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   The purpose of this paper is to construct Calabi-Yau manifolds w:,th
non-trivial finite funclamental groups. Throughout this paper, a. Calabi-'Y'au

manifold is a smooth projective variety X of climension 3 definecl over the
complex number field C such that its canonical line bundle is trivial a•ncl
Hi(X, Ox) = O. It is an interesting but difficult problem to find a Calabi-

Yau manifold with a non-abelian finite fundamental group. But Beauville
constructed a Calabi-Yau manifold whose fundamental group is the quater-
nionic .ffroup H == {Å}1,Å}i, Å}1',Å}k} in the foElowing way;

Example. ([Be]) Let V be the regular representation of H. Then using
characters of V, we can find a subvariety .S- in P(V) = P7 defined by four

equations of degree 2 such that H acts on X freely. Hence if let X = X/H,
then X is a Calabi-Ycxu manifold with Ti(X) = H.

   In this pa,per, we shall construct Calabi-"Y'au manifolds with 7ri = H in
a quite di'fferent manner. "Je tise a flat defornriation of a, normal crossing

variety. This idea stems from the work by Friedman [Fr]. Friedman in-
troduced the concept of d-semi-stability for simpie normal crossing varieties

and showed that every d-semi-sta,ble simple normal crossing K3 surface is
smoothable by a flat• deformation. In higher dimensional ca,se, the following

theorem is shown by Kcxw'amata and INamikawa.

Theorem 2.1. ([Ka,-Na] Theorepn 4.2) Let X be a com,pact Kdhle•r d-
semi-stable nor'rnal c'ro.s'si'ng va•riety of dimension n ;}l 3 and let .Xr' be the

no'nmalis•atio•n ofX. A•s.sume the fotlowing conditions:
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  (a) tux X Ox,
  (b) H"-'(X, Ox) = O, and
  (.) Hn-2(X, 0x ) = e.
Then X is smoothable by a flat deformatton. O

   Let Xt be the smooth variety given by Theorem 2.1. Here we call Xt the
smoothing of X. Then there is a natural map Ti(Xt) - T!(X) is surjective
(see [Kol Lemma 5.2.2). Starting with a 3-dimensional normal crossing va-
riety X with Ti(X) = H, we shal1 construct a Calabi-Yau manifold Xt by
deformiBg X. in own case, the natural map 7i(Xt) - zi(X) is an isomor-
phism; hence ri(Xt) = H. We shall briefiy sketch the construction.

   The quaternionic group H acts freely on a 3-dimensional sphere S3. The
quotient• space S3/H called a quaternionic sp&ce is given by identifying cer-

tain boundaries of the fundamental domain by the action of H on S3. We
will take the triangulation of S3/H and construct a normal crossing variety

X whose dual graph is the triangulation. Then the fundamental group of
X is isomorphic to H. However, X is not d--semi-stable. In order to make
it d-semi-stable, we must take the blovt'ing-up of X along a suitable curve
on the singuiar locus. If let Y be the blowing-up of X, then we can deform
Y to a smooth Calabi-Yau manifold Yt by Theorem 2.1. We can calculate
its Euler number, Betti llumber aBd fundamental group. In fact, we have a
Calabi-Y'au manifold Yt with

   the Euler number e(Yt) = O,
the Picard number p(Yt) = 2, and

the fuRdamental group Ti(Yt) = H.

   Moreover we can find a birational map g : Yt - Z contracting a del Pezzo
surface to a point. Deformin' g Z, we have a Calabi-Yau manifold Z, with

  the Euler number e(Z.) = -16,
the Picard number p(Z,) = 1, and

the fundamental group ri(Z,) '-- H.

e(Z,) = -16 is equal to the Euler number of Beauville's example. It would be

interesting to know if our manifold Z. is deformation equivalent to Beauville's

one.
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   The fundamental group of a Calabi-Yau manifold in our construction acts
on S3 freely. As such non-abelian finite groups, there are so-called binary

polyhedral groups. Hence, starting another binary polyhedral group G in-
stead of H, it is possible to construct a Calabi-Yau manifold with Ti = G.

Acknowledgements. The author would like to thank Y.Namikawa for
many helpfu1 advices and encouragements, and K.Arima and T.Kishimoto
for discussions about contractions. Also he would like to thank organizers
for the opportunity for this talk.

2 Deformation theory of normal crossing va-
 --rletles

   The purpose of this section is to describe Theorem 2.1 about the defor-
mation of Bormal crossing variet,ies.

Definition. A reduced complex analytic space X of dimension n is a
normal crossing variety (or n.c.variety) if for each point p E X,

         Ox,, or' C{xo, • • • , xn}/(xo ' ' ' x.) (O S r = r(p) S n).

In addition, if every component Xi of X is smooth, then X is called a, simple
normal crossing variety (or s.n.c.variety).

   Let X be a normal crossing variety a,nd assume that the smoothing of X
exists. Let X be the smooth total space and f : `I' --År A the deformation of
X. Then the normal bundle Alexlx of X is trivial. In general, Arxlx depends
on X, but vVxlxlsi.g(x) does not depend on X. It is determined by only the

structure of X.

Definition. Let X be a n.c.variety of dimension n and D = Sing(X).
Then there is a part4ial open covering of X with holomorphic functions
U = {UA, z8A), . . . , zÅí'X)} such that the following conditions are satisfied:

   (1) {UA} is a partial open covering containing D.
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   (2År Fer each A, the!e are igtegers r = T(A) &xd ak isemofphism

          gx : Ux )3' Vx ={(xo,...,x.)G C"+i;xo-••x. =: O}

           suchtha` "5'"'=(I.{(.X,(lbie E2+Åq'f's`';)Åq.n)•

   (3) For A,# with UA ft U. I e, there are IRvertible holemo:phic fukcSleRs
ztS•A") (O S j' Åqm n) on UA fi U, and a permutation cr = ct(A, iu) (s 6.+i satisfying

                         zge., = .s"#).g.pa)

Define by OD(-X) the lille bund}e on D induced by the invenible holomor-
p}}lc. functlogs {2i8A"} •-•uS'X")lp} aR(l 0"(X) := Op(-X)", w}}ic}} is calle{il

the infinitesmal normal 6uadte on D.

Remark. IR the abeve defukion, iRvertib}e ho}omorphic functieRs {u5A'`)}

are not uniquely determimed. If let

      ul(A'`) = u5-A'`) + aS•Apa)z5") • • • i;•") • • • xÅí") (aS•A") ÅqEi ffO(Ou,fiu.)),

{u;•(A")} also satisfies the condjtion (3a). But restricting these functions to

D,
             ug#) •••uYge)b -- z`6{k#} t•- ttx{Xg)b efi D

Hence OD(-X) is uniquely determined up to isomorphism.

Remark. For a s.R.c.variety X, Friedmafi defues OD(-X) ifi his pa-
per as follows [Frr];

   Let X'i be a component of X and let Ix, Åqresp. ID) be the defuIRg ideal
of Xi (resp. D) in X. Then define

           Ob(-X) :ex Jxillxi Ib @eD ''' XoD lxmlix,. IDt

If X is a s.n.c.variety, Friedman's definition coincides with our definition.

Definitien. A n.c.variety X is d-semi-stabie if its infinitesmal normal
bundle OD(X) is trivial.
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Theorem 2.1. ([Ka-Na] Theorem 4.2) LetX be
semi-stabte n.c.variety of dimension n ) 3 and tet X[O]

ofX. Assume the foUowing conditions:
  (a) wx 2 Ox,
  (b) H"-'(X, Ox) = O, and
  (c) Hn;2(X[Ol,Ox[ol) = O•

Then X is smoothable by a flat deformation. U

a compact Kdhler d-
be the normalization

3 Example of normal crossing varieties

  In this section, we construst a n.c.variety whose fundamental group is the
quaternionic group H. The quaternionic group acts S3 freely. So we should
just give a triangulation to the quotient S31H, and construct a n.c.variey

whose dual graph is the triangulation.

   VSJrite S3 = {x E H; ilxll = 1} where H is a set of quaternions. Then the
action of H = {Å}1, Å}i, Å}J', Å}k} on S3 is given by

                      S3 - s3
                       x e hx (hEH).
Thus the fundamental domain for the quotient space S3/H is given as a
cube. Opposite faces of the cube are identified under a right-helix turn of
angle g as in Figure 1. (see [Mo] Ch.3) So we take a triangulation for
S3/H as in Figure 2. At first, put the points, circles and triangles, on the

vertices of the cube. Circles and triangles are identified by right-helix turns

respectively. Next, connect a circle to a triangle on a edge and circles on a

face. Finally, put the point, a square, on the center of the cube and connect a
square to circles and triangles. This gives a triangulation of S31H. (Figure 2)

   We shall construct a n.c.variety whose dual graph is the above triangula-
tion. Let X2 and X3 be the blowing-ups of P3 = ProjC[To, Ti, T2, T3] along
four points (1 : O : O : O), (O : 1 : O : O), (O : O : 1 : O) and (O : O : O : 1).

?sf.ibebgkh,e,Bie.-w:."E-:p,og,IYKtag,O.n.S.thf.,PZOi8.f.9r,Yee.Sf;I.M.2O,:trl.S,"lfi
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Figure 3.
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in Figure 3.

m

bA

Figure 1.

I

m

n
h-

   "

Figure 2.

D
11

8 to

D
to

3

 4
(o)

11to

b,

 b,

 -
Ue

co c,4
D(op

  llie

De-) t,

 5
 vl
Vo

Wl
10

43

6



X,

DE')

1
Dsg)

1

  u2 Dtst) u2

DS' "2 u, D:l'

      t2
    t, 1
  V3
   Vl
     DS"

DS"

 (3)D 21

X,

DS'

3

  S2

 S3
So

 11
t3

ti

Yo

1

 (1)D 31 Ul

Dg9)

2
 U2

   5

   t3
Vs

  Vl

Dgg) 4

u, Dgk'

t2

9

D?l

1
to

Vl

DY,'

12W,

 (3)D 31

Figure 3.

44

7



Fo; example, gSe,År : DSO,) --År DS?År is defiged by

        9(i02)(CO) = t3, ep(102)(Ci) :ti, 9(i02)(VO) = UO, W(i02)(V3) ::'k Ui,

        g:e,År(dD = t,, g(,e,År(d,) =: t,, gS"?(v,) == {v,, pS02(v,) : w2,

        9(ie2)(e3) = ti, ge(i02)(eO) =: tO, 9(,02)(V3) = S3, 9S02)(Vi) xxxx SO.

Thek by these isomorpkisms v[•jk•År, we caft glue .\{ together. Let X{ be the

variety given by the gluing of Xi on Dl:) and Dff') by gft) and let X be

the variety given by the gluing of Xi by gi•,k•). Nete by D the singulai' lo-

cus of X. For these X and D, it follows from vaR Kampexx Theorem that
7ri(X) -ww rri(D) : ff•

Theerem 3.1. X is a p?ojeetive n.c.v6rz'ety.

Proof. VVre can construct an divisor L on X such that Llx, is an ample
dMsor for all i. a

                                            '
    Trivialization of infinitesmal normal bun-4
    dle

   in section 3, we constructed a n.c.variety X with Ti(X) xe ff. But X is
not d-semi-stable. To apply Theorem 2.1 to X, we will blow-up X along the
div}sor C oR D ex Sing(X) associated te Ob(X). At fust, we musS comstruct
the divisor C.

   Define the hyper$urface R in P3 by R xe {Xi.j TiTs -- g} c P3. Let Ri
be the proper transform of R in Xi aftd let

         Di me UDI-,k•) c Xi, the anti canonical divisor on Xi

              2;k
                   Ci ---•--- RiID, and Cf•,k•) : CiIDs.;}•
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Then
on D.

Ci are patched each other by g (k)
i2' 7

so define by it a Cartier (li visor c

Proposition 4.1

Preof. Toshow
defiglgg Og(X). B

OD(C)tw OD(X).

this, we. mayobserve invertible holomorphic fuRctions

   Next, by blowing-llp X along C, we coBstruct a d-semi-stab}e n.c.variety.
To preserve the projectivity, we must blow-up X according to the order of
indices of components ofX. [["his operation is as foilows. (locally, in Figure 4)

   stepl Blow up Xi along Ci•

   step2 Blow up X2 aleng C5:).

   step3 Blew up Xi along the psepef transfofm ef Pi:) te resolve erdlgary

doiib}e poiRts.

E.

Elj

Ej,

Figure 4.
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   Let Yi be the blewiag-up ef Xi ime let E,(•,k•År be the excepticgal divisfir

over Cl]k•). Replace D (resp. Di,Di,-År by the proper transform of D (resp.

Di,DiD. Let Y == Yi U Y2 U Y3, then Y is a d-semi-stable n.c.variety and
thefe is & blratioR&l map rc Y - X.

Theorem 4.2. Y is a pro1'ective d-semi-stable n.c.variety satisfying all
of the as$zamptiens iR Theer{7?}} 2.1. E

5 Smeothing
  By Theorem 2.1, Y is smoothable by a fiat deformation. Let f : Y -eF A be
this deformatlon, Y == fww}(g) aRd Yt = f-i(f) (t 7E O) the geReral fiber of f.

Then Yt is a Calabi-Yau manifold. We can culculate topological invariants
of Yt such as the Euler number, the Betti nurnber and the fundamental group.

Proposition 5.1. ([Pe]) Let f : Y --eh A be a fiat defor,nation of a
n.c.vam' ety. Let Y = f-i(O) be a smoothable n.c.vaniety and let Yt = f-i(t)

5e a smoething ofY. Then

                     e(Yt) = e(Y) - e(Sing(Y))

Proof. Topologically, Yt is given as a so-called real blowing-up of Y along
Sing(Y). D

Proposition 5.2. LetY be a n.c.variety with a.ftat deformation f : l)7 - A
and a smoothing Yt. Assume that Hi(Y, Oy) : O and wy = Oy. Then

            b,(Y,) = oj(Y) + he(Y{eq, ey{,i) - he(Y, Oy). U

Theerem 5.3. LetY aRd Yt 5e the Gbeve. TkeR

                       Ti(Yt) X T,(Y) ,rV,. H.
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Proof In general, there is a natural surjective map s : Ti(Yt) - rl(Y).
( [Ko] Lemma 5.2.2) Now, Ker(S) is generated by cycles in Si whlch is a fiber

over Sing(Y). By observing the relations among the cycles, we can show that
Ker(S) = {1}. M

Corollary 5.4. Yt is a Calabi-Yau manifold with

                 e(Yt) =O, b2(Yt)= 2 b3(Yt)=6, and

                          Ti (X) = H. D

6 Birationalcontractionmap
   In the previous sections, Nve const]ructed a Calabi-Yau manifold Yt with
Ti(Yt) = H and the Picard number p(Yt) == 2. In thls section, we find a
birational contraction map of Yt to a, Calabi-Yau threefold with p = 1.

   Let Ri be the proper transform of {Z)iÅqj TiTj = O} c P3 in Xi as in
section 4. Let S be the proper transform of Ri in Y. Then S is a del Pezzo
surfa,ce of degree 4. There is an obstruction in Hi(S, YVrsly) to extending S

to a subvariety in Yt. ([Mu]) Since S fi Sing(Y) = e by the construction of

Y,
              H'i(s, A,rsly) == Hi(s, ws) = Hi(s, os) = o

by the adjunction formula. So S extends to a del Pezzo surface St in Yt.

Proposition 6.1. There is a birational map g : Yt - Z contracting
St to a poi,ntpE Z.

Proof. This follows from contraction theorem and intersection theory. U

   Since St is del Pezzo surface of degree 4, the singularity (Z,p) is an iso-

lated complete intersection singulai'ity defined by tvv'o equations f and g in
C5. Let fo and go be the initia} parts off and g. fo and go are homogenious

of degree 2, so vv'e may assume fo == x? + ••• + xg. It follows from the next
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theorem bv Namikawa- that Z smooth by a fiat deformation.

Theorem 6.2. ([Na] Thoorem 5) Let Z be a Calabi- Yau threefold with iso-
lated ra,tional Gorenstein singuralities, that is, Z i•s a pro3'ective variety of di-

mension 3 with isolated rational Gorenstein si•ngutarities such that tuz = Oz
and H'(Z, Oz) == e. As$ttm,e that
  (aj Z is Q-fgctept'al,

  (g? everg siRgularity oR Z is ieegUy s•m{}etha51e, and

  (oj Kuranishi space of every singuiGrity on Z i,s $moeth.

Then Z is smoothable by a flat dEformation. []

It is easy to show that Z satisfies all of the assumptions in Theorem
So Z is smoothable. Let Z. be a smoothing of Z. Then Z is a Calabi-
manifold. Moreover, we can calculate topological invarints of Z..

6.2.

Yau

Theerem 6.3. Z, is a Calabi- Yau manifeid with

e(Z.) -op -l6, b2(Z.) = l a#d oj(Z.) xx 2e. ll
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