he 356 triang-le of

entries m3s,m36,ms6 is multiplied by a and the 456 triangle by b. Of its 15
PfaMans, the last 6 are just repetitions or simple multiples of the first 9.
   The mechanism in geemetry is that the Segre embeddiRg ge2 Å~ P2 c ffD8 is
a (AokgeReral) likeai sectiox ef Grass(2, 6) c Pi4; it is a Sch=bert cyc}e, the

lines of P5 meeting two Åëopies ef ?2 sparmiRg ge5. rThu$ P2 Å~ ?2 is defined

by the Pfaft}ans of a 6 Å~ 6 (nengeneral) skew matrix. In a}gebra, if N is a,

generic 3Å~3 matrix, and we write N = A+B with A symmetric and B skew,
then the 2 Å~ 2 minors of N generate the same ideal as the 4 Å~ 4 PfaMans
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ef the skew matrix ( -BA S). Multlp}yiBg a triaitg}e suck as the bottom right

triangle 456 by an indeterminate is a flat deformation.

  An extrasymmetric matrix of this type appears fairly often with Tom
unprojections. To the best of my knowledge, it appea•red first ln Duncan
Dlcks' thesis IDI (see also IRII). Hewever, the gexeral Tom gRprojectiex
treated in Papadakis IP] is more general than this 6 Å~ 6 extrasymmetric
format, so don't waste too much time looking for the matrix if it does not
want to come out. (Compare the end of Example 7.1, whichjust fails to have

aR extrasymmetTie formgt.)

Proposition 6.7 For general a,b,p, the variety X defined by the Pfaffians
of (6.5? is the midpoint of a, link

                       p2 .-. x--" Y,

where X --ÅÄ Y is the ttnpro]'ection discussed above that contracts n to a
point ofY c P(16,22), and .X --" P2 is a conic b'undle defined by the linenr

system l-Kx -M, er equivalently, the ratio xi : x2 : x3.

  Ik ether wcrds, the FaRo 3-fold Y aRd its }ink Y --" ?2 ase iR Takag2
[T], Case 4.4. I omit the proof. The main point to note is simply that the

PfaMan equations

                   Pf3: x6 yl = bxlx4 + x2p

                   Pf4 : xsyl = ax2x4 + xlp

imply that yi vanishes only once on n so yi Åë HO(-2Kx - 2n). Thus the
ring R(X,-Kx - ll) is the polynomial ying kixi,x2,x3]•

Example 6.8 (Takagi, No. 1,1) The other way of imposing the plane fi
on X is to assume that the. 5 Å~ 5 matrix M has first two rows with all entries

in the ideal (xi,x2,x3,yi); the general solution with degrees (6.3) is

M =rm

Yl al es2 a3
   Xl X2 X3

X6 -Z'5
   X4

with (al , a2, a3) = (x'1, x2, x3)A, (6.9)

where A ls a 3 Å~ 3 matrix with }inear eRtries. IR other words, ai,a2, es3 are

linear combination$ of xi, x2, x3 with coeMcients of degree 1. C}early all the

                                  ,
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PfaMans of M belong te (xi,x2,x3,yi), so that Theorem 5.2 again imp}ies
that there exists an unprojection variable y2 with poles along fi.

   This is the setup for a Jerry unproo'ection. The equations involving y2 are

treated in Papadaki$ [P]l in genemi they are much more complicated than
those for Tom, bnt they simplify cgltsiderably in the pre$eftt case. The twc
Pfafiians of (6.9) not involving•yi ance bilinear in xi,x2,x3 and x4,xs,x6:

pf23 4s rm (xl, x2, x3) (ii) = o, akd pf13 4s = (xl, x2, x3)A (ii) -- c

The equations (6.9) can be obtained from these two linear equations in
(x4,xs,x6) by solving by Cramer's rule, with unprojection variable tyi as
cgksta:t gf prcpcrtlok33ky (that is, yix4 =: a2(zr3 - a3x2, etc.). Ox the other

halid, l can view them also as two }inear equations for 3 unknowns (xi, ar•2, x:3),

and solve them with y2 as constant of proportionality. As usual, this can be

written as a 5 Å~ 5 Pfaffian:

X3 pt X2

    Xl

x4 gl
xs aS
x6 a' 3

   Y2

  where
'

[ljhe equatioR for tyiy2 tgrRs out to be

(2iL)==A(ii)

YIY2 ==-, (Xl,X2,X3)At (It:t) ,

where At is the adjoint, matrix of A.

   In this case, the PfaMan equations say that yi•(x4,xs,x6) axe quadratics
in xi,x2,x3, so that yi E HO(-2Kx - 2ll). Thus the ring R(X, -Kx - ll)
is the graded rixg klxi,x2, pt3,yi], aRd X ls the midpeixt ef a likk

Z"--X--ÅÄY

where Z == P(13,2) is the Veronese cene. Thus Y is Takagi's Case 1.1.

.
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Example 6.IC A mcre general Jerry waprejectiog (bgt stil} ggt the g}g$e
general, see Papadakis [P]) comes from the Pfafian form:

M=
x al a2 a3
  bl b2 b3

Z3 -X2
    Zl

• where ( gb',IZ2,IZ,31I-EZIiY,;iZ,3121 (6ii)

with A,B generic 3 Å~ 3 matrixes. This defines a codimension 3 Gorenstein
variety containing the codimension 4 c.i, (x,yi,y2,y3). The same bilinear
trick as iR Exa[mple 6.8 puts the uRprojeetioR va;iable t igto a, set of M'aMaR

equations

Y3 ww-Y2

   Yl
bl al
blQ a'2
b6" a6

   t

'

wheie (2i') -A (i/i) and (g/i) =B (//S')

The "long equation" for nt turns out to be

                 xt == (y,,y,,y,)N(A, B) (i2)

where N(A,B) is a blquadraÅíic expression4 ln the entries of A,B, a.Rd is

a moderately horrible mesg. (although presumably a covariant of the two
bilinear forms),

  These equations deime a fiat deformatioli ef the ceRe overthe Segre em-
bedding of Pi Å~ Pi Å~ Pi. To see this, I write the equations of the lat,ter in

terms of a little 2 Å~ 2 cube labelled with the variables

Yl

Z2

     Z3
Xx +x
Å~+ tx
 Y3

Y2

Zl

  4Papadakis has ealculated this more accurately, obtaining:

   nt = Åí(Å}1)yi, Ci2 "2 D23 .i3 :• e, summed over {ii , i2 , i3 }, {A , 7'2 , j3} : {1, 2, :3},

where C rv- A2A and D = A2 B. Compare (11.4.3).
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Then the equations of Pi x Pi x Pi are

xzi =:; yj yk, tyi == z,• zk for {i, J', k} = {1, 2, 3},

       and xt = yi zi for i = 1, 2, 3.

Projecting from t gives 5 equations in the PfaMan form

X YI Y2 O
   O Y2 Y3
      Z3 Z2
         Zl

,

which is a specialisation of (6.11).

7 Applications to surfaces of general type

Example 7.1 In Reid [R], I calculated the canonical ring of the universal
cover Y of a Z/3 Godeaux surface. This is a re.qJular surface with p, = 2,
K2 = 3, so that, using the Hilbert series as explained in 3.2, you see that its

canonical ring R(Y, Ky) needs at least

2 generators xi,x2 in degree 1,

3 generators yo,yi,y2 in degree 2, and
2 generators zi,z2 in degree 3.

Then

(1 - t)2(1 - t2)3(1 - t3)2p(t) = 1 - 3t4 - 3t5 - 3t6

                                    + 2t6 + 6t7 +... + tls

(by Gorenstein symmetry, ti5'k appears together with tk). The curious
sidestep -3t6 + 2t6 in this expression is explained as follows: in constructing

aplausible model, we expect (or can prove, see [R]) that I2Kyl is free, and so

R(Y, Ky) is a finite module over the polynomial ring A = k[xi,x2,yo,yi,y2],
generated by 1, zi, z2. Therefore there must be at least 3 equations in degree
6, expressing z?, ziz2, z22 jn terms of this basis.

   The same ring can be obtained much more simply as a Tom unprojection.
Rather amazingly, it is then a deformation of the graded ring over the Se.qre
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e:xbeddigg gf PLÅr Å~ ?2. For tthis, I stewt frora the eqgatioR$ of PLÅr Å~ PL) ix a

slightly idiosyncratic form

    lxc y2 .7.•2X xizi == yjyk
ranic txi xi yoJ -Åq 1, that is, yixi =:xjxfo for {i,j',k}={i,2.3}.

    NYI Zo ur2/ ZJ•2le :XiYi
The first step is to make these equatiens weighted hcmogeneou$ witk wt xi,
yi,zi == 1,2,3. For this, introduee a new variable S with wtS me 3, and
modify the equatioRs to

                         XiZi == YsYk7
                         yi xi =Szrj xrk, (7.2)
                         N73•Zk := SXiYi.

Now project away from .7.o; in other words, separate the 9 equations (Z2) into

4 equations linear in zo, of the form

xozo == something, yo2b xe•••, xozl =-••, zox2 =•••,

aRd 5 equaeioRs mot iRvoMRg xg. It is easy to megkt the }atter as the Pfa,MaRs

of the 5 Å~ 5 skew matrix:

Xl X2 Yl ww"Y2
   ye z2 O
       O ZI
          Sxo

I now vary the entries in the bottom right 4 Å~ 4 block to make them into
general Iinear combinations of xo, yo, zi, z2:

Mo=
Xl X2 Yl - Y2

yo .7.g- rlXo
   r2xg zl
        Sxo - roYo

, with wt ri = 2. (7.3)

This is the data fer a Tcm uRprojectloR, as iR Example 6.4. The PfaMaR$
of Mo are cleariy contained in the ideal generated by the regular sequence

xo,yo,2i,z2, so they define a codimension 3 Gorenstein variety X in the
ambleRt aMRe space with coerdiRates pti, y{, xi, S, Ti sgch that X ceRta,ims the

codimension 4 c,i. D : (x'o = yo : zi = rwcr2 = O). This means that we can
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unproject D in X by Theorem 5.2. As before, the explicit equations of the
unprojection can be read from Papadakis' thesis:

                 xoxo uxww" yly2 + roxlx2,

                 yozo == Sxlx2 - Jr2xly2 -- rlx2yl,
                 2bZi rm Sx2y2+'rgrixg-r2y22, (7•4)
                 kcr:cz2 = Sxlyl + •rgr•2x\ -- rly?.

It is easy te see that the set of 9 equatioits (7.3---7.4) is syR3metrlc under

permuting {O, 1, 2}, so that they could be written in terms of the Pfaffians of

3 matrixes like Mo. You can also try to mount them as a6Å~6 extrasymmetric
PfaMan (compare RemarlÅq 6.6):

Xl X2
   yo

dvY2

'l' 1 XO

 :'l

   Yl
   Z2
  r2xc
SXg - rgYg

   zo
Sxl - rlyl

Sx2 -- r2y2

 rorl x2

  tror2Xl

Thls matrix just fails to give t,he fu11 set of it only gives the
equation for xozo multiplied by S, ri, r2.

   TtNlote that these equations define a flat deformation of the affine cone over

t,he Se.qi'e variety, because the,y g-pecialise to it on setting S = 1 and •r"-- O.

My s"rfaces Y from [Rl are Qbtained by setting

                 :ve l xl Y- 2}2 -m 2g + zl + X2 :r-: e,

and ri =L quadratic, S :anL- cubic expressioRs in ::i,zii, and the Z/3 action

by cyclic permutation of (O,1,2). There is a little cyclotomic change of
coordinates to go from t,he eigencoordinates of [R] to the cyclic permut,ation

eoordinates here. The treatment of this example originated in the observation

that the equations written out in [R], pp. 86-87 as

Ro

Rl

R2

So

Sl

S2

VL)N'l + X'12r2

      X2X2
Xi;2l

Y2Xl --i- Y122

      Y2 Z2

YlXl

== yiy2 - ye2

= ycyl - y,22

= yey2 -y23

== (xlx2 - xb2)$

=: (xoxi - x3)s

= (xox2 - x21 )s

+--s

+.s.

+..+

+...

.+---

+•••

(7.5)
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take the much nicer form (7.2) if you replace them by their cyclotomic com-
binations Ro + cnRi + s2R`2 and So + ESi + 62S2 (taken over the 3 roots of
s3 ::-T 1), and change coordinates to xo + c"xi + s2x2, ete.

Example 7.6 Takagi's list of Fano 3-folds includes

 2 ccdim 4 fami}ie$ 2.2 aftd 3.3 X c ge(l`,24) of degree 2+4 Å~ } = 4,

 3 eedim 5 famllies 2.3, 3.4, 5.l X c ?(l`,25) cf degree 2+5 Å~ S = 9/2,

 1 codim6 fami}y 2.4 Xc P(1`,26) of degree 2+6Å~3 == 5.

There are almost certainly rather simple unprojeÅëtion constructions for each
of these varieties. They also have sections S G I-2Kxl that are canonical
surfaces with p, = 4 and Kis' :: 8, 9, 10.

Problem 7.7 Canonical surfaces with invariants in this range have been
studied by Ciliberto [Cil and CataRese ICal-[Ca2] from the poikt oi' view
of gegeric gr "Italiax" prcjecticg discgssed iR 1.2, (ii). The$e examples are

interesting test casses to compa,re the methgds akd results ef lta}iaB versus

Gorenstein projection. Thus the treatment of Example 7.l by Gorenstein
projection can be compared to the original treatment of [R], which is a kind
of Italian projection: it treats the canonical ring R(X, Kx) as a module over

the subring k[xi,x2,yo,yi,y•2] generated by 1 and the zi, with the equations
(7.5) aLg defining relations, As another example, it seems elear that Ciliberto's

surfaces with pg = 4, K2 = 8 mu$t either form two families, sections oi'

Takagi's Cases 2.2 aRd 3.3, or oRly oRe family which is a secticit gf bcth. I

weuld very mgch like te kxxew which gf these holds. Cgmpaxe the del Pezze
surface of degree 6, whichi$ a llRear secticR of both ?2 Å~ IPi Å~ Pi aRd P2 Å~ IP2.

This bifurcation of cases in going from surfaces to 3-folds seems to be at the

heart of the codimension 4 Gorenstein problem. Compare Problem 8.5.

8 Tom and Jerry: who are they?

Many examp}es of codimen$ien 4 GoreRsteiB rings with a 9 Å~ l6 reso}ution
seem tc relate tg P2 Å~ P2 ew Pi Å~ Pi Å~ Pi, althoagh it seeres hard at presext to

$ay a"ythiBg precise a.nd ge"eral alekg these lines. 'lbm uRprcjectigRs ofteA
relate to P2 Å~ ?2 and Jerry unprojections to ?i Å~ Pi x mei, but the short names

have the advantage that they do not imply any immodest cla.im concerning
our current understanding' of Gorenstein codimension 4.
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Prgblem 8.l Glve aniRtriRsic treatmept of Tgm axd Jerry.

   Write CGrass(2,5) c AL' C5 for the athne cone over Grass(2,5), that is,

ghe generic5Å~5PfaMan variety. It is aA almest hemogeneeus space gnder
GL(5,ÅqC), afid in partieuiar has an action of the centre (Åë')5, which .ffives

many choices of gradings.
   A Pfa{fiaR subvariety X c A iR a regu}ar }eca} seheme A = Spec O is the
inverse image X = g'i(CGrass(2,5)) of CGrass(2,5) under a morphism
g: A ---, A2 C5. To set up unprojection data, we want X to contain a gjven

codimensioR 4 c.i. P ; (xi = ••• = x4 ::-r OÅr c A. [['here i$ presumab}y Ro

}oss of generality in taking the regular sequence xi, . . . , x4 G O as pa•rt of a

regular system of parameters of O.

   Tom aRd Jerry each achieve X ) D by requiring that g take D to a
Schubert cel}:

Tom The condition on q is that g(D) consists of 2-dimensional subspaces
    coxtaiRiag ei = (l,O,O,C,O); cr v(D) c ei A ÅqC5. Algebraically, the

    skew matrix defining X has bottom right 4 Å~ 4 block contained in the
    ideal of D:

g"(ai2•) e (xl,•..,x4) for i,j År- 2.

Jerry In this case, g(D) mgst cexsist cf 2-dimeRsiexal s}}b$paK[)es cektaiRed
    in (C3 = Åqe3,e4,esÅr c C5; or g(D) c Grass(2,C3). That is, two rows

    and columns of the matrix are contained in the ideal of D:

(F7' (aiti) E (xi,...,x4) for i f{i 2 or j' Åq-- 2.

The poine ef the prob}em, however, i$ te give alse
terms of the unprojected variety and its equations.

a descriptioR iR iptriRsie

Compare Papadakis [Pj.

Problem 8.2 Do Tom and Jerry acceunt for every set ef unprojectiQn data
P c X c A where D is a codimensien 4 e.i. and X is a 5 Å~ 5 Pfaff}an?

   The cone CGrass(2,5) over the whole Grassmann vaxiety does not have
aRy divisors tc umprcject, so we axe geiRg tc cgt it dowk a bit by eqgatioks

forming a regulanc sequence, but probably not very general, until we get an
X with some interesting elass group. But it is then a very strong restriction
tc gsk aft effectlve diviser D ix X to be a cg{limelt$ioR 4 c.l. IR the grebient

space.
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Problem 8.3 Can all the currently known Gerenstein codimension 4 rings
with 9 Å~ i6 resolution be accommodated within Tom and Jerry unprojection
structures?
   Altmok's treatment of codimeRsieR 4 K3 surfaces ine}udes 23 eandidates
that cannot be obtained as Type I unprojections from codimension 3 (see
Example 9.13). Ix Examp}e 9.14, I digcytss a FaRe 3-fc}d, aisc derived from
Altinok'$ work, that has a Type II projectjon, but no Type I projection.
Hewever, itis quite coRceivable that these cases coR}d be part of a bigger
variety that does project nicely, by analogy with Example 7.6.
   The case that I real}y do not know how to do at present is Duncan Dicks'
" rol}ing factors format" of Example le.8 (see also Dicks [D] and REid [R2],
Section 5). If this can't be done, it possibly casts doubt on the whole senti-

meitt ef Prcblem 8.3.
   One unresolved issue is whether Jerry (say) is a strzset'"ie in its own

right, cr a lixk or reggtien betweek twe strgctures. Example IO.8 is a kind
of structure ("fat Pi Å~ Pi Å~ Pi") that at present I don't know how to relate

to 5 Å~ 5 PfaMans by a Jerry uRpreject}oR.

Remark 8.4 Kustin and Miller remark that the generic (2k + 1) Å~ (2k + 1)
Pfathanis aR unprejectieR (see [KM], p. 3i1): you can $eparate the variables

into mi2 and the remaining mij, and view the two Pfitffians not involving
mi2 as defuiRg a cedimeRsieR 2 c.i., gBd tke$e ixvclvikg mi2 linear}y as
unprojection equations. (See Example 4.1 for a 5 x 5 case.)
   I waRt tc $tress that this oRly works as stated for a $ufiicientgy genewtg
matrix. In fact, the generic (2k+1) Å~ (2k+1) Pfaffian variety is the (k' -1)st

secant variety of GTass(2, 2k+ 1), because a skew form of rank f{l 2k-2 can be

written as a sum ]2I) ei AS. of k- 1 forms of rank 2. The projection eliminates

the variable mi2; for it to work, mi2 must be algebraical}y independent of
the other mij. Geemetrical}y, the poikt P.,, xx (1,O,...,O) must be in the
variety in order to act as a centre of a projection. In other words, a (possibly

ooxgeReric) (2k + l) Å~ (2k + 1) PfaMaA variety X caR eRly have a prcjeetioB

of "IlÅrTpe I if it has a point of the smallest possible rank 2, that is, a point of

Grass(2, 2k + 1).

   More generally, to see a variety as an unprojection, you must first find a
suitable centre of projection, aRd yeu may well have to put your variety in a
bigger one first before this is possibie. This happened in both Example 7.1
and Example 7.6. rl'hus in Example 7.6, if you only consider the surface S,
you cai}not see the 3 singula,rities of the 3-fold X, and thus its uitprojectioR
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structure. For example, in the codimension 4 cases, the 4 new generators
yi in degree 2 can be thought of as a dual basis to the 4 Å~ 3 singularities.

If we take Åíf..iyi =: O, we have Iost all the possible centres of Gorenstein

projection.

   A reasonable conclusien is that the dimension of a variety is not a very
sigRMeaRt iRvariaRt in these coRstrRctioR$, aRd it is a mista.ke to concen-
trate gx}y ex cgrves oer s}irfaces cr 3-fo}ds. IRstead, eRe shgg}d wgrk with

notioss such as cedimensioR, coindex, geBus, mule}plied out Hilbert poly-
nomial, hemological properties, etc., that are invariant er transform in a
simple way on taking a hyperplane section, and work for preference with a
" key variety" that is as fat as possible.

Problem 8.5 How do Tom and Jerry intersect? As with their celluloid
namesakes, scenes in which Tom and Jerry appear together are on the whole
more }RterestiRg than their solo performaRces. As mentioRed at the end of
Prcblem 7.7, this ikclgdes the famogs defgr=}ation theory ef the del Pezzo
$urface cf degree 6.

8.6 WhyPfaffians?
AsI tell my students, mounting a set of half-understood equations in the
form of Pfaffians is much more fun than doing crosswords, and moreover, has
some intellectual content. Apart from personal addiction, there are several
eÅíher reasons wky PfaMans turR up throughout this kind of ca}culation;

  1. They are ax effective and simple way of handling gyzygies. If yo#
    have wrlttell down two er three equatioms, and suspect that yoii have
    probably missed one or two mere, you have to do things iike xif2 -x2frm
    to cancel some leadimg term and make the combination a pure multiple
    of x3. At the end of it, you have f3 and f4 with some simple linear
    identities. Most frequently, the equations themselves can be written as
    2 Å~ 2 minors or 4 Å~ 4 PfaMans in a way that gives the 3-term or 4-term

    syzyg}'es in an automatic'way.

    As we see }R SectioR il, there aie seria} "xxprojectioR riRgs of gtrbi--

    trary ced}meksieR determined by a representatlve set of eqgatlcxs and
    syzygies glveR as 5 Å~ 5 Pfafialls.

  2. Most current questions on Gorenstein rings are concerned with sma}1
    codimension, meaning 3,4,5,6, and in particular with unprojecting
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  from cedlmensloR 2 or 3 to codimeRsioxx 4 er 5 or 6. The prominence
  of Pfaifians in this study is not surprising in view of the Buchsbaum-
  Eisenbud theorem. Pfaffians bigger than 5 Å~ 5 tend not to appear in this

  study becau$e they give vaxieties ef high coindex. The (2k"+1) Å~ (2k+1)
  gRweighged case alyeady has ecindex 2k -- 2; for exa3 ltple, the simplest

  Gorenstein graded ring over a surface with 7 Å~ 7 I)faffian structure is
  the canonical surface Si4 c P5.

3. The 4Å~4 Pfaffians axe the Pl"cker equations defining Grass(2, n). There

  is a wttural prcgressigk 2 Å~ 2 migcrs - Pfi}fiiak$ --År the qaadratic
  equations defining the codimension 5 spinor variety Spin(5, 10) c Pi5
  (or orthogonal Grassmann variety, see Mukai [Mu]), Just as a 4 Å~ 4
  PfaMan is a trinomial that you can think of as mi2m34 - l M5g :M l, each

  spiRor eqgatio: is a 4-nemla3 that yg" cag think cf as

xix2 - 4 Å~ 4 PfaMan.

Problem 8.7 As a Pfaff}an addict, I can't wait to start onthe codimension 5
ylRgs, where the sp2xor eqgaSioRs play a similarly prcmiRext rele. Accordixg
to Mukai iMu] , the spinor coordinates Ci on the spinor space (= even C}ifford
algebra) Ci6 = AO(C5) o A2(Åë5) e A4(C5) are indexed by even subsets of

{1,2, 3,4,5}. The equations defining the spinor variety Spin(5, 10) c Pi5 are

the 10 spiRor e(liiaticRs NÅ}i, typical}y

             Nl == eipC234s -- 623e4s + e24C35 - e25C34
            N.-1 -mh C12C1345 -C13Åq1245+Ct4e1235 -C15e1234•

Spin(5, ie) c Pi5 has coigdex 3 aRd tke iRultip}ied eut }Iilbert pe}yRomia}
1 - lot2 ÅÄ l6t3 - i6t5 + let6 - t8 (the same as fer a caRonical curve of gemas

7, or a nonsingular Fano 3-fold of genus 7). In the unweighted case, as for a

nonsingulair Fano 3-fold, a point, projection has the wrong discrepancy (see
[PRI, 2.7)l a Fano style projection from a line shoRld go to a 5 Å~ 5 Pfaffian

egxtainixg g eabic scroll, providixg the first case cf a [Irype III gRprojectigR

from codimension 3 to codimension 5.
   That was the unweighted form. We can find many weighted homogeneous
forms, because the affine cone CSpin(5, 10) c Ci6 has an action of GL(5) and

ef its eentre (ÅqC')5. It wQgld be iBteresting to hnd weighted K3s aRd FaRos

as sectiefis of the weighted spiner varieties. This i$ the simp}est strucÅíure for

codimension 5 Gorenstein rings, analogous to the codimension 4 structure
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5Å~5 PfaMan intersect a hypersurface (think of the del Pezzo surfa,ce of
degg[ree 5). The next problem is then to find some nice examples of links by

projection from these varieties to lower codimension.

9 Harder unprojections
We eaR re}a[x the assumptiox ix Thecrem 5.2: there is gg speeial Reed fo}'
the diviser D tg be Gorenstein ifi erder to unpreject it. The best way to
think of this is from the top: Fano and the generations following him project
nonsingular Fano 3-folds from a line, a conic, or project doubly from a point

(compare the discussion in 1.2). From [CPR] and Takagi [Tl onwards, we
can do more exotic projections from points or eurves on Fanos in the Mori
category. The exceptional divisor is usually not projectively Gorenstein.

   I discuss here two fami}ies ef examples:

'1fype II lx thls case D is Rot prcjectively Cohea-Macaglay, beca:se it is

    net prejectively norma}, but the itormalisatioxx Ob == OD e OD • t
    needs only one module generator, and moreover, Ob is Gorenstein.
    This arises in conneet,ion with the elliptic involution of [CPR], 4.10-
    4.12 and 7.3, and wit,h several interesting eodimension 4 K3s and Fano
    3-folds from Altinok's lists [A]. See Examples 9.5-9.14. It is really a
    generic phenomenon for slightly nonnormal embeddings P(ai, a2, b) ig
    ?(al,a2,a3,...,an) between w.p.s.s.

Type III IR thls ca$e, D is prcjectively Cchexx-Maea:lay, but wp(nc) is
    geRerated by two secticlls that defiRe a fibre $paee structure g : D --År pt.

    That is, D is homolog]cally like a cubic scrol}, so Cohen-Macaulay but
    not, Gorenstein. The typical case is Fano's projection of a Fano 3-fold
    from a line, with the cubic scroll as exceptional divisor. Corti suggested

    treating the inverse rational map as a new type of unprojection, and
    calculated the first cases himself. See Example 9.16, where I conclude

    the story begun in Example 4.6 based on Takagi, Case 2.1.

Remark 9.1 By assignillg romaR Mmerals, I arc certalRly RDt sRgge$tiAg
a case divisigR cr clas$Mcatiox. Rathey, these are certalg pathglogies that
turn up frequently, and that we caR begin to handle a}oitgside the Kustin
and Miller Type I cases. Based on experience of projecting Fano 3-folds
from different centre$ (and $eeking the unprojection giving the left-hand side
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of the corresponding link), I believe that D can be really very bad from the

point of view of commutative and homo}ogical algebra. There are certainly
cases when D is a badly nonnormal scroll, or when Ob is Gorenstein but
needs many generators as an OD module.

Problem 9.2 Find the best theorem of the following shape. I statJe the
problem in the local setup. Compare IPR], 2.4 for the transla,tion from local

to projective.

    X is a local Gorenstein scheme and D c X a subscheme of pure
     codimension 1. The adl'unction formula for wD gives the usual

     exact sequenee

               O --- Wx --" 7-tOM(ZD,Wx) - WD -ÅÄ O.

    Identifying cvx = Ox interprets elements of the 7'tlom as rational

    functions on X with poles along D. Pick a set of generators
    si E 7'tom(ZD,wx), say with se = id: ZD c Ox = wx. As in
    IPRI, Lemma 1.1, assume without loss of generality that the si,
     are injective and ha`ve div2Lsor of poles exactly D.

     Define the unprooiection (ring? ofD in X by

       Oy = Ox [si, . . . , s.]/(relatio ns) and Y = Spec Oy. (9.3)

     Then unaer suitable (fairly mitd? conditions, Y is a Gorenstein

    scheme.

It is part of the problem to say what the ideal of relations in (9.3) should be.

When it turns out that Y is birational to X, we could just take the relations
between the si holding in the total ring of fractions k(X), but in general Y

may have new components.
   Maybe we should find the relations by studying a few examples; it would
be really cool if all the relations were determined by linear ones. Conjec--
ture 9.12 suggests that in some easy cases, we should look for linear relations

in the si and certain fairly simple and predictable quadratic relations yoked

to them by Pfaffians.

   ln the projective setup, in view of the applications, I want to assume that

D is a codimension 1 subscheme of a projective}y Gorenstein scheme X, and
that there is a threshold value kD E Z with kx År kD for which LvD(-kD) is
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still generated by its HO, but the resulting linear system is not big, so that

the morphism q..(-k.) contracts D to a smaller dimensional variety.
   As before, this means that the elements si E 7'tom(ZD,wx(-kD)) whose
residues generate wD(-kD) become homogeneous forms with poles along D,
and have positive degree kx - kD under the identification cux == Ox(kx).

Remark 9.4 As in Remark 5.3, the assumption kx År kD is a negativity
condition on D c X. Note the fortunate circumstance that the si correspond
to generators of wD(-kD) - wb(-kD), which is good even if D is not normal.

A condition expressed in terms of OD would be much worse in this respect.
This is another advantage of the approach via Grothendieck-Serre duality.
   In the modern view, we usually expect this kind of canonical threshold
to be a rational number. But kD E QI does not seem to make sense here. (Or
could it somehow?)

9.5 Key variety for Type II unprojections

I gjve a generic form for Type II unprojections, as a preparation for the
following examples. Consider the morphism

               T: D == Cn+i - Dc c2n+i
               (xi,•..,ar.,t) H- (r,i,zli == arit,z== t2)

that folds the t azÅrcis in half, identifying Å}t. The image D is a nonnormal toric

variety, with coordinate ring the subring k[D] c k[xi,...,x.,t] obtained by

outlawing odd pure powers of t. Its equations are

rankNÅq1, where N=(Yl ''' Yn XIZ ''' Xn-7År;

      - Kxl ••• x. yl •••                                           Yn 1
(9.6)

that is, the n2 equations

(z,igi:gj.yjl. igi. z• E. I•l

where i, 1' = 1,...,n. (9.7)

The moral purpose of the equations (9.6) is of course to ensure that t =
yi/xi =- xix/yi is a well defined rational function on D with t2 = z.

   I want to treat D as a key variety for a whole series of nonnormal varieties.

For n ) 2 it is not Cohen--Macaulay, because its normalisation haJppens in
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eodimension ) 2. Although OD is not Cohen-Macaulay as a ring or as a
Oc2n+i-module, its normalisation 7r*Ob is Goren$tein as a ring, and hence
as an Oc2n+i-module. Moreover, wD == 7r.wb Ets x.Ob, since the dualising
sheaf is saturated in codimension 2. From now on, I suppress T.. Thus wD
is generated by the single element

                   % =dxi A••+A dx. A dt

over the bigger ring Ozs but Aeeds two geReraters Z;g aRd gi == tge
OD or over 0Åë2n+i. The Gorenstein Oc2n+i module Ofi "-W- wD has a
presentation:

      o- ob -- o$o•t -CYL 2no -L 2(:)o .-...

where N is the 2 Å~ 2n matrix of (9.6), viewed as relatjons (gi, go)N = O,

P is made "p of pairs ok-term syzygies

- se -Xjl
Zii xi 2r

- xj -yj
Xi Zli

over

mce

and

  Let X c C2n+i be the general codimension n c.i. containing D, defined
by n general }inear combinations of the equations (9.7). Then (for n == 2,3,

and I coajecture fer a}l n), D unprojects in X by adjolning two elements
se,$i E 7`ggm(Zp,wx) wkh }'e$ldge ge,& E w".
  There shegld be twe prcofs, exercises ik gekerali$ing the yespectlve eoll--
$tructions ef [KM] aRd [PRI. Fcr the fermer, we have 3 comp}exes

o +- Ox -
      t

O ---- OD se-

      A

o. ofi --

o
u

o
A

L•

,U,l-•J

oeo•t ,EÅrL-

nO - •••
,

n-Oo Åq-- •••

i

2nO -- •-•

reso}ving Ox, OD and Ob; of these, the top is the Koszul complex of the c.i.
X:(fi =••• = f. == O), and the bottom is the resolution of Ob, which has
leng;th n + 1 and Gorenstein $ymmetry because Ofi is a Gorenstein module.
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The middle cgmplex is m"eh me$sier, bnt we cgly xeed it &s far as lexgth
n+ 1, where it computes tuD = wfi.
  The unprojection variables so and si come from putting together the
home Rorphisms at the end ef these ccmplexes mgch as ill [KMI: the liRear
relations involving so,si are

              `N (g?) =col(Ai,...,A.,Bi, ••,Bn),

where tN : (OeO•t)V - (2nO)V and the column vector is the nth composite
dcwxarrow 0 ---} 2nO. There is al$e a $ingle quadratic re}atiox sgz-s? = f • i ,

which is of course the tricky point referred to in Problem 9,2.
  In what follows, I restrict to the celses n = 2, 3.

Example 9.8 The case n = 2 was worked eut tegether with Corti in the
context of constructing elliptic involutions of Fano hypersurfaces, and is writ-
teR up in [CPR], 4.le-4.!2 and 7.3. Then D c C5 has codimensioR 2, akd the

hypersurface X c Åë5 contaiRiBg P has equatioB a generaHinear combination

    A(x,y, - x,y,) + B(y,2 - x?x) + 2C(yiy2 - x,, ,z) + D(y,2 - .År2x)

of the definiRg equatieBs (9.7). 'I{}o unproject D in X, write the adjukction

formula for wD as usual

               O- wx -Hg?T}(Zg,wx) --• wp - e.

Then we need two new generators so,si E OVom(IZD,cvx) to hit the two
generators ge,3i of wD. The linear relations between these are given by

yl xl xlC+x2D
y2 x? xlB-x2C
xlz yl x2A-ylC-y2D
x2z y2 x2A-ylB+y2C

(ZOi)-O
(9.9)

It so happens in this case that Y has codimension 3, and is the 5Å~5PfaMan

XI X2 Yl
   so --D
      sl +C

  Y2
- sl +C
        =:ptr O•
  B
soz+A

(9.10)

See [CPR], 7.3 for further discussion and applications. As explained in 9.5,

the matrix ix (9.9) cEm be iRterpreted as a map betweeR cgmp}exes iR Kustik
and Miller style (although we did not know this at the time).
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Example 9.11 When n xx 3, the variety X c C7 is a codimension 2 c.i.
f nm g = O containing the nonnormal variety D.

                                -g
o-

Oe

Oe

o. - o
i Il

0D "--r O

Ob - 20

za,9

Åq.iMkil-2G

pa

20
i

90
s

60

,--L o
i

200
l

60

o

e---- •"

k' 2o eo

Here 20 stands for OeO • t and its dual, N is the matrix of proportionality
relations (9.6) for t, and

P ==

its first syzygy matrix.

:i)i3.7., -X22

    X12

o

- Y3

Y2

Y3

o

- Yl

X3

ww Y2

Yl

o

- X2

Xl

Conjecture 9.12 Sorry, there is fto time te fini$h writing up this proof
preper}y. I have ehecked it ix Magma IMa]. The preb}em is tc gpder$takd
beker the qgaKkratic relatiens between sg, si.

  In the case n =2 of Example 9.8, the 5th PfaMaxx in (9.le) is quadratie

M SO, Sl:

               Pf23.4s xe- so2z - s? + Aso + C2 + BD.

This is not linear, and so not properly accounted for by the construction in
terms of mapg. between comp}exes. However, the Pfaffian syzygi'es in (9.10)
express eaeh of xi, x2,yi, y2 times Pf23.4s as a combinatiolt of the linea,}' re}a-

tioxs (9.9).

  The same must hold for al} n: there i$ a siftgle quadratle re}atioR Q that
expresses sgz- s? as an element of Ox + Oxso +Oxsi, and PfaMans syzygies

express Q times xi,...,x., yi,...,y. as elements of the ideal generated by
the linear equations.
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Example 9.13 (Altmok) Several of the harder cases in Altmok [A] can be
settled using these ideas. Consider a K3 surface X with

                     D2=-2+7.!+1.
                                  25
This relates c}osely to the example of a FaRg 3-fold of gegRs -l alld'  sixxgu-

larities 7 Å~ S pl=s g(l,i,4). Simple-mlxded use cf the Hilbert $eries as iA

AItmok IAI] gives P(2,2,3,4,5,5) with coordinates yi,y2,z,t,ui,tt2 a•s the
first guess for the generators, and the multiplied up Hiibert function

(1 - t2)2(1 - t3)(1 -- t4)(1 - t5)2p(t) .

                           1 - t7 - 2t8 ww. t9 .im tlO + tll + . . . - t21

suggests that, like so many of its co}leagues before it, X is a Pfafl}an with

matrix havlRg weights

33
44
  5

However, this is nonsense: the graded ring of X necessarily has a generator in
some de.qree i 1 mod 5 to act as a local coordinate at its singularlty g. (1, 4).

A}tematively, ln the a}}eged Pfafiafi mode}, we car} assume that the twe
eRtrles m2s axd m34 are the degree 5 gekeratcrs, say m2s = ni aRd m34 ::= zg2,
so that aRy PfafiaR mu$t meet the (%i, u2) line at the twc coerdiRate points.

At P.,, the enly equations involviRg 2Li are the 3 Pfaif}ans centaining the

terms iLimi3, uimi4 and uim34; but mi3 and mi4 both have degree 3, and
are thus proportional, because there is only one generator in de.qree 3. Thus
in these degrees, a PfaMan eannot be quasismooth, and in fact must have at
least an elliptic singularity at P.,.

   In this case, the thing that really happens is a codimension 4 embed-
di ng X g P(2, 2, 3, 4, 5, 5, 6År with coordikat es yi , y`2 , x, t, ui , u2, v. It pa$ses

thro"gh the pgint P., gxd has asingukwity of type g(4,l) there, wlth t,v
as leca} ccerdikates. Netice hgw the eexllormality axises (compare [CPRI,
3.4 for lecal eigencoordinates aAd their mu}tip}ickies oll the b}owR up lo-
cus): the local eigencoordinate t at P., has weight 4 for,the .qrading of the

ring, and has Z/5 weight 4, so vanishes along the blown up curve E with
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mgltlp}icity g, which isjgstright. But She other leÅëal eigeucoerdikate y has

graded weight 6 but Z/5 weight 1, and so vanishes along the blown up curve
with multiplicity only g, and so is not in the subring Ri c R of the blowup

(cor}pare the discgssicR ix l.2, (v), gxd (CPR], Example 4.ll). Il)hus pyc-
jecting from P., elirninates v together with ui. The image of the projection
is the codimension 2 c.i. Y6,io c P(2,2,3,4,5) containing the weighted line
P(l,4) in a gcRRerm&l embeddixg.
   Consider the general embedding

ge(i, 4) c--År ew(2, 2, 3, 4, 5) giveg by

 (x, t) H (yl = x2, y2 = o, z = x3, t,u= xt),

or eqgivalendy, the geRera,} hemogeReogs homomerphism from the pe}y-
nomial ring klyi, y2,z,t, uj to klx, t]. This maps onto every monomial except
x, and so model$ the P(1,4) extracted from the g(1,4) singulaJrity of X. On

the cther haRd, the eq"atioRs gf the image E axe

             gy2=O and rank(di Y Yzi2 Y&t) -Åq1

This is in a family wit,h the equations (9.6). If Y6,io C P(2,2,3,4,5) is a

K3 c.i. centaining E, it can be unprojected by adapting the method of 9.5.
AR a}temative strategy is first to comstruet the Fatte 3-fe}d (see be}ow), then

take its section by the single element of degree 1.

  The related Fano 3-fold can be prejected M a similar way to a Fane
3-fold W6,ie c ?(1,2,2,3,4, 5) contaiRing the fiofiftorma} ?(1,1,4), givell by

the equations

               rank(Yi2 y", V XyY,i Y,2i Yh`)si.

This umprojeets as IR Example 9.11 te a FaRe V C P(i,2,2, 3,4, 5,5,6).

Example 9.14 (Altinok) Anthony Fletcher discovered the codimension 2
c.i. Xm4 c P(2, 3,4,5,6, 7) with HO(-Kx) = O at the ekd of his l988 Ph.D.

thesis [FiO], as the result of asystematic search. At the end of her thesis 10

years later [A], Selma Altmok discovered 3 more plausible candidates for
FaRg 3-fo}ds having He(--Kx) =: O, wigh eodig}eRsicR at least 4. Al} thyee

of these ame very interesting; we ame fairly certain that they exist, and we
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intend to write them up when time allows. Here I discuss the second of her
HO(-Kx) =O cases. It has singularities 7Å~ S, g(1,1, 2), g(1, 3, 5) and genus

g= -2. That is, HO(-Kx) = O, and

    (- K. )3 == 2g - 2+2 a(ri a) .. -6 +7 . S + g + 3g5 .. Stt .

The Hilbert function calculation (see [Al]) suggests the 8 plausible generators

in degrees 2, 3, 4, 5, 6, 7, 8, 9, and, assuming these, the multiplied out Hilbert

polynomial is

   1 - 2t12 - t13 - 2t14 - 2t15 . t16 + 2t19 + 2t20 + 3t21 +...+ t4:3

Note however, that although we have specified a singularity of type g(1 , 3, 5) ,

the ring has no global element of degree 1 to act as a local eigencoordinate
(see [CPRI, 3.4). This suggests that we look for a Type II unprojection.

  If we write u,v,w for coordinates of P(1,3,5) and x,v,y,w,z,t for coor-
dinates of P(2, 3, 4, 5, 6, 7) , the general map P(1, 3, 5) c--År P(2, 3, 4, 5, 6, 7) is

the embedding given by

        x=iL2, v=v, y=uv, w=w, z=uw, t=u7.

That is, we omit u,u3,u5 from the polynomial ring k[u,v,w], so that this

is a pullback from the D of Example 9.11. Thus, provided that the general
Yi2,i4 containing the image fi or- P(1,3,5) is reasonably nonsingular, the

construction of Example 9.11 applies to this to construct X.

Problem 9.15 The nonsingularity calculation is always the nasty part of
these constructions. The equations of the image fi = P(1,3, 5) are

                rank(7, di xt3 VyX WzX Xt4).Åq1,

that is,

y2 =v2x, yw = vz, yz == vwx, yx3 = vt, yt = vx4,
z2 == w2x, zx3 = u]t, zt = zvx4, t2 = x7

These are equations of degree 8, 9, 10, 10, 11, 12, 12, 13, 14. A general c•i• Yi2,i4

containing K or- P(1, 3, 5) is given by choosing two general linear combinations

of these, and it seems likely that Yi2,i4 has only fairly mild singularities on ll.
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                5You should get, most of this from Bertini's theorem. You can a,lso try it by

computer algebra: plug in ra,ndom coefficients, write out the equations and
its ideal of2Å~ 2 minors, and try to prove that the singularity locus defined
by this is contained in ll and consists of fairly mild singularities.

Example 9.16 (Takagi) This is an example of unprojection of Type III.
As we saw in Exa[mple 4.6, a codimension 2 c.i. X3,4 c P5(14,22) containing

the plane H : (xi = yi = y2 = O) has defining equations f = g = O, where

(f,g) == (Xi Yi Y2) (2",i ii) ==O,

with dega = 3, deg bi = degc == 2 and deg di = 1. The hyperplane (xi = O)
intersects X in the plane n together with a residual component F defined by

F.{xi=O and rank('yYi2 &t $)S1}
(9.17)

I show how to unproject F by introducing two homogeneous forms si,s2
of degree 1 on X with poles along F, related by linear equations only. I
calculate si,s2 and the relations between them by copying the method of
Kustin and Miller [KM]. This generalisation of [KM] is based on a suggestion

of Alessio Corti, who calculated nonsingular Fano 3-folds of genus g == 6,7
by unprojecting a cubic scroll in a Fano of genus g - 2.
   The resolution of OF in the hyperplane (xi = O) is given by the 2Å~3
matrix in (9.17) and its minors. Set h = bid2 - b2di for the 3rd equation.

One sees that in the whole space, the resolution of OF is

O e OF e O "!l- O(-1) o 20(-3) cD O(-4) ÅÄA{-

                            20(-4) e 3o(-s) ÅÄ9L 2o(-6) e o,

where v = (xi, h,g, -f), and M, U are

h

- Xl
o

o

g
o

- Xl
o

- f adi - bic

 O -Y2
 O b,
- xl dl

ad2 - ojc

   Yl
   b2
   d2

)

- Y2
bl

dl

Xl
o

Yl
b2

d2

o

Xl
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   Now to calculate Sxti(OF, wx), I write out the homomorphism from the

resolution of Ox to that of OF:

 Ox e O ÅÄEh:Lf- O(-3)eO(-4)

              . o(-i)s2o(-3)
                     {DO(-4)

where the two downarrows ance

oo
o

o
o

alld

 f
 9

-{L

 O(-7) -
   i

20(--4År .g-
W30(-5)

o

- a
.-- c '
y;

Y2

o

20(-6),

Thus I introduce two unprojection variables si, s2 corresponding to the sum-
mands of 20(-6), and writ,e out the linear equations as

-  31L)

bl

dl

Xl
o

Yl
b2

d2

o

Xl

(S,,i)--

o

--  a

- c
zgl

Y2

Remark 9.l8 This type of uRprejectioR adds two new generators si, s2, se
could be used to go from codimension 2 to codimension 4 (with resolution
7Å~ 12 or smaller). However, it so happens in this case t,hat t,wo of the
equations eliminate yi =:':- six"i and y2 = sixi. Thus the unprojection takes

    X --ÅÄ Z2,3 (ca"elblsSi ++ dbj2Ss22 -:. 8) c P5(xi, ..,x4,si,s2) (g.ig)

   As iR 2.3, the ircage ls Rct the generag Z2,3 because si,s2 ggiy appea•r in

the eqgatiofts (9.l9) either exp}icit}y, gr via the sub$titxtioR y{ H G)ixi. If
for example bi = yi +•-• aBd b2 = -y2 ÅÄ••• thexx X rlteets the (yi,y`.•.År) }ine

in two } singularities at yi ur: Å}y2, and the first equation of (9.19) is

                    xl(•sl-s2)(sl+s2) :=: -a. (g.2o)
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Thus Z2,3 contains the (si, s2) line L, and in general has two ordinary double

points at sl = Å}s2•
   The inverse map Z2,3 --" X is a good example of how the classical idea of
linear projection has to be modified to deal with singularities (compare 1.2,
(v)). The linear project,ion from the (si,s2) line L is the map defined by
xi, • • . , x4; iR additiok Åíe blowing up L, this blows up the two ordiRary double

peikts, sc i$ Rgt a primitive extractigR ix the Meri categcry. instead, we
make the graded ring by irapesing the nth symbo}ie pgwer gf the ldeal ZL
on l-nKzi; this means that we eliminate si,s2, but add yi =: xisi and
y2 ww- xis2, which vanish twice at the general point of L by (9.20).

10 Gorenstein in codimension 4 - the elusive
      structure theory

URprgjectigx has played the role gf a $xbstitute fer a strgctgre theory for
GoreksÅíeiR yiRgs in eodlmemsleR 4 (er 5, etc.) throughout the above. We
have seen in many exampleg. that it can frequent}y be used as a reasonably
effective way of working wit•h graded rings in low codimension, despite the
absence of a general structure theory.

   Here I want instead to discuss what we actually know about the struc-
ture theory. Most of what I say is almost obvious, but Ihave not seen it
written down in this form. Suppose for simplicity that the ambient space
A := SpecOA is a reg}iiar ioca} seheme with g G 0A that is cemplete (er

Spec of a polyxcmial rikg }ocalised at the gyigin, wlth everythixg graded in
pesitive degrees). Let X c A[ be a Gereitstein $ubscheme of codimeRsion
c xe 2, 3, 4, 5,6, etc., and write

       O-Lo k-- ,4i - L2 e•••
               il " " (io.i)
      Ox - OA "'L (k+1)OA Åq-!!{-- mOA Åq-- •••

for a free resolgtioB. K"hat is, (A,...,fkÅÄD i$ a minimal set, of defiking
equatioRs, gxd (A, . . . , ffo-t-DM = e the cgmplete $et cf m first syzygjes. Fer

examp}e, if codimX =rm 4 then m = 2k, aRd we have a (k + l) Å~ 2k reg.o}utiolt

for seme k == 3, 5, 6, 7,•••

   The point to notice is that, somewhat pamadoxically, the matrix M of first

syzygies always has more structure and contains more information than the
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eqgatloks fi themselve$. Ik what fol}gws, please bear ig mind the ease c = 3:
then the Buchsbaum-Eisenbud theorem says that k is even, say k xe 2n, M
is a skew (2n+ 1) Å~ (2n + 1) matrix, and its 2n Å~ 2n minors are the products

Pfs Pfj ef the diagcxal 2n Å~ 2n Pfaffiaks fi == Pfi, and thus they gexxera,te the

square of the ideal Jx. A rough qualitative deduction from this is that when

the rank of M drops, it drops by c-1 all at one go, and its submaximai
mi=crs vagish c - 1 time$ oR this lcc"s. This hold$ gexerally.

Theorem 10.2 (i? rank Mp :T- k at every (scheme theoretic? point P ff

    AXX.

    Assume in addition that X is locally c.i. at eve7y generic point ofX
    (this certainly hogds ofX is reduced?. Then

 (ii? Mp has rank S k + 1 - c at every point P G X (where c = codim X?,
    with equality where X is l.c.i.

(iii? The ideal sheaf generated by the k Å~ k minors of M restricted to the
    Lc.i. Ioc•us eguals XxC-i, the (c - 1)st power of Zx. Thus every k Å~ k

    miner of M uanishes e- 1 time3 at eyery genertc peint ofX, $e that
    the ideal they generate is contained in the symbolic power Ix("ivii.

Prgblem le.3 (1) Is the idea} ef kÅ~k miRors equa} to IxCM' in commoR}y

    oceurriRg examples? This aiways holds in codimepsion 3. For Goren-
    stein codimension 4, one checks that the ideal of subma)cimal minors
    of M ls the cRbe of Ix IR several ef the more popu}ar cases. k wogld
    be fairiy simp}e to try out a few more cases by computer aigebra.

 (2) Does the analog of the cenclusion (iii) holds witheut the 1.c.i. assump-

    tioit, fer example, whek X c A is a badly Ronredgced cluster (that is,
    O-dimensional scheme).

Proef Almost obvious Locaiised at P Åë X, the idea} sheaf Zx xx OA, so
that each homomorphism in (10.1) splits localIy as projection and inclusion

of direct sgminands.
  Next, locaiised at any polnt IÅr E X at which X l$ l.c.i., the idea} sheaf Zx

is generated locally by c equations xi,..,,x., with the remaining k+ 1 -c
equations expressed as local OA-linear combiRations of the xi. This meaRs
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that the matrix ef syzygies has a sqgare bloek gf size k + l - c wlt}k gglt
determinant:

uRk block ef

size k+1 -c
o e

o
Keszu} matrix of

   Cl7...,Xc
o

   Now the set of (c- 1) Å~ (e- i) minors of a Koszul matrix of a sequence
xi,...,x. is identically equal to {O} union the set of monomials of degree

c-i iR :v;,...,x.. Fg! exag}ple, ifc == 4, the ]Kg$zutl matrix is

o

- X3

X2
o

X3

o

- Xl

o

-- X2 -X4
xl e

 O XI

o

- X4
o

X2

o

o

wwX4

X3

;

and obviously, every 3 Å~ 3 minor of this is zero or a cubic monomial, and
every cubic monomial appeal's.

iO.4 Codimension4
In this case, the whole reso}ntion (le.1) is of the form

O e Le "Z-- Li +-!!L L2

                        ll

                       Lg

-
seV

L3
II

L\

-e--

elLV

L4 -- e
li

L,"

with M a (k + 1) Å~ 2k matrix. The Buchsbaum-Eisenbud symmetriser trick
gives the identifications L4 = LoV and L3 =: L\, and gives a symmetric perfect

pairing L2 Å~ L2 --År L4 '-V- OA making the ideBthieatSoks comm"te.

Lemma 10.5 Unaer the stated conditions, L2 together with ats perfectpair-
ing is i$omerphie te 2kOA with the stGndard g#edwttic foma (? 6).
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Proof I can find an isotropic vector in L2 by suecessively lifting from the
residue field A/m to A/mn, as in the proof of Hensel's lemma. That is why I
assumed A is complete. Ifv e L2 is a solution mod m", using the fact that the
pairing is nondegenerate, I can edit it to v+v' with v' ff L2x(mn'/m"+i) which

is a solution5 mod m"+i. Then just copy the usual reduction of quadratic

forms in linea2r algebra. .
   ThRs the dgal map L3 ----År L2 is givek by (96)`M, agd the cgkditicR for

the compgsite L3 - L2 - Li te be zero (to give a complex) is then simply
that

                        M(?6)tM - O.

   In other words, the rows of M are k + 1 vectors in L2 over OA that
are isotropic with respect to the standard quadratic form. Recall t,hat an
isotropic liRear sub$paee of a itoRdegeRerate quadratic form has dimen$ion
S k, so that, axy k+1 vectors spaxkikg ftk isctropic subspaee m st be liRear}y

depexdext. If I have a matrix M cver ak ambient space A repTesexting a
family ef k+ 1 vectors that span an isetropic subspace, aRd if M has generiÅë

rank k, the Iinear relation holding between the vectors is generically unique,

so that coker M is arank 1 sheaf over A.

Theorem 10.6 ("Structure theorem")

 (iv? Eor given k År- 3, write

            ... {M M(9 6

Under the above ass'umptions:

) `M = O} c MatÅë(k + l, 2k).

   Thus V is the 'universal family of complenes Li -e- L2 Åq-- L3 with the

   Gorenstein symmetTly described under 10.4.

   If X c A is a codime'nsion 4 Gorenstein subsche7ne in a regulaT loonl
   ambient space A over Åë, with (k + 1) Å~ 2k Te$olntion, then the middle

   terms of the comptex resogving Ox (plus choices of bases? dept'nes a
   morphism g: A - V with the propeTties that g(P) is G matrtr of
   rank k for P in cedimensien ff{ 3, the esmpgex pugged back tg A i,s exGet

   Gt L2, ang (eokerM)"' is a goonlgy free $heaf of rank l.

(v? The converse of (iv? holds.

5This "proof" needs expanding.
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Proof There is almost nothing te prove. Given X c A, it has a resolution,
so a map to V with the stated properties. For the converse, everything is
contained in the assumptions, that is, the several conclusions stated in (iv):

given a map to V, I get a complex Li -- L2 --- C3 with the Buchsbaum--
Eisenbud symmetry property, and the rest of the complex Le e Li comes
for free from the iBclusion cokerM g (cekerM)'", usiRg the statements
iR (iv). Thi$ ixclKsiox defines aR ideg} sheaf defiking a sgbscheme X with
sxppert in codimensicxx ) 4, aRd the cemplex i$ exact ef }exgtk 4, hence X

is a Gorenstein subscheme ef codlmension 4.

Remark 10.7 The theorem says that a Gorenstein subscheme X c A in
codimension 4 with (k+ 1) Å~ 2k resolution is the degeneracy locus of a family

M of k + 1 vectors spanning an isotropic subspace, with the family satisfying

suitable "generality" assumptions. In other words, all you have to do is
" somethiRg geReric in linea,r a}gebra". [l]he theorem is thRs a formal tma}og

ef the Bgch$baxiA-Eisexbgd t,heerem ig cgdimeRsigll 3. The yaRk. exactxe$s
and local}y free ass"mptiems cak al} be expres$ed ill terms gf the height (er

codimensien) of idea}s of minors of M.
   The theorem is unfortunately completely useless in praetice, since it does

not prescribe any way of actually fi11ing in the matrix M over an ambient
space A. For example,ainitial result on Gorenstein codimension 4is that
there are no ideals with 5 aLg their minimum number of generators. I do not
know how to derive even this elementary result from my so-called structure
theorem. Paft of the diracuky is that we are talking Rot just about the
"River$al variety V, bnt abont maps M frem A te V.

Example le.8 (Dicks' format) Dicks [D] propo$es a universal "ro}ling
factors" format for Gorenstein varieties with 9 Å~ 16 resolution (see also Reid

[R2], Section 5). For this, consider some regular ambient space A in which

                         44
                        Åí ct,zi =- 2 6iyi

                        i=1 i=1
helds "as anideRtity". }ile writes dowR the system of 9 equatioRs

                          Z2•.., ai3,fÅí -: : o

rank
(Zg Zl Y,2, Y.;) and Åíe=,a,",:ww:Åí,4m-ifi,gyi =o

                          Åí2•=, 6, ar, ua-- o

(109)
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The last 3 eqgatioRs aie iR regling foeters fomagt, mea=iRg that we gc frgm
the first to the second and from the second to the third by substituting y,i F-År xi

in one factor. Note that Dicks' identity (10.9) is precisely the condition for

the 9 rows mi of the syzygy matrix

Y2 wh X2 -Y3 X3 •

- Yl Xl

Yo -zo

,

• • Y3 wwX3 .
Yl ww Zl -Y2 Z2

    - • • -Y3 Z3

- Y0 20 • • Y2 --Z2

    • YO ww ZO -Yl Xl

fio ao

61 dv1

fi2 cr2

fio ao

Pb oro -rs1-ctl

    • -fi2-C12

      -rs3 -a3

51 cr1 -62-cy2

       -63 -or3

- th -a3

. X3 ' Z2 Zl zo

• Z3 wwY3 Z2 ---Y2 Xl 'Yl XO 'YO

• - Y3 • -Y2 • -Yl • -YO •

to span an isotropic subspace of the standard quadratic form (?6). In fact,

all the scalar products mi • mj cancel out by trivial skewsymmetry, except
that yi • v6, v2 • vs, v3 • v4 wgrk ogt tg be plus gr mixgs 2eqzd -Åí6iyi.

   To achieve the condition (10,9), one way is to take a 4 Å~ 4 symmetric
matrix (aiD and set ai =: Åí ai,•y,• and Pi == X aijzj. This system of equations

inclljdes the ease cf a hyper$urface Xd,d"2 c Pi Å~ P3 c P? ig the Segtre
embedding: indeed, take coordinates ti,t2 in Pi and xo,...,x3 coordinates
in P3. The equation of Xd,d+2 i's given by a bihomogeneou$ form

                 h G sd(tl, t2) x sd+2(xo, . . . , x3).

I caÅí wrke h (in marty ways) as a qgadratie form h = Åíai,txiarj in the
xi, with eoeMcients ai,• that are bihomogeneous of degree (el, d) in ti,t2 and

xo,...,x3. Then the substitution tixi H yi, t2xi F--År xi expresses

fo == t?h == 2ai2Jyiyj•, fi == tit2h=2aijyizj, f2 =t3h == 2aijzizj.

Note that specia}islRg Åíaijxix3• H xgx2 - xix3 exhibits these eqEtatioRs as
a fiat deformation of the aifine cone over iti Å~ Pi Å~ Pi.
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   The "identity" (10.9) in whatever ring the (tui,fii,yi,zi have their values

illustrates the problem implieit in Theorem 10.6 of how to map a reg;ular
ambient space A into the singular variety V that is the universal space of
complexes. When yi, .7.,• are not independent, there are of course many other
ways of satisfying (10.9) , and this format includes other anticanonical djvisors

in scro}}s. Cempare Steven$ [S].

11 G. covers of Mori flips of Type A

11.1 Introduction
This section is a brief ouCline of a joint paper in preparation with Gavin
Brown [BR], that develops the ideas of my old preprint, and notes "What
is a fiip?" [wF] and Brown's thesis [B], [Bl]. The idea is to study a Mori
fiip X Å~ Y / XAR term$ of the ;Zl-graded ring R(Y, Ky) aiisiRg as the
eaReRical aRd agticaugRical a•lgebra gf the two sides of the fiip. The Z-graded

ring R = R(Y, Ky), or the cerrespending aMne vanciety Spec R together with
the G. action coming from the Z-grading is called the ÅqG,. cover of the fiip
(I write G. == C' for the multiplicative group).

   If we assume that the general elephant S G i-Kyj of the fiip is a Du
Val singularity, the G. cover of S is an afiine Gorenstein 3-fold that we
can take as a known object, For a Type A flip it is a toric variety. The
prob}em translates into how to deform this to a 4-fo}d whose Gm quotient
has eRly terminal siRguiaritles. We carry eut this deformatioR by IRtrodacikg
a ciass gf "d[e=ble-headed toric vaxieties" VABLM (the ter;niRclggy is cgrregtiy

under collstructien - we apologise to the reader for any di$eemfert afid hope
to resume normal service short}y). These are affine 6-folds, determined by
combinatorics and seria} unprojection, that have a xaevparameter family of G.
actions, and that play the role of "key varieties" contatning the ÅqG. covers
of Mori flips of Type A. (Here I only give examples, but we conjecture that
all Mori flips of Type A ean be covered in this way.) The main point of this

sectien is to introduce the varieties VABLM as examp}es of serial unprojection,

aRd I rea}}y oRly dlscus$ the basie setup aRd oÅíur main re$u}ts as fai as reqnired

Åíe make this pglkt.

   A}tho"gk eur work cou}d IR principle be presented as a legica}ly self-"
contained treatment of fiips (modulo assumptions or eonjectures on the exis-

tence of flips, and the nature of their general elephant), it is more reasonable
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to see it as an attempt to get to grips with and reSnterpret a, brilliant calcu-

lation of Mori [M] dating` back to the early 1980s, describing flips of the Mori

eategory whose general elephant is an A. singularity. Mori has explained this
calculation to me on several occasions since 1986, and it provides motivation,

logical foundation and a frequently invoked sanity check for our work.

DefiRitioR ll.1.l I adopt the fellewing =arrow defiRiticg of 3-fo}d fiips,
that is s"Mcient for present purpeses: a fiipping centractien is a projective
morphism f: X -- Y, where X ls a quasiprojeetive 3-fold with Q-factoria}
terminal singularities, f contracts a single irreducible curve C c X to a point

P E Y and is an isomorphism on the complement, and -Kx is rela,tively
ample for f. A Mori flip is a diagram

X
Å~ /

X+
(1}.1.l)

Y

where X - Y is a fiipping contraction and X+ - Y a projective morphism
from a quasiprojective 3-fold with Q-factorial terminal singularities extract•-

ing a single curve C+ with Kx+ relatively ample on X+. We assume that
Y == Spec Rb is affine, or even a local analytic neighbourhood of P E Y.
  For any nonzero element t E HO(Y, Oy(-Ky)), the divisor divt = S c Y
is a Gorenstein surface, called an etephant ef Y. It is a theorem of Mori and
Kollgr aRd Mori that for a geitera3 cheice ef t the e}ephaRt S is a Du Val
$ingglarlty. It fgllow$ frGm this that t defiRes a diagrare of sgbvarietie$

s-

Å~/
s

s+

c
X

x
Y

/
X+

(11.12)

with S- cX and S+ c X+ also the divisor of t, and S- -S and S+ --ÅÄ S
crepant partial reselutions of the Du Val singu}arity of S.

  [l]he fiip (ll.1.1) is of [Empe A if its geReral elephaRt S c Y i$ a Du Va}

fixgu}arity of [l]ype A.

  Fer simplicity in setting up the graded riRg, as$ume first that Kx is a
generator of the cla$s group of X (the more general case is discussed in
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Remark 11.2.2). Define

     R.==Ho(y,o.(nK.))-(ZgEii\?#I;:l.) IX/Lg; (iii3)

(the multiplication is most easily defined at the level of Oy(nKy)) and set

         R-eR., R-==eR., and R+-OR.•
             nEZ nÅqO nÅrO
Then R is a Z-graded Gorenstein ring. Both R- and R+ are finitely generated
rings, and according to IwF], the fiip diagram (11.1.1) is the Z-graded Proj R,

meaning that X = ProjyR-, Y == SpecRo and X+ = ProjyR+. The
grading of R defines an action of G. on the corresponding affine variety
Spec R, and the three varieties Y, X and X+ are different GIT interpretations

of the quotient (Spec R)/(G. under different notions of "stability". The case

when R is a hypersurface treated by Gavin Brown [B], [Bl] already leads to
examples of fiips with an interesting diversity of behaviour.

11.2 Mori'scodimension2example
Consider the codimension 2 c.j. V c C6 defined by

            xi yo = x8zta + tPe and xoyi = uP + xttAd, (1 1.2. 1)

where co, tri, yo , z/i, t, ze are coordinates on C6 and d, e, cy, 6, A, IL are given

positive integers, with A, pa coprime. Write

        R = C[V] = C[x'o, xi, yo, yi,t, iL]/(equations (11.2.1)).

for the coordinate ring of V. Specify a monomial G. action on C6 and on V

by setting

                        ari " gAxi
        Åé: g"-it and .Y,i lgftY.ix, for gEGm.

                        yo H g-A-peyo

This makes R into a Z-graded ring, assigning weights

    wtu=O, wtt:-1,                                                   (11.2,2)
    wt xi = A, wt yi = itL, wt xo == -ltL, wt ye = -A - JtLe.
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in fact, since the two equaeieRs (ll.2.l) are assuy[ted to be homogenegEis, the

given weights of u and t determine everything up to a finite torsion ambignty
(this is dascus$ed further in Remark 11.2.2).

   We can now calcuiate the Z-graded Proj R and obtain a fiip diagram
(11.1.1): R" is clearly genera,ted over Ro by the generators of negative weight

xc,ye and t, and apure power oft appears iA the fir$t eq"atiell of (ll.2.l),

so that X = Projy Rww is covered by two affine pieces:

  x.,#o - ( X'X? ww-'ww ie(li.-,Ft,t.pa.' ) / }(A,-A,o,-i),

  xygpto = ( .,Xyl l.l:w ii2" tz +(.i(lt +tpe){itAd ) / A ev}.i s,,(ww?Le],Le,o,-i)

The fractional notation i(A, -A,O,-1) means the cyclic group Z/# acting

on xi, yo,u,t by the characters eA,e-X, 1,E-i, where a == exp f2"2. This is the

standard way of choosing an aMne cover and inhomogeneous coordinates on
each aMi}e pleee of a ÅqG. quotient, just as for w.p.s.s (compare Fletcher [Fl] ,

5,3). Both of these are standard terminal singularities of Type A, so that

Prej R is a Merl fiip of Type A.

Remark 11.2.1 One observes in this and other examp}es that u",uP,tA,t"
appear as indivisible tokens. It thus simplifies the notation to replace t,hem

by independent variables A,B,L,M, giving rise to the codimension 2 e.i.
VABLM C Åë8(xe, xi, ye, yi , A, B, L, M) defified by

              xiye=x8A+M aRd xoyi =B+xgL. (11.2.3)
Thus VABLM is a 6-fold; in fact, VABLM bl- (C6, because we canjust solve for

M axd B. We caR view VABLM as a "key vaslety", and (ll.2.1) as obtained
by pulling back the key variety by a morphism A : ua, B = upt, L = tAe,
M == tpa.

   In the generai notation for the two-headed toric 6-folds VABLM introduced
below, the equations (11.2.3) are encoded in the pair of rectangles

Ae

o

mo 3io
Xl Yl

oB

- e

and
o

L --- d

xo Yo
Xl Yl

d

eM
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Remark 11.2.2 In setting up the graded ring over a flip in (11.1.3), ma,inly

for simplicity of notation, I assumed that Kx is a generator of the ciass
group of X. More generally, Kx may be divisib}e in CIX, or ClX may have
torsion, so that Kx is only a Q-generator. As mentioned in Definition 1.1,
in this case we just use the slightly bigger ring

                  R(Y) =- ({D HC(y, o. (D)),

                         PECIX

which is graded by ClX bl- Z o torsion.
   The more general case is conveniently illustrated in Mori's Example 11.2,
Choose positive integers d, e, dv, B, A, pa with A, pa coprime, and a common fae-

tor 6 l hcf(d, e). Define a codimension 2 c.i. V rv- SpecR c C6, replacing

(11.2.1) by

           xiys =: x8u" + tpef5 aRd xgyi = 2L5 + xgtAd/5.

Write pa. fer the cyclie .urottp gf nth rocts of l. The more geReral mekomia}
action of Gm Å~ pad. on C6 and on V is given by6

                               xi -, gAaixi
             ig : U-6t and .Y,' : ggfe.2,Y,iwwi.,

                               yo H g-Abe-"esi-iyo

for g E Gm aRd e2 G pad,s•2 E pa.. Thisjust takes into accopt}t the fixke
ambig}iity iR the weights meRtigxed ix (ll.2.2).

   'I]he key variety VAemM itself is Rot affected by the geReralisation, on}y

the pullback and the choice of the group action, For this reason I suppress
the generalisation in most of what follows (it is easily restored).

M.3 One long rectangle
As explained iR (ll.1.2), the genera} elephaRt ef a fiip X Å~. Y / X" of
Type A is g diagrarc ef subvasieties S- X S / S+, wlth S a Dg Val

  6This treatmekt }s toe hurried. I have Retes aBd a letter from Meri semewhere deikg lt

properly. I should choose n -- lcm(d,e), and si E pa., 62 G pa. in a coherent way in order

that the action of G. Å~ pan has isolated fixed points and corresponds to the dual of the
class group of Y.
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singularity of Type A., and the two sides S- Å~. S / S+ crepant partial
resolutions extracting at most one curve. (The general elephant S' c X
need not contain the flipping curve, in which case S- - S is an isomorphism.

Compare Remark 11.5.1.)
   The (Gm cover of the elephant S- X. S / S+ is a Gorenstein affine
toric 3-fold V. = Speck[anM] whose cone of monomials a c MR is the
quadrilateral cone of Figure 11.3.1. Here the x,i,yj and u are monomial

ua
ao

al

ak-1

 ? aJk
u'

Xk-1

Xk

Yl-1

 {yt

bo

bl

ufi

bt-1

bl ?
  u'

Figure 11.3.1: A Gorenstein cone a in M = Z3. The origin is behind the
page; the monomials xi, yj and the intemal generator u are not, coplanar.

generators, with u the unique internal generator. (The dualising sheaf of an

affine toric variety V is isomorphic to the ideal of internal monomials, so V
is Gorenstein if and only t,his ideal is principal.) In Figure 11.3.1, the tags

ai,bo• down the sides represent tag equations

      xi-i xi+i == x",ii with ai År- 2 for i= 1,...,k - 1,
                                                       (IL3.1)
      yj-i yj+i = y,b•' wi th bj År- 2 for 1' = 1, ...,t - 1.

The top two corners are an'notated by powers of ze, which modify their tag

equations to

      xiyo == x80u" and xoyi = y80ufl with cy,6)O. (11.3.2)

   The monomials down either side of the rectangle (11.3.1) form the Newton

polygon of a surface cyclic quotient singulaJrity, and are thus governed by
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standard rules in terms of the Hirzebruch continued fraction [ai,...,ak-i]
and [bi,...,bi-i]. The restriction ai,bj År- 2 comes from this. All this follows

easily because any two consecutive monomials vi,vi+i around the perimeter
of (11.3.1) together with the internal generator u form a Z-basis of the lattice

of monomials M.
   On the other hand, the tags at the world's four corners ao,ak,bi,bo cannot
all be ) 2. In fact, each tag equation corresponds to a change of basis

                  (.:.',)=(-O,, i l) ("8ii)

in M, where ? is the annotation iL? at the corners.

by successive changes of bases gives

      /o 1 oN
   "t'1 ai ?) =:id3, inparticular "
      NO O 1/

Circumnavigating (11.3.1)

(-Oi ai,)=id2 (ii•3•3)

The tag equations so far (11.3.1-11.3.2) determine each xi and yj as aLaurent

monomial in x'o,yo,u. Writing out these Laurent monomials allows us to
calculate all the equations between the generators xo,...,x'k,yo,...,yi,tt,
and in particular the powerg. of ze annotating the tag equations at the bottom

corners. Write

             k[V.] = k[a n M] = k[xo,••• , xk, Yo,•••; Yl,U]

for the ring generated by these monomials, the affine coordinate ring of the

Gorenstein toric 3-fold V..

   Convexity considerations and combinatorics of concatenated continued
fractions (compare Craw and Reid [CR], Section 2) reduce us to just a few
cases. The main one is the rectangle of Figure 11.3.2 with tags forming
complementary continued fractions

      [ao, al,..,,ak.2] = Ln and [bl, b2,..., bl-1] = n (11.3. 4)
                                              n-q                      q

for some n and q. This is a well known way of fixing up identities such as
the second of (11.3.3); see for example [CR], Figure 4 or [Rie], g3, pp. 220-3.

However, as Jan Stevens taught us, it is also a way of deconstructing the
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zLa

do

al

d

 ,o
u'

1

bl

uB

bt -ny 1

--- d - l
      IL?

Figure
aitd bi

11.3.2: Main case: the comer tags have signs ao År O, bo = 1, ak

Åq O, axd the side tags form complemeRtary ee=tix:ed fracticRs.
=o

continued fraction, successively eliminating the tag 1 and decrementing its
two neighbours. For example, take n == 11 andq == 7; then e' = [2,3,2,2]
aRd I\t == i3,4i. CoRcateRating the twg coptigued frEncÅíions with a i give$

[2,3, 2, 2,l,4,3], that decoRstructs by replacing 2,1,4 by 1,3:

   --, [2,3, 2, 1,3, 3] --. [2,3, 1,2, 3] - [2, 2, 1,3] - [2,1, 21 ----+ [1,II ::-:- O.

Cgmpare [CRI, g2. My main poiRt is:

     the same calculation gi'ves successive Gorenstein purojections of
     the tontc coordinate ring k[V.] down to a codimension 2 complete

    znteTsectzon.

IA fact, if ye has the tag bg xex 1 theR al$e xe,yi aRd ze base M. This is
basically the same reason that allowed us to assume that ai, bj År- 2 down the

sides (if ai = 1,Ican eliminate xi as a generator), but here eliminating yo

cuts dowR the cone a, so makes a birational change to V..
   To see the effect of ghis change iR more detail, Rgte that becagse ye has
the tag bo = l, it occurs liBearly in 3 tag equations:

             xi yo == xoua, yoy2 = y9' and xoyi = yo uP

(aÅíd al$o ig lgRg eqgatigRs yexi fori) 2 and ycse fgr j Årww 3, but we de xct
need these). To eliminate yo, I multiply the first two equations by u•B and
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zLa+,8

  ao -1

al

  uP
bi -1

Figure 11.3.3: Projecting from yo

substitute yeuP == xoyi in each, then cancel a power of xo or yi respect,ively,

to get the new tag equations

              xiyi=xbaOniua+P and xoy2=y9i-iuP.

In words, chop off the top right-hand corner of a, giving t,he new G. oren-
stein quadrilateral cone o' with top corners given as in Figure 11.3.3. Note

that the two monomials adjacent to the recently executed yo have their tags
decremented by 1, but inherit a factor of uB in their annotation.

   Under the current assumption that [ao,ai,•••,ak-2] and [bi,oj,•••,bi-il

are complementary continued fractions, one of ao - 1 and bi - 1 is again equal

to 1, allowing me to eliminate xo or yi by another Gorenstein projection, and
so on. The serial projection ends with a rectangle

uP
d-1

o

o
uq

- (d - 1)

where the exponents p, q of u are linear combinations of or and 5 determined

by cumulatively multiplying the annotations. This rectangle represents the
codimension 2 complete intersection

                  xk-iyt == uq, xkyi-i ==z x2--lzep.

11.4 Apair oflong rectangles
Example 11.4.1 I illustrate in a simple codimension 4 case how to deform
a Gorenstein toric variety by projection and unprojection to obtain the Gm
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cover of a Mori fiip. The quadrilateral cone ef monomials and its tag equa-
tions are as follows:

Ua
1

2

a

2
u•3

Xlyo == xoua

XOX2 = X?

xlx3 = xg

xoz/i == zigzeB

      O -(d- 1) x2yl = u2a+P x3 yo = xg"lua
 IL2ar+B

for some aÅrO and fi 2 O.

Remark 11.4.2 The bott,om right equation x3yo == xg-iua is nonstandard:

because the tag bi = -(d- 1) is negative, the regular tag equation would be

                       x3yo =yi-(d- i)u?, (1 1.4. 1)

which is not a polynomial equation. I therefore replace yii by x2iL? using the

bottom left equation, gett,ing the modified tag eq'uation x3yo = xg'iu?. This

replaces the negative exponent of the corner monomial yi with a posittve
exponent of the monomial a}2 opposite the corneT. We certainly pay for thig.

substitution when we do syzygies, although I do not know how to express
this sentiment mathematically.
  Note also that (11.4.1), rewritten as x3yoyg-i = u?, is a general feature

of the monomial rectangle (11.3.1) that may at first sight seem somewhat
unexpected: the internal monomial iL chooses to live right in one corner,
namely in the convex hull of yi, xk) yi-i•

  I deform this ring by gueg.sing the two equations at the top:

        xiyo =: xozea+t2A+P and xoyi == ygzeP+xitA (11.4.2)

where t is an elephantine deformation parameter (t = O will be the anti-
canonical section for the Z-grading). There is nothing very special about the

exponents of t: they are a priori arbitrary coprime integers satisfying some
inequalities and possibly divisibility conditions; the point of writing them in

this form is to make the bottom two equations and the Z-grading pret•ty.
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  New (11.4.2) is a ce(limen$ion 2 e.i. that eontains the eedimension 3 c.i.
(xo,yo,tA). It thus unprojects by Theorem 5.2. The unprojection variable
x2 satisfies 3 new equations given by a game of Pfaffians similar to that of

Example 4.l:

Yl -Xl
    yo

ww
 3io2LB

 wwtA

 xo

 X'2

- ucr

-
tA+pa

 Z'l

==År

XOX2

X2YO

XIYI

= X? + 3/olLPtA+ p,

== ni ucr + yi tA+p`

 : ye ftL`'+P + x2tA

These 5 equations define a Gorenstein codimension 3 variety that contains
the codimension 4 c.i. (xo, ari, yo,tA). This agaM unprojects by Theorem 5.2,

adjoining x3. In faet, it is a, Jerry unprojection (see Example 6.8): rows aRd

columns Nes. 3 aRd 4 gfthe PfathaR }]r}atrix (all extrles except for the 125
triang}e) are in the ideal (ro, ni,zxo,tA).

  As in Example 6,8, there is an easy trick to derive x3 as a rational function,

namely elimination of xo (a projection). Notiee that ( o appea,rs linearly in 3

of gur 5 PfaMams; the t,wg Ret iRvclviRg xg are the gbeve eq}2atieRs

         x2yo uc xiu,"+yitAin and xiyi == youa+B+x2tA.

These define a codimension 2 c,i. that contains two separate codimension 3
c.i.s, xxame}y the idea} of denominater$ (x2,yi,u") of xe aRd the Rew oRe
(xi,ye,tA) that is the ideal gf dexeminators of x3. IIRdulge my$elf in j"st

one final round of PfaMans:

      yi -c2 -ua+B tL•3
          Yg wwtA -sc.
               X'1 -Yltpa

                     X'2

  The first of these equations
she ring lx Examp}e }l.4.l,
and adopting the above
in Example 6.8, we do noti
equation" for xox3.
gRy usefi.}l way.

 =År

XIX3

X3YC

X2Yl

= x3 + yi zea+P t"

= x2u" + y?tsi

= zL2ac+I3 + c3tA

             proves that if we make a deformation of
          startlxg frgm #he tep two eqlla#lcRs (il.4.2)
       style of unprojection, then necessarily d == 2, As
          really have a good way of deriving the "long
   As far as we know, it is not contained in aPfaffian in
Me$siRg 3iroikRd with explicit syzygies eveRtljia.l}y gives

   :zro:c3 = :tlx`2 + lyoz/11LPt," + ua+fltA+it. (u.4.3)
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   There is a unique way of putting a Z-grading on this set of equations with
wtu == O, wtt= -1, provlded that 3lp. Namely,

         wt x3 = AÅr O, wt yi = Ii/3 År O, and

         wt x2 = ---pa/3, wt xl == -A- 2I.e/3,

                     wt xg == -2A - )Lg, wt yg =: --A- ;s/3.

   The G;m qugtieRt is the filp diagram X X Y / X$, where

          X == proj Rww :-- ( :6Z? i. ,X,8,Z,`,a .+ g2;,;" )/(G.

is covered by the two affine pieces xo == 1 and yo xe 1 and

          x'=projR"=:(.%3Z? i'l Z3.U-a,-i+.Y.i2t,:x)/Gm

i$ covered by the two aMne pieces x3 ==1 and yi ':-ww- 1.

  This is a Mori fiip of Type A, with t == O the general eiephant, and u -lh- O

the general hyperplane section. For example, the yo ::'=wu 1 aflftne piece of the

leftnynyhand side X is the hyperquotient singularity

     ( xoXyl ili gi2U+" +( cgt'i.+"+ t2A+.)tA ) /wt13Io(wt :vo,wt yl,o, 1)•

If we }ock gp the vveights, we see that this is

     (xogli = uB+•••+t3r)/;(-a,a,o, l), with r =A- ll,G == g,

which is a standard Type A t,erminal singularity.

11.5 Conclusions from this example
The rectaRgle of Example ll.4.l defiRes aR aSl}ke GoreRstelR toric 3-fo}d V.;

I have shcwk hgw to deforrc it te a 4-fo}d V.,t with a Gm actigg sÅíich that

V.,t has iselated sixgularit!es mgdnie the action and lsg}ated fixed peints.
Requiring iselated fixed points meafis that the eorner equations colltain pure

powers of t (possibly after a substitution). The deformation style adopted

keeps track of the powers of t by introducing the right-hand rectangle of
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A
1

2

d

    o
A2B

2
B

- (d - 1)

and

L2M

L

o

2

2

1

- 1

2

M
Figure 11.5.1: The pair of long rectangles for Example 11.4.1

Figure 11.5.1, having different top and bottom corner tags and annotations,
but identical torso. This imposes d = 2 on the original rectangle.

   As in Remark 11.2.1, the final expression only contains iL and t within
the tokens zea,u6, tA,tP. Replacing

              uaHA, uPHB, tAHL, tpHM

in the equations (say, taking the top two equations to xiyo = xoA + L2M
and xoyi = yo2B + xiL) gives an affine Gorenstein 6-fold VABLM with a reg-

ular sequence A,B,L,M E k[VA,B,L,M] such that the codimension 2 sections
VAB : (L =M= O) and VLM : (A == B= O) are the toric 4-folds with
respective cones of monomials documented by the long rectang}es of Fig-
ure 11.5.1. There is a 4-dimensional torus GX with a monomial action on
VABLM, namely, the subgroup of the diagonal group G9, acting on C8 with

coordinates xo,xi,yo,yi,A,B,L,M that leaves semi-invariant the top two
equations xiyo = xoA + L2M and xoyi == y3B + xiL.

Remark 11.5.1 At the start of Example 11.4,1, the assumption on 6 was
only that 6 ) O. If rs År O then Pi(xo:yo) is contained in the elephant and

the point P,, == (O:1) E V. is a terminal singularity of index (- wt yo). If
6 == O, the top right equation contains a pure power of yo, so that P,, Åë V..

In this case, S' - S of (11.1.2) is an isomorphism. This is Mori's distinction

between cases kA2 and kAi, having respectively two and one singularities of
index År 1 on S. In this case the angle at yo in the left-hand long rectangle
straightens out, so that the elephant is represented by a "long triangle".
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11.6 Pairs of long rectangles and serial unprojection
       via pentagrams

The combinatorial classification of pairs of long rectangles is solved in Brown

and Reid [BR]. We obtain a• number of families labelled by Roman numerals:
the case of Figure ll.5.i is Åëurrently ca[lled III(1,e). Each pair gjves rlse to

a twe-hegded teptc 6-fold VABLM by the serial ukprcjectieg methgd g=tlined
below, with the prcperties $ketched iR ll.5. We $tM have seme wgrk te do to
identify our treatment with Mori's calculation [M], but the pairs II(d, e, k) of

Figure 11.6.1 seem to be most closely related to it, The fi.qure illustrates

A
d

e

d

d

o

 B
1

2Å~ (d- 2År

3
2Å~ (e- 3)
3

2 Å~ (e. --- 2)

- (d - 1)

axd

L

o

e

- (e - 1)

1

M
Figure 11,6.1: The pair of }oRg rectangles II(d,e,k)•

the case k eveg akd d,e ) 4. The twe rectaggle$ have the same torso
tags ÅqexeludiRg top$ and tails): k term$ e,d,e,d,...,d dowR the }eft and
k blocks 2, . . , , 2, 3 of el - 2 and e - 2 terms each down the right, giving rise

to complementary continued fractions

            [e, d, ...I =rm n and [2, ...,2, 3, 2, ...] ..- n

                                               n-q                     q

as in (11.3.4).

Remark 11.6.l (1) The twe rectaxg}es cgrrespexd tc the e}eph&kttin-e
    aRd the geAera,} section u = e of a filp. Morl has prcved thatif the
    elephant is of Type A then the section is a cyelic quotient singularity,

    this is where VABnM gets its two toric heads from.
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(2) We weuld be interested to kxxew ifthe VABLM have already been studied
   elsewhere. We hope that they have other descriptions; jt is conceivable
   that they are quasihomogeneous varieties for some slightly bigger group
   tha.n GS, for example, semething with a unipotent radical such as
   two egpies of (Gc'" 8k). All thcse PfaMag eqgatiens cf VABLM that

   become binomial (toric) on eutting to VAB and VLM might to have
   something to do with extending toric varieties to quasihomogeneous
   varieties modelled on GL(2).

(3) It shguld be reasgRab}y $traightferward tg exteRd m"eh gf the app3-
   ratus of toric geometry to deal with the VABLM. Invariant divisors,
   coherent cohomology, Betti cohomolog y and Hodge theory, derived cat-
   egories, Gromov-Witten invariants, mirror partners . . . Get on with it,
   this isR]t a re$earch .eqakt applieatieft!

(4) It seems likely that the two-headed toric varieties YABLM can also act

   as key varieties in other contexts. For example, we expect that they can
   be given nice positive gradings, and so act as key varieties for projective

   varieties cgming f}'gm serial uxprejectioR cDgstr=etioits, as ill:st,rgted

   in Exan}p}es 7,1-7.6. This could extend the range of our artiliery for
   attacking surfaces and 3-folds, bringing other interesting target$ within

   range.

Example 11.6.2 I i}lgstrate serlal uRprejectioR wkh a little werkegt in the
case k me 2, and get a final fix (ultimo Pfafiiano/). The bu}lets down the
left side of the rectangle in Figure 11.6.2 are monornials xo,xi,x2,x:3. To
avoid going into double suMxes,Iwrite yo,...,yd and then xe,...,2, for the

A
d

e

d

o

 B
1

2Å~ (d - 2)

3

2Å~ (e- 2)

- (d-1)

aRd

L

o

e

- (e - 1)

1

M
Figgre 11.6.2: The pair cf }gRg rectaRgles II(d,e, k).
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monomials down the right side, with an overlap of 3:

    yd-2 == zo, yd-i == zi is the monomial with tag 3, and yd == z2.

   I start work on the right-hand rectangle (the cone of monomials for VLM),

with the initial objective of discovering the annotations at its top corners.
The bottom right tag is a 1, so that I can project from z. as in Figure 11.3.3

(but bottom-up this time), then successively from z.-i,...,kNo". By the rules

given around Figure 11.3.3, the new tag at x3 is decremented by 1 at each
projection, and the annotation at x3 inherits a factor of M, so that after
e-1 steps the t,ag is 1 and the annotation is LMe-i, giving successive tag

equations

            xi x3 -- xg, ar2zi := x3LMe-i, x3 zo = zi2 M.

The last projection of z2 decrements the tag at zi from 3 to 2, and gives zi

an annotation of M.
   Now x3 can be projected: I chop it off, and its annotation LMe-i is
multiplied into that of x2 and zi = yd-i. The score at half-time is:

                          O -(e-1)

                          e 2xd-2
                       d-1 1
                LMe'1 LMe
Next project from yd-i,...,y2. At each point the annotation LMe of yi is
passed on to that of yi-i, and is multiplied into the tag of x'2. Since we
project d - 2 times, the tag of x2 decrements down to 1, and its annotation
multiplies up to

                LMe-1 Å~ (LMe)d-2 = Ld-IMde-e-1.

Finally project x2, so that its annotation is passed on to xi and multiplied
into that of yi to give LdMde-i. This leaves us with a rectangle representing

the two equations

           xiyo = LdMde-i and xoyi = xei-iLd-iMde-e-i

at the top corners of the right-hand rectangle.
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  Merging the right hand side of these with those at the top corners of the
left-hand rectangle give$ the top equations for the 6-fold VABLM:

  rrlyo == xgA+LdMdeww1 atnd xoyi = yoB+x{wwILdwwIMde-e-1. (11.6.1)

Now this is where the fult rea.l}y start$. CoRsider the series of 5 Å~ 5 PfafiaRs

x2 -B
Xl

  e-l- Xl

' LMe
xo

       zii
   ww x,d-i ABt-i

-- x' i-ILd'"-tM(d-i)e-1

      Z/i-1

==År

xlyiww1 = xg'Z+IABi-1.i-xtrILd-z+IM(d-i+1)e-1

 XgYi = yi-iB+xf"ixS""'iLd--tM(d-i)e-i

xL)yi-1 =:: xg-ixs-IABi-kyiLMe
 XIYi = xg-iABi+xSLd-iM(d-i)e-i

 xox•2 = x: + BLMe

fori == 1,...,a- 1. When 'i =1, the first two equations arejust (11.6.1), and
the final three, linear in x•2, are the equations defining' the unprojection of the

codimension 3 c.i. (xo,yo, LdwwiMde-e-i) in the codimension 2 c.i. (11.6.l).

  For i ) 2, the matrix is easily read off the pentagram of Figure ll.6.3,

(a). We start from the two kRcwR eqgatieRs fer xgx2 aRd xiyi-;. The
5 points of the pentagram are x2,xi,xe,yi-i,yi. We wTite these eyc}ically
around the superdiagonal and top right of the matrix, so that adjacent ver-
texes do not multiply in PfaMans, but vertexes that are two apart do so, as
in the pentagram: the new unprojection variable yi goes in the top right,
from whence it will multiply xo, xi and the middle entry m24, but not x2
or yi-i. The remaining matrix entries are uniquely ctetermined by requiring
that Pfi2.34 is the knewn equation fer xgx2 and Pf23.4s the known equation
for xiyi-i wlth the midd}e entry m24 == LMe the hcf of the teriRs BLMe
aRd xS-iLdHiÅÄiM(d-i+i)ewwi in thDse twc eqgatiegs (takiRg a faetbr smaller

than the hcf wou}d lead to a BonRorma} variety). The 3 llew PfaSfiEms deter-

mine the new unprojection variable yi as a rationa} function, and one pi'oves

via Theorem 5.2 that it defines a Gorenstein variety with coordinate ring
generated by xo,xi,x2,yo,..,,yi,A, B,L, M.
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xo

Xl

X2

(a)

Yi-1

y{

xo

Xl

X2

X3

(b)

Yd-1

 .. Zl

Xl

X2

X3

(c)

Xi -l

2i

Figure 11.6.3: Pentagrams for II(2, a, e)

  For l -Åq i f{ d - 2, $gppg$e by ixductiok that these eqgaticxs hold for i;
then projecting from yi-i deletes the first three equations, leaving the Iast

two as a codimension 2 c.i. containing (xo,xi,LMe). Thus we can introduce
a new unprojection variable yig, with three new relations contained in the
same set ef eqgatiox$ with i N i + l.
  The rest is simi}ar. At the eRd of the first half, the fust series of PfaffiaBs

culminates at i =d-1 with the equation

XiYd-i == xeABd'i + xg-iLMe-i.

At ha}f--time, we use this together with the equation for
a 5 Å~ 5 PfaMan matrix corresponding to the pentagram
Zi = yd-"i for the second half:

XbX2
(b),

as input te
switching to

x2 -BM
    XI

   e-l wwXl

- LMe-1

  xo

  X3

- ABd-1
   d--1 th-X2

  Xl

XOX3

XIX3

X221

= x:-ixgwwi + zi BM

=: xg+ABdM
== x:mlABd-1+:3LMe-1

Notiee that the mlddle term of the matrix m24 = LMewti has slipped down

to the hcf of two terms in the input equations Pfi2.34 and Pf23.4s•
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  The two last equations form the input to the series
sponding to the pentagram Figure 11.6.3, (c) that play
half:

                x3 -ABd -xg-i zi+i
                     XL) -M -xf-t-IAzBd-•i
                            Xi -xSLMe-i-i

                                      2i

This works by induction as before, andI leave it at that.
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