
A SIMPLE CHARACTERISATION OF TORIC VARIETIES

JAMEs MCKERNAN

                           Sl INTRODUCTION

  This paper contains an announcement of some results that will be contained in

a paper entitled "A Geometric characterisation of toric varieties". The underlying

ideas are quite simple but some of the proofs are a little delicate and technical. In

this paper I will state a simplified version of these results and give a sketch of the

main ideas of the proof. Complete proofs and statements will of course appear in

the paper referred to above.

  Toric varieties seem to be ubiquitous in algebraic geometry and indeed other

branches of mathematics and physics. This seems intriguing behaviour, for which

there seems to be no real explanation. This forms one of the motivating questions

for this paper.

Motivating Question: Why are toric varieties so ubiquitous?

  One possible way to answer this question is to try to find a simple characterisation

oftoric varieties. Ifthe characterisation is simple enough it might indicate why toric

appear so often. Recall the definition of a toric variety:

1.1 Definition. Let X be a normal variety and Iet D be a reduced integral divisor

(that is every component of D has coeflicient one). We say that the pair (X,D) is

toric if U == X X D is isomorphic to a torus and the natural action of the torus on

itself extends to an action on X.

  Note that the components of D are precisely the invariant divisors. Note also

that toric varieties are rational as they contain an open set isomorphic to a torus.

In general it is very hard to give rationality criteria, that is it is extremely hard to

decide if a given variety is rational or not. It is an even harder problem to determine

if a given surface is isomorphic to A2 (this is easily seen to be equivalent to the

Jacobian conjecture, see [6]). In particular it only seems reasonable to expect a

simple criteria when X is proper.

  Let us look at some simple examples of proper toric varieties to get some idea

of what they Iook like. The simplest example is Pi. In this case D consists of two

points. More generally the pair (IPM,D) where D consist of n + 1 hyperpanes in
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gemeral positioxx is toric. One caxx take tke produÅët ef any two toric varieties and

get a toric vamiety, The simplest example of this is Pi Å~ Pi. In this case D has four

components consisting of a pair of fibres for both fibrations. More generally rvn is

teric, where Fn denQtes the unique Pi-buRdle over Pi wkh a unique sectien E.. of

self-ixtersectioxx -n. IR tkls case P coi}sists oÅí Eg ÅÄ Eco ÅÄ K " F2 where Ee is any

section disjoint from E.. and Fi and F2 are two disjoint fibres.

  Note that in ail of these exa:nples there is a simple formula connecting the

number of invariant divisors d, the dimension n and the Picard number p:

The nllmber gf ixxvarlaRt divi$ors is eq=al to eke dimeRsicB plus tXe Picard itumber.

  More general}y the same is true if we replace PlcaTd number by the rank of

the group of Weil divisors modulo algebraic equivalence. In fact this result is easy

to check using the combinatorial description of a toric variety via fans. These

consideratioRs motivate the fo}}owing definition. Recal} that a Q-diviser A is said
                                       '                                .. ttttto be a bQ.wwdary if k$.ceefic!6ile"i''''lie betweexx zero ai}d 6'Re' .' -

       c" fX' '"'X"'' '' '
1.2 Definitidn. Let X be an ix'reducible variety, of dimensioxi n, and let A be a

bourmdary. Let d be the sum of the coefficients of A. The components of A generate

a subgroup of the Weil divisers modulo a}gebraic equivalence. The rank r of A is

defined tc be #heraRk ef this sttbgroup. [I]he ab$glute yaRk R ef X is tke rakk of

the group of all Weil divisors modulo algebraic equivalence.

  The complexity c of the pair (X, A) js r + n - d. The absolute complexity

C of the pair (X, A) is R+n- d.

  Note t•hat r ffl R so tkat in particg]ar c -Åq C. Not•e also that if A = D is aR

integra} divisor then d slmply counts the number of components of D. Thus if

the pair (X,D) is toric then the absolute complexity is zero. There are two other

things to note about toric varieties. The first is that Kx + D is linearly equivalent

to zero. Indeed the obvlous logar}thmic differentia} defiRed on the torus extexxds

to a meromerphie dlfferegtial with sig}ple poles a}okg tke iRvariaRÅí divisors. The

se()ond is almost a formai consequence of this, that Kx + D is log canonical.

1.3 Definition. llet X be a normal variety and let A be a boundary. Suppose

that Kx + A is Q-Cartier and let ?r : Y - X be a birational paorphism. We may

WI'ite

                         Ky +r = 7r*(Kx + A).

We will call r the log pullback of A.

  We say that the pair (X, A) is log canonical (respectively kawamata Iog termi-

ma}År }f Kx ÅÄ A is (I ?-Cartler aBd the }og pgllback is a[!ways a.b. o}g. }Aec,.ne..x.".-.(re$pectively

a}ways a strict bour}dary, that is every coeMcient is less than 6ne).

  Recall that a divisor is said to be Q-Cartier if some multiple is Cartier and that

X is said to be mp-factorial if every Q-Weil divisor is Q-Cartier,
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  Indeed the point is that to check that the pair (X, A) is log canonical it suffices

to check that the log pullback r of A is a boundary for a single embedded resolution

T : Y - X of the pair (X, A). If X is a toric variety and D = Dx is the union

of the invariant divisors then there is a toric embedded resolution T : Y - X.

Moreover in this case Dy, the union of the invariant divisors, is the log pullback of

Dx. In fact the equation

                       Ky + Dy == T"(Kx + Dx)

obviously holds, since it simply asserts that zero is equal to zero.

  The following conjecture is an am.algam of a Conjecture of Shokurov and some

observations of mine. We work over an arbitrary field, not necessarily algebraically

closed. If A = Åíi aiAi then LAJ = ÅíiLaiJAi and rA" = Åíirai-Ai. Recall that a

Q-Ca[rtier divisor is said to be nefif its intersection with every curve is non-negative.

1.4. Conjecture. LetX be a proper variety of dimensionn and let A be a bound-

ary. Suppose that Kx +A is log canonical and -(Kx +A) is nef.

  Then
   (1) c2 O.

   (2) If C Åq 2 then X is geometrically rational.

   (3) ijc Åq 1 then there is a divisorD such that the pair (X, D) is toric. Moreover

      LAJ c D and D - S is linearly equivalent to a divisor with support in A,

      where S is either empty or an ir7educible divisor.

  Geometrically rational means that X is rational over the algebraic closure of the

groundfield. This conjecture refiects what I hope is a guiding principle with respect

to the complexity:

Guiding Principle The smaller the complexity the easier it is to classify the pair

(X, A).

  The inspiration for this conjecture arises from the theory of complements., which

were introduced by Shokurov. A comp}ement is a log canonical pair (X, A) such

that some multiple r of Kx + A is linearly equivalent to zero. Complements are

extremely usefu1 for classification. In practice one is given a pair (X,A) and the

idea is to modify A so that r becomes relatively small. In these terms (1.4) and

the guiding principle suggest that the complexity of this problem grows with the

complexity of the pair (X, A).

  Here are some interesting examples:

1.5 Examples.

   (i) Let X = P2 and take A = aC+Li +L2, where Li and L2 are two lines

      and C is a smooth curve of degree d in general position and O Åq a S 1/d.
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      In this case the complexity is between zero and one and for D we may take

      S + Li + L2 where S is a line in general position. Thus there are some cases

      where we need the extra divisor S.

   (ii) Pick three line.s D == Li +L2 + L3 in P2 and consider the following sequence

      of blows ups T : S - IE)2. Let p be the intersection of Li and L2 and first

      blow up p. Let Ei be the exceptional divisor and now blow up the point

      Ei nLi (here we abuse notation slightly and refer to a divisor and its strict

      transform by the same symbol) to get a new exceptional divisor E2. Now

      blow up the intersection of Ei and E2 to get a thjrd exceptjonal divisor E3.

      Finally blow up a point of E3 not on Ei or E2. The whole point of this

      construction is that S is not toric. On the other hand the complexity of

      the pair (P2,D) is zero and if we let C be the log pullback of D then G

      contains every exceptional divisor with coeMcient one apart from the last

      (indeed only the last blow up is not toric). Thus the complexity of the pair

      (S, G) is one.

  (iii) Take X = F. and let D = 2E. +2Fi, where Z)FTi consists ofn+2
      fibres, using the notation established above. In this case the complexity

      is arbitrarily large and negative. Note that if one contracts the negative

      section, then the image of D is a boundary. The assumption that Kx + A

      is log canonical is therefore essential.

  (iv) Let X be an elliptic curve and let A be empty. Then the absolute complexity

      is two and the complexity is one. Clearly X is not geometrically rational.

   (v) Let C be a smooth conic in P2 with no rational points and let D be an

      element of 1 - Kcl, whose support• over the algebraic closure consists of two

      points. Then the complexity of the pair (C, D) is one but C is not rational.

      Of course C is geometrically rational but not rational.

  Note that in all of the examples above Kx + A is numerically trivial. Indeed

(1.4) can be strengthened slightly to include the limiting cases provided we assume

that Kx + A is not numerically trivial. Thus if c = O we expect that this forces

Kx + A to be numerically trivial and the conclusions of (1.4.2) and (1.4.3) ought

to hold even in the cases C = 2 and c = C = 1 provided that Kx +A is not

numerically tivial.

                       g2 STATEMENT OF RESULTS

  (1.4) has been proved in dimension two. A complete proof appears in [9] and

the case of Picard number one and integral boundary is contained in [2] but in fact

it is easy to modify the proof given there to the general case. Note that this result

in dimension two forms the backbone of the classification of log del Pezzos (normal

surfaces with quotient singularities such that -Ks is ample). [7] contains a very
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special case of (1) and (3) of (1.4) in dimension three. (1) and (3) of (1.4) were

also proved by Cheltsov (ungeublished), in the case where X is Q-factorial of Picard

number one.

  Here is whatlcan prove: '
2.1 Theorem. (t.4? holds previded D = A is integral, X is pro3'ective and Q-

facteriGg ang gnd the characteri$tie is xerg.

  A slmi}ar resu}t ho}ds in characteristic p provided oxxe makes the addkioRal

assumption that hi(X, Ox) is zere. For those allergic to log canonical singularities

here is a weak version of (2.1):

2.2 Corollary. Let X be a smooth projective variety and let D be a normal cross-

ings divisor in X. Suppose that the number of components of D is equal to the

Mcard number of X plus the dimension of X.

   Then the pair (X,D) is toric.

  Note tkat (2.l) glve$ a criterla to eRsm;e tkat a veriety is ratioRal. k might

be iRteyesting to }cok for app}icatiogs of (2.l) ii} tki$ ligl}t. URfertimately (2.l)

applied to hypersurÅíaces in pa does Rot say aRything beyond some easy to prove

statements about quadrics axrd cubics. A more productive place to Iook might well

be moduli spaces. These ofuen eome equipped with a divisor D such that Kx +D is

log canonical, as the pair (X, D) is often locally a quotient of a smooth variety and

a normal crossings divisors. Note that in applications the complexity we generally

be more usefu1 than the absolute complexity. Indeed it is relatively straightforward

matter to find alkhe relatioxxs between a finite set of divi$or$ and thereby determine

r. To compgte R ls pgtektia}}y far karder siRce we ueed to consider every divisox

ix X.

  One of the most powerÅíii} techniques that has emerged ixx the last twenty years

or so is the MMP (minirnal model program) which has been proved to exist up to
                                      ,dimension three in characteristic zero and /' pf conjectured to exist in all dimensions.

Here then is an excellent reasorm to believe (1.4).

2.3 Theorem. Assume that the MMP holds over k, a field of characteristic zero,

in dimension n.

  Then (f.4]. hoids. in particular P.4] hglds in dimension ene and two over an

arbitrarzs fiegd ang 2n dimensioR three ever a fcegd of charaeteristie zere.

  It is also pessible to prove Åq1.4) in characteristic p previded ene replaces the

constants 1 and 2 of (1.4) by i/2 and 3/2.

  One interesting feature of the proofs of (2.1) and (2.3) is the fact that the most

important point is to find birational morphisms f : Y pt X that only extract

divisors of coeMcient one (or log discrepancy zero). Indeed if the coeficient is one
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tkeft tke complexity oRly goes dewR a#d we are fyee to rep}ace X wlth Y. Of

course the point is to choose Y so that its geometry is more transparent. This goes

against the grain of the modern view of higher dimensional geometry where we use

tke MMP to successively ÅëoRtrace diviscrs oit X giteii we get a Mori fibre space.

U.",fo,r:.x,lgt,swt,ts,:,oS,"Aza.r,;O,.I[:(ii•1I.ig,gX,ei:iA%r.`X,PSggZ.(ILIg'.:,`ge.,kd$,:,:f,,2

aboue adjgRctioit oy the ease ef Picard Rgmber eRe mexxtioged whick uses a cleavey

that does not seem to generalise to other Mori fibre spaces) nor how to conclude

from there that the original space satisfies the conclusions of (1.4).

                           g3 PRooF oF (2.1)

  In this section we indicate how to prove (2.!). In fact we wM go backwards in

the sense that we wi}l start wltk t}ie easiesg case akd graduaily improve oxx this

case making it more general until we have in fact proved (2.1). We will also focus

mainly on the proof of (1.4.3), whose proof is the most interesting. Fina!ly we

wili alsc oftexx preve (2.l) alld (2.3) wiÅík the complexky replaced by tke absolute

comp}exity. This will sirmaplify many of the proofs.

  The followixig Lemma is not logically necessary to the argument but it does gives

aR iixdicatieit of wkat is invo}ved in the prcof ef (l.4).

3.1 llemma. (2.1? holds ifX is a curwe.

Proof As C Åq 2 aBd x -y R = 2 lt fo}}ows tkat d År g. Tkits -Kx is ample aRd

X is certainly geometriÅëally rational. If c Åq 1 and n + r ) 1 it foIIows that A is

non-empty so that n +r = 2. In this case d År 1 and so at least one point of A

must be geometr}cal}y iyredllcib}e, that is X Xas a fatiolla} peint. Bnt thell X ls

rational and (2,1) certainly holds. O

3.2 Lemma. (2.1? holds ifX is a psroduct of coptes ofPi.

Proof It clearly suMces to prove (1.4.i) and (1.4.3). To simplify matters we wM

work with the absolute complexity rather than the ordinary complexity. Suppose

that C Åq l. Then by coxxsideratioi}s of multi-degree it i$ clear that the projectloR

of every component of D onto one of the factors must be a point and that there' are

two such components for every projection. In this case the pair (X,D) is 61early

toric aud the result ls clear. D

3.3 llemma. (2.1? holds if there is a biratioual morphism T : X -Y where Y
is a product of copies of Pi.

Proof As before, lt clear}y suthces to preve (1.4.1) and (1.4.3).

  Let G be the pushforward of D. Recall that a divisor is said to be pseudoeffective

if it is a limit of effective divisors. As -(Ky + D) is nef it is the lmit of ample
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divisors and so certainly it is pseudo-effective. But the pushforward of a pseudo-

effective divisor is certainly pseudo-effective and so -(Ky + G) is pseudo-effective.

But as Y is a product of curves it follows that -(Ky + G) is nef.

  On the other hand a moments thought will convince the reader that the complex-

ity can only decrease under pushforward of divisors. It follows that the complexity

of the pair (Y, C) is at most zero, and if we have equality then the complexity of

the pair (X,D) is also zero. But by (3.2) the pair (Y, G) must be toric and the

complexity of the pair (Y, G) is equal to zero.

  Thus the complexity of the pair (X, D) is equal to the complexity of the pair

(Y, G). If we work with the absolute complexity it is clear that this is only possible

if every divisor contracted by T has coefficient one in D. It is not too hard to prove

that the same is true for the complexity.

  By (3.4) every divisor contracted by T corresponds to a toric valuation of Y.

Extracting those toric valuations of Y we reduce to the case that T does not contract

any divisors (however Y need no longer be a product of copies of Pi, just a toric

variety and T need not be a morphism anymore, just a birational map). In this case

X and Y are isomorphic in codimension one. As Y is toric, the MMP holds for Y

and so we may factor this morphism into a sequence of flips. Each fiip is toric, so

by induction on the number of flips the pair (X, D) is toric as required. O

3.4 Definition-Lemma. Suppose that X is a toric variety. We will call a valu-

ation v toric, if there is a birational tom'c morphism Y - X such that v corre-

sponds to an exceptional diviso•r.

  Let A be a boundary which is supported on the invariant divisors. Then every

valuation u of log discrepancy less than one with respect to Kx + A is toric.

Proof. We may as well assume that A is the union of the invariant divisors with

coefficient one. Let u be a valuation of log discrepancy less than one. Suppose that

T : Y - X is a toric morphism. Let r be the log pullback of A. Then r is also

the union of the invariant divisors and v has log discrepancy less than one with

respect to Kx +r. Thus we are free to replace the pair (X,A) by the pair (Y, r).

Hence passing to a toric resolution of the pair (X, A), we may assume that X is

sniooth and that A has normal crossings.

  Now u determines a tower of blow ups, each blow up with centre the centre of

u, such that the centre of u is eventually a divisor (see for example (2.45) of [5]),

If the centre of y is a divisor we are done. By induction on the number of blow

ups, therefore we may as well assume that there is one blow up T : Y - X such

that u becomes a divisor. Working Iocally about the centre of v, we may assume

that X is affine and that the centre of u is a point. Therefore we may assume that

X = A" and that A is the union of some of the ceordinate hyperplanes and that
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7



66

the centre of u is the origin.

  The condition that the biow up is not toric, is equivalent to requiring that the

support of A has at most n - 1 components. In this case, by direct calculatioR, the

log discrepancy of u is at least one, a contradiction. em

  So our strategy is now clear. Modify X in such a way that there is a birational

morphism to a product of cepies of Pi. Cleaxly we must first find a morphism to

Pi, or in other words a pencil. The obvious place to Iook for pencils is to find two

effective divi$ors Dg aRd Pi wlth support in P such that Dg is }IRear}y eqniva}ent

Di. Unforturmately we are not told that there are many linear equivalences amongst

the cempoRegts of D, we &ye j"st glveR a}gebraic relatioRs. Se we Reed a yesu}t

that reduces algebraic equivalence to linear equivalence. In other words we need

the facÅí that the A}baRese is trivial.

3.5 Lemma. Let X be a prejective variety of dimension n ever a fieid of charac-

teristic zero. Suppose that -(Kx +A) is nof and Kx +A is log canonical. Suppose

that CÅq2 and that (2.f2 hegds in dimensienn- i.

  Then the dimension of the Albanese variety of X is xero.

puroof. Suppose not. Then the Albanese map g : X --" A is mon-trivial. The idea

is tg exkibit a yatiomal curve in X whese image iR A is Bot a poiik aRd thereby

derive a contradiction.

  Let f : X' - Z be the graph of g. Consider the induced birational merphism

rr : X' - X. Let E be any rr-exceptional divisor. Then the image of some fibre

of E over T(E) inside f(,El]) is not a point. Suppose that the log discrepancy of E

is gTeater than zero. Then possibly rechoo$ing E, we raay assume that every fibre

of E over T(,E) is uniruled by (3.6) and so f(E) is uniruled, a contradiction as A is

aR &be}i&R vai!ety.

  It fo11ows that every divisorr extracted by g has log discrepancy zero. Then

replaciRg tke palt (X,A) by (X',A') where A' is the }og pu}}back of A we may

assume that g is a morphism.

  Let Y be the fibre of g over the generic point of the image ef X. Let r be the

restriction of A to IY. Then the pair (Y, T) is log canonical and so by induction the

complexity of (Y, r) is at least zero. It follows that there is a fibre F of g such that

every compoiient of F is coRtained in the $upport of A.

  Let A = Ah + A. be the decomposition of A into horizontal and vertical com-

poi}ekts. Piek afiy cRrve C that domiRates A. Thei} e• A. ) C•F År e, If (l)

holds then it, follows by the cone Theorem that there is an extremal ray R that is

F poskive. R is thelt geixerated by a ratioi}a} curve C whlch ls itgt contained in a

fibre as F • ( r År O. But then A eontains a rational curve which is impossible. ll
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3.6 Lemma. Let (X,A) be a log canonical pair, Let T : Y - X be a proj'ective

birational morphism and suppose that T extracts at least one divisor of coefiicient

less than one.

  Then theTe is at least one component F of the exceptional locus E of coefficient

less than one such that the fibres of F over T(F) are uniruled.

Proof. We may write

                     Ky +r+E= T'(Kx + A) +R

where r is the strict transform of A, E is the sum of all the exceptional divisors

taken with coefficient one and R is effective and exceptional. By assumption R is

non-empty. First observe that there is a component F of the exceptional locus that

is covered by curves C that can be chosen to avoid any closed subset of codimension

three or more such that R • C Åq O. Indeed the result is local about the base and so

we may as well assume tha,t Y is aMne; cutting by hyperplanes we reduce to the

case of dimension two. But then this is a well known result due to Artin, see for

example (2.19) of [4].

  As C can be chosen to avoid any codimension three subset it follows that we

may find a reso}ution th : Z - Y in a neighbourhood of C such that if we write

                  Kz + r' + E' + R' = th'(Ky +r+E)

where r' and E' denote strict transforms then R' is effective and exceptional. In-

deed this is reduces to a problem about surfaces and in this case the minimal

desingularisation suffices. But then by adjunction Ke • C Åq O. As C is contained

in the smooth locus of T we are done by (7.6) of [3]. O

3.7 Remark. Presumably much more is true, presumably the conclusion of (3.6)

holds for every divisor of coeMcient less than one. For example if one has the MMP

then one can selectively contract any divisor of log discrepancy between one and

zero.

3.8 Example. There is an interesting example to show why we need (3.6). Let S be

the cone over an elliptic curve and let T : T - S be the minimal desingularisation.

Then r extracts a copy E of the elliptic curve and it follows easily by adjunction

that

                            KT + E = T*Ks.

Thus S is log canonical but not log terminal. Clearly E is not uniruled. Moreover T

is naturally a ruled surface over E so that the Albanese of T is given by the natural

morphism T - E. In this case the Albanese map for S is not a morphism.
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  Using (3.5) we may coRclude that if two divisors A and B are algebraically

equivalent then there is some r such that rA is linearly equivalent to rB. This

property goes under the handy catch phrase algebraic equivalence implies lin-

ear equivalence. Note that this is the Qnly p}ace where we use the condition that

X }s prcjective aftd tkat tke characteAstic is zero.

  Suppose that C' Åq 2 and algebraic equivalence implies Iinear equivalence. Then

we can find two di,visors Do and Di with support in D such that rDo is linearly

equivalent to rDi . Let Y c X Å~ Pi be the total space of the corresponding pencil.

Tbe$ tkere is a biratioRa} morphlsm 7r : Y ---, X ai}d a morphism f' : Y . Pi.

Let f : Y - C be the Stein factorlsation so that f ls a centraction morphism.

Let G be the log pullback of D. We want to replace X with Y. Arguing as in the

proof of (3.3) this is surely okay provided the complexity of the pair (Y, G) is the

same as the complexity of the pair (X,D). In other words we have to prove that

every dlvlser extracted by 7; has ceefic!eRt oke.

3.9 llemma. Every divisor extracted by T has coeX7icient one and C is isomorphic
to IFpi.

.F'roof. Let E be an exceptiemal divisor for 7;. Let V be the image of E in X. Then

tke fibres of E over V are copies of C. It foliows that V has codimensioxx two.

Cutting by hyperplanes we may asssume that X is a surface S and E is a copy of

C. Go and Gi (the inverse image of Di) are two components of a that meet E and

are disjoint. Let us try to apply adjunction to E,

                     ÅqKs + a)IE == KE + P, " P, + R.

Here Pi is the intersection of E with Gi and R is whatever is left over. The crucial

point is that R i$ effective (indeed this is a crucial and basic fact about adjunction of

}og divisoys see for example Ckapter l6 of [4]) so that iR faet R ww C, C is isgmorgehic

to Pi and (Ks + E)-E= O. But then

                       Ks + cr +E= T' (Ks + D)

sinÅëe both sides are iR fact zexo. ll

  Note that we can squeeze one rnore fact from the proof of (3.9). Since R is empty

iii fact Go and Gi are the only fibres of f that are contained in the support of G.

So z'eplacing the pair (X,D) by (Y, C) we may (ussume that there is a contraction

iRo}' pkism f : X - Pi. Moreover !f GF deAotes tke gekeylc fibre gf f and G

the restriction of D to F then it, is not hard to check that the complexity of the

pair (F, C) is no rnore than the cornplexity of the pair (X,D). Now we use linear

equivalence on F to induce linear equivalences on X. Proceeding by an obvious
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induction in this way we reduce to the case where X admits a contraction morphism

to the product of n copies of Pi. By (3.3) this completes the proof of (2.1).

  It is instructive to consider a few examples to see how this argument works in

practice.

3.10 Example. Let X = P2 and take D to be three lines. We look for a linear

equivalence. Take two lines Do and Di. The base locus of this pencil is Do n Di

so that the morphism from the total space Y - X blow ups this point. Let E
be the exceptional divisor. Then the generic fibre F of f : Y . Pi is a copy of

Pi and the third line meets F in a single point. So locally in a neighbourhood of

the generic fibre E rv D3. We try to lift this to the whole of X. This is easy, for

example E + Do is linearly equivalent to D3. Since the base locus is a point then

we get P2 blown up at two points and a birational morphism to Pi Å~ Pi. In fact in

this way we recover the classical birational map between a quadric and P2.

  Now suppose that we start with a different pencil. For example Di + D2 is

linearly equivalent to 2D3. In this case the base locus is not a reduced scheme and

in fact Y, the total space of the pencil is not smooth. In fact the fibre corresponding

to D3 contains two nodes (or Ai singularities). So even if we only want to prove

(2.2) in the proof of (2.1) given here, we need to consider varieties that are not

smooth.

  Suppose that we look at a similar example but now in P3. Thus now we have

four planes D = Do +Di +D2 +D3. Then Do +Di nJ D2 +D3. Locally about the

common point of intersection of Do, Di and D2 the equation for Do +Di is xy = O

and D2 is z = O so that the total space of the pencil is given locally as xy + zt == O.

Thus Y need not even be Q-factorial. However the generic fibre F of f : Y - Pi

is Q-factorial and of course this is all we need for the induction to go through.

                           g4 PRooF oF (2.3)

  In this section we indicate how to prove (2.3). The first point to note is that

passing to a log terminal model we may assume that X is projective and Q-factorial.

The idea, of course, is to manipulate A until all its coeMcients are one and then

to apply (2.1). In principle this ought to be easy. We have already proved that

algebraic equivalence implies linear equivalence and so there are plenty of linear

equivalences between reduced divisors Do and Di where Do and Di are contained

in the support of A. Repeatedly replacing A by At = A + t(Di - Do) for an

appropariate positive value of t, we ought to be able to reduce to the case where A

is integral. Here of course we order Do and Di so that the sum of the coefficients

of Di is greater than the sum of the coefficients of Do. With this choice of Do and

Di the complexity of the pair (X, At) is no more than the complexity of the pair

(X, A).
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  However there are three potential problems with this idea. First of all we must

make sure that Kx + At remains log canonical. So we increase t until Kx + At is

maximally log canonical axxd then extract any divisors of coeMcient one and repeat

the same process on the new space. Naively it would seems that the best one can

do using this method is to reduce to the case where there are at most r components

of A of coeMcieRt itot equal to oRe. However this is ftot enough to app}y (2.l). We

Reed LAj to kave a lot oÅí Åëcg}poReRts (ik fact we Reed at ieast rÅÄl componeites

to eRsure thftt we get a penci} of divisgrs with support in ipsAj). More tc the poiRt

if we want to do better it is not at all clear that we can come up with a process

that will terminate in a finite number of steps. Both of the problems above can be

resolved using the idea of connectedness. Conjecturally if A is any effective divisor

such that -(Kx +A) is rief then either the locus where the pair (X,A) is not

kawamata log terminal is cormected or the situation is very special indeed.

  We recall some useful definitions due to Kawamata [1].

4.1 DefiniticR. Let X be a nermal vayiety and let A be an effective diviser. A

sgbvaxiety V ef X is ca}}ed a (respective}y strict) leg caxQRical ceRter lfit is t}ie

image of a divisor of leg discrepaitcy at most zero (re$pective}y }ess than zero). A

(respectively strict) log canonical place is a valuatiorm Åëorresponding to a divisor of

log discrepancy at most zero (respectively less than zero). The log canonical locus

LCS(X, A) (resp. LCS-(X, `A)) of the pair (X, A) is the union of the (respectively

strict) log canonical centeurs.

  It is easy to give examples that show we need to consider the possibility that the

locus of }og callonical singularities is not connected.

4.2 Example. Let X -ww Pi aRd ZX ceRsist of two poikts p -ÅÄ- q. ']]heR LCS(X, A) --

{p,g} which is obviously mot eeRRected. Now take this examp}e aRd cress it with

an elliptic curve C. Thus we get two disjoint copies of cr living inside C Å~ Pi. Now

pick a point of either copy and blow up each of these points. The strict transforms

of these curves are contraÅëtible and contracting them we get a projective surface S

such that Ks is numerical]y trivial. The images of these two curves is the Iocus of

log canonical singularities.

  However this is the worse that can happen. In fact we have the following con-

jecture:

4.3 Cenjecture. Let x : X ---- Y 5e g centraction merphism between imediEicible

va?'ieties, {vhere X is nomag.

  Let A be an effective divisor such that Kx +A is Q-Cartier. Suppose that

- (Kx +A) is T-nof Let .F' be any geometric fibre ofrr. We work in a neighbourhood

ofF. Then every connected component ofLCS+(X,`t)x) meets evergx irreducible

component of LCS(X, As).

12



  if further LLC(X,A) nI' is not connected then Kx +A is log canonical, there

are exactly two log canonical places ui and u2 with respect to Kx + A and there is

a covering family of rational curves Cs such that for all s, Cs intersects the centre

of ui and u2 and (Kx + A)•C, =O.

  ConRectedRess was first observed by Shokurov in his proof of 3-fold log fiips

i8], wkere he preved k for surfaces. Ik fact I caR prove (4.3) assumiRg the MMP

iii dimeRsigR ?}. However tke proof does Rgt add mgch cenceptual}y to Skckurev's

origina} proof and so I wM xxot reproduce it here. Essentially the idea is to undo the

construction of (4.2) by running the MMP to unveil the covering family of curves

we are looking for.

  Using (4.3) it is easy to prove that we can reduce to the case where all but one

component of A has coeMcient one. For example if X is a surface then the first

time we construct a log canonical centre then we simply extract it and ignore that

compollent of A. The next time we coiistTuct a log canonicai centre then either this

cektre l!}tersects the Qriginal cgrve alld we have coRstructed a leg caRci}ica} cei}tre

oÅí dimeRsieR zero Åqthe IRtersectien of tkese twe compexxents) aRd we caR cei}struct

no more strict }og caltonical centres or the component ls disjoint from the original

component and it is still true that we caimot construct anymore strict log canonical

centres. From there it is easy to prove that the process 1 sketched above terminates

when all but one component of A has coefficient one.

  The final problem is to convert the last component of coefficient less than one

to a component of coeffiÅëient one. As we aiready have n + r - 1 components of

coeMcient one, a careful examixxation of the preof givexx in the last section will

cekvii}ce tke reader that we cax redgce ee the case where we have a ceRtractioR

morpkism X - Y where Y i$ tke prodget ef n - l copies of ?i. ORe cempgReRt

of LAsj is then a section eÅí thls fibration and the component with coeMcient }ess

than one then dominates Y. Now ifc Åq 1/2 then the coeMcient of this component

is greater than 1/2 and so it too must be asection and it is easy to argue that we

can increase its coeMcient to one.

  Otherwise we need to apply the theory of complements. The theory of comple

ments guarantees the existence of a reduced divisor S such that Kx + LAJ + S =

Kx + D is linearly equivalent to zero (this oniy works in im chaxacteristic zero as

we i}eed to app}y Kawamaea-Viekweg wagisking, see Chapter l9 of (4]). IR fact

Åíkls wil} be tke stage where we pick gp #he mysterieus irredttclb}e cgmpoRent S.

Since the complexity of the pair (X,D) is at most zero, S can have at most oRe

component. On the other hand if c År O then Kx + LAAs not numerically trivial

so S cannot be empty.

  Replacing A by D aLg we have reduced to the case where A = LA) we can apply

(2.1) and this finishes the proof.
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  Finally note one thing about the proof of (1.4). Since the MMP is known to

hoid only up to dimension three, it would be useful to eliminate its use. There are

on!y two places where we need the MMP. First every time that Kx + At becomes

maximally log canonical we need to extraet a divisor of coeflicient one, As the

skgatloR we are wo}'kiRg wkh ls so specia} we ogght to be ab}e to get asollRd tkis

point. "l"he second place we need the MMP is to prove (4.3). Now (4.3) is known to

}}old if -ÅqKx ÅÄA) is RefaRd big. For ekis reasg" we ougl}t to be ab}e te prove (l.4)

if there is an ample (or at Ieast nef und big) divisor which is linearly equivalent

to a sum of Kx and the components of A (iRdeed there wottld then be a small

deformation A' of A such that -(Kx + A') is big and nef that would not change

Il"LC+(X, ZX)). If X is projective, andi e s; c f{{ C Åq 1 then this is automatic, since

then every divisor is a linear combination oÅí the components of A. 'Yhus it weuld

seem that the most significant part of (1.4) is the fact that the complexity is always

xxeR-Regative.
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