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A SIMPLE CHARACTERISATION OF TORIC VARIETIES

JAMES MCKERNAN

§1 INTRODUCTION

This paper contains an announcement of some results that will be contained in
a paper entitled “A Geometric characterisation of toric varieties”. The underlying
ideas are quite simple but some of the proofs are a little delicate and technical. In
this paper I will state a simplified version of these results and give a sketch of the
main ideas of the proof. Complete proofs and statements will of course appear in
the paper referred to above.

Toric varieties seem to be ubiquitous in algebraic geometry and indeed other
branches of mathematics and physics. This seems intriguing behaviour, for which
there seems to be no real explanation. This forms one of the motivating questions
for this paper.

Motivating Question: Why are toric varieties so ubiquitous?

One possible way to answer this question is to try to find a simple characterisation

of toric varieties. If the characterisation is simple enough it might indicate why toric

appear so often. Recall the definition of a toric variety:

1.1 Definition. Let X be a normal variety and let D be a reduced integral divisor
(that is every component of D has coefficient one). We say that the pair (X, D) is
toric if U = X \ D is isomorphic to a torus and the natural action of the torus on

itself extends to an action on X.

Note that the components of D are precisely the invariant divisors. Note also
that toric varieties are rational as they contain an open set isomorphic to a torus.
In general it is very hard to give rationality criteria, that is it is extremely hard to
decide if a given variety is rational or not. It is an even harder problem to determine
if a given surface is isomorphic to A? (this is easily seen to be equivalent to the
Jacobian conjecture, see [6]). In particular it only seems reasonable to expect a
simple criteria when X is proper.

Let us look at some simple examples of proper toric varieties to get some idea
of what they look like. The simplest example is P!. In this case D consists of two

points. More generally the pair (P", D) where D consist of n + 1 hyperpanes in

Typeset by Ap8-TEX



60

general position is toric. One can take the product of any two toric varieties and
get a toric variety. The simplest example of this is P! x P!. In this case D has four
components consisting of a pair of fibres for both fibrations. More generally F,, is
toric, where F,, denotes the unique P!-bundle over P* with a unique section Eo, of
self-intersection —n. In this case D consists of Ep + Eo + Fy + F» where Ey is any
section disjoint from Eo and F1 and Fy are two disjoint fibres.

Note that in all of these examples there is a simple formula connecting the
number of invariant divisors d, the dimension n and the Picard number p:

The number of invariant divisors is equal to the dimension plus the Picard number.

More generally the same is true if we replace Picard number by the rank of

the group of Weil divisors modulo algebraic equivalence. In fact this result is easy
to check using the combinatorial description of a toric variety via fans. These
considerations motivate the following definition. Recall that a Q-divisor A is said
to be a boundary. if its_gp\e‘fﬁciéht"é ’I@e betweeh zero and one." -
1.2 Deﬁnit{(}n. Let X be an irreducible variety, of dimension n, and let A be a
boundary. Let d be the sum of the coeflicients of A. The components of A generate
a subgroup of the Weil divisors modulo algebraic equivalence. The rank r of 4 is
defined to be the rank of this subgroup. The absolute rank R of X is the rank of
the group of all Weil divisors modulo algebraic equivalence.

The complexity c of the pair (X,A) is r + n — d. The absolute complexity
C of the pair (X,A)is R+n - d.

Note that r < R so that in particular ¢ < C. Note also that if A = D is an
integral divisor then d simply counts the number of components of D. Thus if
the pair (X, D) is toric then the absclute complexity is zero. There are two other
things to note about toric varieties. The first is that Kx + D is linearly equivalent
to zero. Indeed the obvious logarithmic differential defined on the torus extends
to a meromorphic differential with simple poles along the invariant divisors. The

second is almost a formal consequence of this, that Kx + D is log canonical.

1.3 Definition. Let X be a normal variety and let A be a boundary. Suppose
that Kx + A is Q-Cartier and let 7 : Y — X be a birational morphism. We may
write |
Ky +T =7n"(Kx + A).
We will call I" the log pullback of A.
We say that the pair (X, A) is log canonical (respectively kawamata log termi-
nal) if Kx + A is Q-Cartier and the log pullback is always apounia{y:w(respectively

always a strict boundary, that is every coefficient is less than one).

Recall that a divisor is said to be Q-Cartier if some multiple is Cartier and that
X is said to be Q-factorial if every (Q-Weil divisor is Q-Cartier.



Indeed the point is that to check that the pair (X, A) is log canonical it suffices
to check that the log pullback I' of A is a boundary for a single embedded resolution
7 :Y — X of the pair (X,A). If X is a toric variety and D = Dx is the union
of the invariant divisors then there is a toric embedded resolution 7 : ¥ — X.
Moreover in this case Dy, the union of the invariant divisors, is the log pullback of

Dyx. In fact the equation
Ky + Dy =7*(Kx + Dx)

obviously holds, since it simply asserts that zero is equal to zero.

The following conjecture is an amalgam of a Conjecture of Shokurov and some
observations of mine. We work over an arbitrary field, not necessarily algebraically
closed. If A = 37, a;A; then LAL = 3 .1a;008; and "TA™ = 3~ .7a;'A;. Recall that a

Q-Cartier divisor is said to be nef if its intersection with every curve is non-negative.

1.4, Conjecture. Let X be a proper variety of dimension n and let A be a bound-
ary. Suppose that Kx + A is log canonical and —(Kx + A) is nef.
Then
(1) ¢>0.
(2) If C < 2 then X is geometrically rational.
(3) Ifc < 1 then there is a divisor D such that the pair (X, D) is toric. Moreover
LAL C D and D — S is linearly equivalent to a divisor with support in A,

where S is either empty or an irreducible divisor.

Geometrically rational means that X is rational over the algebraic closure of the
groundfield. This conjecture reflects what I hope is a guiding principle with respect
to the complexity:

Guiding Principle The smaller the complexity the easier it is to classify the pair
(X,A).

The inspiration for this conjecture arises from the theory of complements, which
were introduced by Shokurov. A complement is a log canonical pair (X, A) such
that some multiple » of Kx + A is linearly equivalent to zero. Complements are
extremely useful for classification. In practice one is given a pair (X,A) and the
idea is to modify A so that r becomes relatively small. In these terms (1.4) and
the guiding principle suggest that the complexity of this problem grows with the
complexity of the pair (X, A).

Here are some interesting examples:

1.5 Examples.
(i) Let X = P? and take A = aC + L) + Lo, where L, and L, are two lines

and C is a smooth curve of degree d in general position and 0 < a < 1/d.
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In this case the complexity is between zero and one and for D we may take
S+ Ly + L2 where S is a line in general position. Thus there are some cases
where we need the extra divisor S.

(ii) Pick three lines D = Li+Ls+ L3 in P? and consider the following sequence
of blows ups 7 : S — P2. Let p be the intersection of L; and Ly and first
blow up p. Let E; be the exceptional divisor and now blow up the point
E; N Ly (here we abuse notation slightly and refer to a divisor and its strict
transform by the same symbol) to get a new exceptional divisor F,. Now
blow up the intersection of £ and F» to get a third exceptional divisor Ej3.
Finally blow up a point of E3 not on F; or E2. The whole point of this
construction is that S is not toric. On the other hand the complexity of
the pair (P?,D) is zero and if we let G be the log pullback of D then G
contains every exceptional divisor with coeflicient one apart from the last
(indeed only the last blow up is not toric). Thus the complexity of the pair
(S,G) is one.

(ii) Take X = F, and let D = 2E, + Y Fj, where ) F; consists of nn + 2
fibres, using the notation established above. In this case the complexity
is arbitrarily large and negative. Note that if one contracts the negative
section, then the image of D is a boundary. The assumption that Kx + A
is log canonical is therefore essential. :

(iv) Let X be an elliptic curve and let A be erpty. Then the absolute complexity
is two and the complexity is one. Clearly X is not geometrically rational.

(v) Let C be a smooth conic in P? with no rational points and let D be an
element of | — K¢|, whose support over the algebraic closure consists of two
points. Then the complexity of the pair (C, D) is one but C is not rational.

Of course C' is geometrically rational but not rational.

Note that in all of the examples above Kx + A is numerically trivial. Indeed
(1.4) can be strengthened slightly to include the limiting cases provided we assume
that K x + A is not numerically trivial. Thus if ¢ = 0 we expect that this forces
Kx + A to be numerically trivial and the conclusions of (1.4.2) and (1.4.3)} ought
to hold even in the cases C = 2 and ¢ = C = 1 provided that Kx + A is not

numerically tivial.

§2 STATEMENT OF RESULTS

(1.4) has been proved in dimension two. A complete proof appears in [9] and
the case of Picard number one and integral boundary is contained in (2] but in fact
it is easy to modify the proof given there to the general case. Note that this result
in dimension two forms the backbone of the classification of log del Pezzos (normal

surfaces with quotient singularities such that —Kg is ample). [7] contains a very



special case of (1) and (3) of (1.4) in dimension three. (1) and (3) of (1.4) were
also proved by Cheltsov (unpublished), in the case where X is Q-factorial of Picard
number one.

Here is what I can prove:

2.1 Theorem. (1.4) holds provided D = A is integral, X is projective and Q-

factorial and and the characteristic is zero.

A similar result holds in characteristic p provided one makes the additional
assumption that h!'(X, Ox) is zero. For those allergic to log canonical singularities

here is a weak version of (2.1):

2.2 Corollary. Let X be a smooth projective variety and let D be a normal cross-
ings divisor in X. Suppose that the number of components of D is equal to the
Picard number of X plus the dimension of X. k

Then the pair (X, D) is toric.

Note that (2.1) gives a criteria to ensure that a variety is rational. It might
be interesting to look for applications of (2.1) in this light. Unfortunately (2.1)
applied to hypersurfaces in P™ does not say anything beyond some easy to prove
statements about quadrics and cubics. A more productive place to look might well
be moduli spaces. These often come equipped with a divisor D such that Kx + D is
log canonical, as the pair (X, D) is often locally a quotient of a smooth variety and
a normal crossings divisors. Note that in applications the complexity we generally
be more useful than the absolute complexity. Indeed it is relatively straightforward
matter to find all the relations between a finite set of divisors and thereby determine
r. To compute R is potentially far harder since we need to consider every divisor
in X.

One of the most powerful techniques that has emerged in the last twenty years
or so is the MMP (minimal model program) which has been proved to exist up to
dimension three in characteristic zero and if 'conjectured to exist in all dimensions.

Here then is an excellent reason to believe (1.4).

2.3 Theorem. Assume that the MMP holds over k, a field of characteristic zero,
in dimension n.
Then (1.4), holds. In particular (1.4) holds in dimension one and two over an

arbitrary field and in dimension three over a field of characteristic zero.

It is also possible to prove (1.4) in characteristic p provided one replaces the
constants 1 and 2 of (1.4) by 1/2 and 3/2.

One interesting feature of the proofs of (2.1) and (2.3) is the fact that the most
important point is to find birational morphisms f : ¥ — X that only extract

divisors of coefficient one (or log discrepancy zero). Indeed if the coefficient is one
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then the complexity only goes down and we are free to replace X with Y. Of
course the point is to choose Y so that its geometry is more transparent. This goes
against the grain of the modern view of higher dimensional geometry where we use
the MMP to successively contract divisors on X until we get a Mori fibre space.
Unfortunately it is not clear to rp%awhy it is easier to prove (1.4) in the case of a
Mori fibre space (other than in low dimensions when we use some very deep results
about adjunction or the case of Picard number one mentioned which uses a cleaver
that does not seem to generalise to other Mori fibre spaces) nor how to conclude

from there that the original space satisfies the conclusions of (1.4).

§3 PROOF OF (2.1)

In this section we indicate how to prove (2.1). In fact we will go backwards in
the sense that we will start with the easiest case and gradually improve on this
case making it more general until we have in fact proved (2.1). We will also focus
mainly on the proof of (1.4.3), whose proof is the most interesting. Finally we
will also often prove (2.1) and (2.3) with the complexity replaced by the absolute
complexity. This will simplify many of the proofs.

The following Lemma is not logically necessary to the argument but it does gives

an indication of what is involved in the proof of (1.4).
3.1 Lemma. (2.1) holds if X is a curve.

Proof. As C < 2 and n+ R = 2 it follows that d > Q. Thus —Kx is ample and
X is certainly geometrically rational. If ¢ < 1 and n + r > 1 it follows that A is
non-empty so that n + r = 2. In this case d > 1 and so at least one point of A
must be geometrically irreducible, that is X has a rational point. But then X is
rational and (2.1) certainly holds. O

3.2 Lemma. (2.1) holds if X is a product of copies of P*.

Proof. 1t clearly suffices to prove (1.4.1) and (1.4.3). To simplify matters we will
work with the absolute complexity rather than the ordinary complexity. Suppose
that C' < 1. Then by considerations of multi-degree it is clear that the projection
of every component of D onto one of the factors must be a point and that there are
two such components for every projection. In this case the pair (X, D) is clearly

toric and the result is clear. O
3.3 Lemma. (2.1) holds if there is a birational morphism 7 : X — Y where Y
is a product of copies of P!.

Proof. As before, it clearly suffices to prove (1.4.1) and (1.4.3).
Let G be the pushforward of D. Recall that a divisor is said to be pseudo-effective
if it is a limit of effective divisors. As —(Kx + D) is nef it is the imit of ample



divisors and so certainly it is pseudo-effective. But the pushforward of a pseudo-
effective divisor is certainly pseudo-effective and so —(Ky + G) is pseudo-effective.
But as Y is a product of curves it follows that —(Ky + G) is nef.

On the other hand a moments thought will convince the reader that the complex-
ity can only decrease under pushforward of divisors. It follows that the complexity
of the pair (Y,G) is at most zero, and if we have equality then the complexity of
the pair (X, D) is also zero. But by (3.2) the pair (Y,G) must be toric and the
complexity of the pair (Y, G) is equal to zero.

Thus the complexity of the pair (X, D) is equal to the complexity of the pair
(Y, G). If we work with the absolute complexity it is clear that this is only possible
if every divisor contracted by 7 has coeflicient one in D. It is not too hard to prove
that the same is true for the complexity.

By (3.4) every divisor contracted by m corresponds to a toric valuation of Y.
Extracting those toric valuations of ¥ we reduce to the case that 7 does not contract
any divisors (however ¥ need no longer be a product of copies of P!, just a toric
variety and 7 need not be a morphism anymore, just a birational map). In this case
X and Y are isomorphic in codimension one. As Y is toric, the MMP holds for Y
and so we may factor this morphism into a sequence of flips. Each flip is toric, so

by induction on the number of flips the pair (X, D) is toric as required. [

3.4 Definition-Lemma. Suppose that X is a toric variety. We will call a valu-
ation v toric, if there is a birational toric morphism Y — X such that v corre-
sponds to an exceptional divisor.

Let A be a boundary which is supported on the invariant divisors. Then every

valuation v of log discrepancy less than one with respect to Kx + A is toric.

Proof. We may as well assume that A is the union of the invariant divisors with
coeflicient one. Let v be a valuation of log discrepancy less than one. Suppose that
m:Y — X is a toric morphism. Let I'" be the log pullback of A. Then I' is also
the union of the invariant divisors and v has log discrepancy less than one with
respect to Kx + I'. Thus we are free to replace the pair (X,A) by the pair (Y,T).
Hence passing to a toric resolution of the pair (X,A), we may assume that X is
smooth and that A has normal crossings.

Now v determines a tower of blow ups, each blow up with centre the centre of
v, such that the centre of v is eventually a divisor (see for example (2.45) of [5]).
If the centre of v is a divisor we are done. By induction on the number of blow
ups, therefore we may as well assume that there is one blow up 7 : ¥ — X such
that v becomes a divisor. Working locally about the centre of v, we may assume
that X is affine and that the centre of v is a point. Therefore we may assume that

X = A™ and that A is the union of some of the co-ordinate hyperplanes and that
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the centre of v is the origin.
The condition that the blow up is not toric, is equivalent to requiring that the
support of A has at most n— 1 components. In this case, by direct calculation, the

log discrepancy of v is at least one, a contradiction. O

So our strategy is now clear. Modify X in such a way that there is a birational
morphism to a product of copies of P!. Clearly we must first find a morphism to
P!, or in other words a pencil. The obvious place to look for pencils is to find two
effective divisors Dy and D, with support in D such that Dy is linearly equivalent
D,. Unfortunately we are not told that there are many linear equivalences amongst
the components of D, we are just given algebraic relations. So we need a result
that reduces algebraic equivalence to linear equivalence. In other words we need
the fact that the Albanese is trivial.

3.5 Lemma. Let X be a projective variety of dimension n over a field of charac-
teristic zero. Suppose that —(Kx +A) is nef and Kx + A is log canonical. Suppose
that C' < 2 and that (2.1) holds in dimensionn — 1.

Then the dimension of the Albanese variety of X is zero.

Proof. Suppose not. Then the Albanese map g : X --+ A is non-trivial. The idea
is to exhibit a rational curve in X whose image in A is not a point and thereby
derive a contradiction.

Let f: X' — Z be the graph of g. Consider the induced birational morphism
7 : X' — X. Let F be any m-exceptional divisor. Then the image of some fibre
of E over n(E) inside f(F) is not a point. Suppose that the log discrepancy of E
is greater than zero. Then possibly rechoosing E, we may assume that every fibre
of E over n(E) is uniruled by (3.6) and so f(E) is uniruled, a contradiction as A is
an abelian variety.

It follows that every divisor extracted by g has log discrepancy zero. Then
replacing the pair (X,A) by (X’,A’) where A’ is the log pullback of A we may
assume that g is a morphism.

Let Y be the fibre of g over the generic point of the image of X. Let I" be the
restriction of A to Y. Then the pair (Y, I'} is log canonical and so by induction the
complexity of (¥,T") is at least zero. It follows that there is a fibre F' of g such that
every component of F' is contained in the support of A.

Let A = Ap + A, be the decomposition of A into horizontal and vertical com-
ponents. Pick any curve C that dominates A. Then C-A, > C - F > 0. If (1)
holds then it follows by the cone Theorem that there is an extremal ray R that is
F positive. R is then generated by a rational curve C which is not contained in a

fibre as F'- C > 0. But then A contains a rational curve which is impossible. O



3.6 Lemma. Let (X,A) be a log canonical pair. Let m:' Y — X be a projective
birational morphism and suppose that ™ extracts at least one divisor of coefficient
less than one.

Then there is at least one component F' of the exceptional locus E of coefficient
less than one such that the fibres of F' over w(F') are uniruled.

Proof. We may write
Ky+T+E=7n"(Kx+A)+ R

where I' is the strict transform of A, E is the sum of all the exceptional divisors
taken with coefficient one and R is effective and exceptional. By assumption R is
non-empty. First observe that there is a component F' of the exceptional locus that
is covered by curves C that can be chosen to avoid any closed subset of codimension
three or more such that R -C < 0. Indeed the result is local about the base and so
we may as well assume that Y is affine; cutting by hyperplanes we reduce to the
case of dimension two. But then this is a well known result due to Artin, see for
example (2.19) of [4].

As C can be chosen to avoid any codimension three subset it follows that we

may find a resolution v : Z — Y in a neighbourhood of C' such that if we write
Kz+U+E +R =y (Ky +T +E)

where I'' and E’ denote strict transforms then R’ is effective and exceptional. In-
deed this is reduces to a problem about surfaces and in this case the minimal
desingularisation suffices. But then by adjunction K% - C < 0. As C is contained
in the smooth locus of  we are done by (7.6) of [3]. O

3.7 Remark. Presumably much more is true, presumably the conclusion of (3.6)
holds for every divisor of coefficient less than one. For example if one has the MMP
then one can selectively contract any divisor of log discrepancy between one and

zero.

3.8 Example. There is an interesting example to show why we need (3.6). Let .S be
the cone over an elliptic curve and let 7 : " — § be the minimal desingularisation.
Then 7 extracts a copy E of the elliptic curve and it follows easily by adjunction
that

Kr + FE=7"Kg.

Thus S is log canonical but not log terminal. Clearly F is not uniruled. Moreover T’
is naturally a ruled surface over F so that the Albanese of T" is given by the natural

morphism 7' — FE. In this case the Albanese map for S is not a morphism.
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Using (3.5) we may conclude that if two divisors A and B are algebraically
equivalent then there is some r such that rA is linearly equivalent to 7B. This
property goes under the handy catch phrase algebraic equivalence implies lin-
ear equivalence. Note that this is the only place where we use the condition that
X is projective and that the characteristic is zero.

Suppose that C < 2 and algebraic equivalence implies linear equivalence. Then
we can find two divisors Dy and D; with support in D such that rDyq is linearly
equivalent to 7D;. Let Y C X x P! be the total space of the corresponding pencil.
Thus there is a birational morphism 7 : ¥ — X and a morphism f’ : Y — Pl
Let f : Y — C be the Stein factorisation so that f is a contraction morphism.
Let G be the log pullback of D. We want to replace X with Y. Arguing as in the
proof of (3.3) this is surely okay provided the complexity of the pair (Y, G) is the
same as the complexity of the pair (X, D). In other words we have to prove that

every divisor extracted by 7 has coeflicient one.

3.9 Lemma. FEvery divisor extracted by m has coefficient one and C is isomorphic
to PL.

Proof. Let E be an exceptional divisor for w. Let V be the image of E in X. Then
the fibres of E over V are copies of C. It follows that V has codimension two.
Cutting by hyperplanes we may asssume that X is a surface S and E is a copy of
C. Gy and G (the inverse image of D;) are two components of G that meet E and

are disjoint. Let us try to apply adjunction to E,
(Ks +G)lg=Kg+FPy+ P +R.

Here P; is the intersection of E with G; and R is whatever is left over. The crucial
point is that R is effective (indeed this is a crucial and basic fact about adjunction of
log divisors see for example Chapter 16 of [4]) so that in fact R = 0, C is isomorphic
to P! and (Ks + E) - E = 0. But then

Ks+G+E =n"(Ks+D)

since both sides are in fact zero. [

Note that we can squeeze one more fact from the proof of (3.9). Since R is empty
in fact Gy and G are the only fibres of f that are contained in the support of G.
So replacing the pair (X, D) by (Y, G) we may assume that there is a contraction
morphism f : X — P!. Moreover if F denotes the generic fibre of f and G
the restriction of D to F' then it is not hard to check that the complexity of the
pair (F,G) is no more than the complexity of the pair (X, D). Now we use linear

equivalence on F' to induce linear equivalences on X. Proceeding by an obvious

10



induction in this way we reduce to the case where X admits a contraction morphism
to the product of n copies of P'. By (3.3) this completes the proof of (2.1).
It is instructive to consider a few examples to see how this argument works in

practice.

3.10 Example. Let X = P? and take D to be three lines. We look for a linear
equivalence. Take two lines Dy and D;. The base locus of this pencil is Dy N D;
so that the morphism from the total space Y — X blow ups this point. Let E
be the exceptional divisor. Then the generic fibre F of f : Y — P! is a copy of
P! and the third line meets F in a single point. So locally in a neighbourhood of
the generic fibre £ ~ D3. We try to lift this to the whole of X. This is easy, for
example E + Dy is linearly equivalent to D3. Since the base locus is a point then
we get P2 blown up at two points and a birational morphism to P! x P!. In fact in
this way we recover the classical birational map between a quadric and P2.

Now suppose that we start with a different pencil. For example D; + D, is
linearly equivalent to 2D3. In this case the base locus is not a reduced scheme and
in fact Y, the total space of the pencil is not smooth. In fact the fibre corresponding
to D3 contains two nodes (or A, singularities). So even if we only want to prove
(2.2) in the proof of (2.1) given here, we need to consider varieties that are not
smooth.

Suppose that we look at a similar example but now in P?. Thus now we have
four planes D = Dy + D; + D3+ D3. Then Dy + Dy ~ Dy + D3. Locally about the
common point of intersection of Dy, D; and D, the equation for Dy + D; is zy = 0
and D; is z = 0 so that the total space of the pencil is given locally as zy + 2zt = 0.
Thus Y need not even be Q-factorial. However the generic fibre F of f : Y — P!

is Q-factorial and of course this is all we need for the induction to go through.

§4 PROOF OF (2.3)

In this section we indicate how to prove (2.3). The first point to note is that
passing to a log terminal model we may assume that X is projective and Q-factorial.
The idea, of course, is to manipulate A until all its coefficients are one and then
to apply (2.1). In principle this ought to be easy. We have already proved that
algebraic equivalence implies linear equivalence and so there are plenty of linear
equivalences between reduced divisors Dy and D; where Dy and D; are contained
in the support of A. Repeatedly replacing A by A; = A + ¢(D; — Dyg) for an
appropariate positive value of ¢, we ought to be able to reduce to the case where A
is integral. Here of course we order Dy and D, so that the sum of the coefficients
of D) is greater than the sum of the coeflicients of Dy. With this choice of Dy and
D, the complexity of the pair (X, A¢) is no more than the complexity of the pair
(X,A).

69
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However there are three potential problems with this idea. First of all we must
make sure that Kx + A; remains log canonical. So we increase t until Kx + A, is
maximally log canonical and then extract any divisors of coefficient one and repeat
the same process on the new space. Naively it would seems that the best one can
do using this method is to reduce to the case where there are at most  components
of A of coefficient not equal to one. However this is not enough to apply (2.1). We
need AL to have a lot of components (in fact we need at least » + 1 components
to ensure that we get a pencil of divisors with support in A ). More to the point
if we want to do better it is not at all clear that we can come up with a process
that will terminate in a finite number of steps. Both of the problems above can be
resolved using the idea of connectedness. Conjecturally if A is any effective divisor
such that —(Kx + A) is nef then either the locus where the pair (X,A) is not
kawamata log terminal is connected or the situation is very special indeed.

We recall some useful definitions due to Kawamata [1].

4.1 Definition. Let X be a normal variety and let A be an effective divisor. A
subvariety V of X is called a (respectively strict) log canonical center if it is the
image of a divisor of log discrepancy at most zero (respectively less than zero). A
(respectively strict) log canonical place is a valuation corresponding to a divisor of
log discrepancy at most zero (respectively less than zero). The log canonical locus
LCS(X, A) (resp. LCS*(X,A)) of the pair (X, A) is the union of the (respectively

strict) log canonical centers.

It is easy to give examples that show we need to consider the possibility that the

locus of log canonical singularities is not connected.

4.2 Example. Let X =P! and A consist of two points p+¢. Then LCS(X,A) =
{p, ¢} which is obviously not connected. Now take this example and cross it with
an elliptic curve C. Thus we get two disjoint copies of C living inside C x P*. Now
pick a point of either copy and blow up each of these points. The strict transforms
of these curves are contractible and contracting them we get a projective surface S
such that Kg is numerically trivial. The images of these two curves is the locus of

log canonical singularities.

However this is the worse that can happen. In fact we have the following con-

jecture:

4.3 Conjecture. Let m: X — Y be a contraction morphism between irreducible
varieties, where X is normal.

Let A be an effective divisor such that Kx + A is Q-Cartier. Suppose that
—(Kx+A) ism-nef. Let F be any geometric fibre of 1. We work in a neighbourhood
of F. Then every connected component of LCSt(X,A) meets every irreducible
component of LCS(X, A).

12



If further LLC(X,A) N F' is not connected then Kx + A is log canonical, there
are exactly two log canonical places vy and vy with respect to Kx + A and there is
a covering family of rational curves Cy such that for all s, C; intersects the centre
of v1 and vy and (Kx + A) - Cs =0.

Connectedness was first observed by Shokurov in his proof of 3-fold log flips
(8], where he proved it for surfaces. In fact I can prove (4.3) assuming the MMP
in dimension n. However the proof does not add much conceptually to Shokurov’s
original proof and so I will not reproduce it here. Essentially the idea is to undo the
construction of (4.2) by running the MMP to unveil the covering family of curves
we are looking for.

Using (4.3) it is easy to prove that we can reduce to the case where all but one
component of A has coefficient one. For example if X is a surface then the first
time we construct a log canonical centre then we simply extract it and ignore that
component of A. The next time we construct a log canonical centre then either this
centre intersects the original curve and we have constructed a log canonical centre
of dimension zero (the intersection of these two components) and we can construct
no more strict log canonical centres or the component is disjoint from the original
component and it is still true that we cannot construct anymore strict log canonical
centres. From there it is easy to prove that the process I sketched above terminates
when all but one component of A has coefficient one.

The final problem is to convert the last component of coefficient less than one
to a component of coefficient one. As we already have n + r — 1 components of
coefficient one, a careful examination of the proof given in the last section will
convince the reader that we can reduce to the case where we have a contraction
morphism X — Y where Y is the product of n — 1 copies of P!. One component
of LA is then a section of this fibration and the component with coefficient less
than one then dominates Y. Now if ¢ < 1/2 then the coefficient of this component
is greater than 1/2 and so it too must be a section and it is easy to argue that we
can increase its coefficient to one.

Otherwise we need to apply the theory of complements. The theory of comple-
ments guarantees the existence of a reduced divisor S such that Kx + LA+ 5 =
Kx + D is linearly equivalent to zero (this only works in in characteristic zero as
we need to apply Kawamata-Viehweg vanishing, see Chapter 19 of [4]). In fact
this will be the stage where we pick up the mysterious irreducible component S.
Since the complexity of the pair (X, D) is at most zero, S can have at most one
component. On the other hand if ¢ > 0 then Kx + ¢A_ is not numerically trivial
so § cannot be empty.

Replacing A by D as we have reduced to the case where A = LA we can apply
(2.1) and this finishes the proof.

71
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Finally note one thing about the proof of (1.4). Since the MMP is known to
hold only up to dimension three, it would be useful to eliminate its use. There are
only two places where we need the MMP. First every time that Kx + A, becomes
maximally log canonical we need to extract a divisor of coefficient one. As the
situation we are working with is so special we ought to be able to get around this
point. The second place we need the MMP is to prove (4.3). Now (4.3) is known to
hold if —(Kx +A) is nef and big. For this reason we ought to be able to prove (1.4)
if there is an ample (or at least nef and big) divisor which is linearly equivalent
to a sum of Kx and the components of A (indeed there would then be a small
deformation A’ of A such that —(Kx + A’) is big and uef that would not change
LLC*(X,A)). If X is projective, and 0 < ¢ < C < 1 then this is automatic, since
then every divisor is a linear combination of the components of A. Thus it would
seemn that the most significant part of (1.4) is the fact that the complexity is always

non-negative.
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