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A construction of Calabi-Yau manifolds with
non-trivial finite fundamental groups

TOSHIYUKI HASHIMOTO (Osaka Univ.)

1 Introduction

The purpose of this paper is to construct Calabi-Yau manifolds with
non-trivial finite fundamental groups. Throughout this paper, a Calabi-Yau
manifold is a smooth projective variety X of dimension 3 defined over the
complex number field C such that its canonical line bundle is trivial and
H'Y(X,0Ox) = 0. It is an interesting but difficult problem to find a Calabi-
Yau manifold with a non-abelian finite fundamental group. But Beauville
constructed a Calabi-Yau manifold whose fundamental group is the quater-
nionic group H = {+1,+i, +j,+k} in the following way;

Example. ([Be]) Let V be the regular representation of H. Then using
characters of V|, we can find a subvariety X in P(V) = P7 defined by four

" equations of degree 2 such that H acts on X freely. Hence if let X = X/H,

then X is a Calabi-Yau manifold with =, (X) = H.

In this paper, we shall construct Calabi-Yau manifolds with 7; = H in
a quite different manner. We use a flat deformation of a normal crossing
variety. This idea stems from the work by Friedman [Fr]. Friedman in-
troduced the concept of d-semi-stability for simple normal crossing varieties
and showed that every d-semi-stable simple normal crossing K3 surface is
smoothable by a flat deformation. In higher dimensional case, the following
theorem is shown by Kawamata and Namikawa.

Theorem 2.1. ([Ka-Na|] Theorem 4.2) Let X be a compact Kdhler d-
semi-stable normal crossing variety of dimension n > 3 and let X be the
normalization of X. Assume the following conditions:



(a') wx = OX,
(b) H*Y(X,0x) =0, and
(c) H"—2()~(, Oz)=0.
Then X is smoothable by a flat deformation. O

Let X; be the smooth variety given by Theorem 2.1. Here we call X; the
smoothing of X. Then there is a natural map m;(X;) = m(X) is surjective
(see [Ko] Lemma 5.2.2). Starting with a 3-dimensional normal crossing va-
riety X with m,(X) = H, we shall construct a Calabi-Yau manifold X; by
deforming X. In own case, the natural map m(X;) — m1(X) is an isomor-
phism; hence m,(X;) = H. We shall briefly sketch the construction.

The quaternionic group H acts freely on a 3-dimensional sphere S3. The
quotient space S3/H called a quaternionic space is given by identifying cer-
tain boundaries of the fundamental domain by the action of H on S3. We
will take the triangulation of 53/ H and construct a normal crossing variety
X whose dual graph is the triangulation. Then the fundamental group of
X is isomorphic to H. However, X is not d-semi-stable. In order to make
it d-semi-stable, we must take the blowing-up of X along a suitable curve
on the singular locus. If let Y be the blowing-up of X, then we can deform
Y to a smooth Calabi-Yau manifold Y; by Theorem 2.1. We can calculate
its Euler number, Betti number and fundamental group. In fact, we have a
Calabi-Yau manifold Y; with

the Euler number e(Y;) = 0,
the Picard number p(Y;) = 2, and
the fundamental group = (Y;) = H.

Moreover we can find a birational map <,0 : Y; = Z contracting a del Pezzo
surface to a point. Deforming Z, we have a Calabi-Yau manifold Z; with

the Euler number e(Z,) = —16,
the Picard number p(Z;) = 1, and
the fundamental group m(Z,) = H.

e(Zs) = —16 is equal to the Euler number of Beauville’s example. It would be
interesting to know if our manifold Z, is deformation equivalent to Beauville’s
one.
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The fundamental group of a Calabi-Yau manifold in our construction acts
on 52 freely. As such non-abelian finite groups, there are so-called binary
polyhedral groups. Hence, starting another binary polyhedral group G in-
stead of H, it is possible to construct a Calabi-Yau manifold with 7, = G.

Acknowledgements. The author would like to thank Y.Namikawa for
many helpful advices and encouragements, and K.Arima and T.Kishimoto
for discussions about contractions. Also he would like to thank organizers
for the opportunity for this talk.

2 Deformation theory of normal crossing va-
rieties

The purpose of this section is to describe Theorem 2.1 about the defor-
mation of normal crossing varieties.

Definition. A reduced complex analytic space X of dimension n is a
normal crossing variety {(or n.c.variety) if for each point p € X,

Ox = Clzo,...,2a}/(z0--7,) (0 <1 =r(p) <n).

In addition, if every component X; of X is smooth, then X is called a simple
normal crossing variety (or s.n.c.variety).

Let X be a normal crossing variety and assume that the smoothing of X
exists. Let X be the smooth total space and f : A — A the deformation of
X. Then the normal bundle N x/x of X is trivial. In general, N x,x depends
on X, but Nx/x|sing( x) does not depend on X. It is determined by only the
structure of X.

Definition. Let X be a n.c.variety of dimension n and D = Sing(X).
Then there is a partial open covering of X with holomorphic functions

U = {U,, z(()'\), e ,z,({\)} such that the following conditions are satisfied:

(1) {U,} is a partial open covering containing D.



(2) For each A, there are integers r = r(A) and an isomorphism

@AtUA—T}V)‘Z{(xo,...,CEn) EC"+1;.’1:0-'-1',.:O}

such that z(’\) - wi(z;) (0<y<r)
1nvert1ble (r+1<j<n).

(3) For A, u with U, NU, # @, there are invertible holomorphic functions

ug-'\”) (0 € 7 <n)onUyNU, and a permutation o = o(A, 1) € &4, satisfying

LA 0 (u)
Zo(i) = %

Define by Op(—X) the Line bundle on D induced by the invertible holomor-
phic functions {u(()’\'"‘) el |p} and Op(X) := Op(—X)Y, which is called

the infinitesmal normal bundle on D.

Remark. In the above definition, invertible holomorphic functions {u( “) }
are not uniquely determined. If let

u;(/\#) _ u(/\#) + a('\“) ON i,](_#) e W) (ag’\“) c HO(OUmU‘,)),

u;(’\“)} also satisfies the condition (3a). But restricting these functions to

ug'\”) - -ug’\“)lp = uf,('\“) . -u;l('\“)(p on D

Hence Op(—X) is uniquely determined up to isomorphism.

Remark. For a san.c.variety X, Friedman defines Op(—X) in his pa-
per as follows [Fr;

Let X; be a component of X and let Iy, (resp. Ip) be the defining ideal

of X; (resp. D) in X. Then define

OD(—X) = IXl/IXllD ®loD Qo IXm/IX,;.ID-

If X is a s.n.c.variety, Friedman’s definition coincides with our definition.

Definition. A n.c.variety X is d-semi-stable if its infinitesmal normal

bundle Op(X) is trivial.
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Theorem 2.1. ([Ka-Na] Theorem 4.2} Let X be a compact Kahler d-
semi-stable n.c.variety of dimension n > 3 and let X! be the normalization
of X. Assume the following conditions:

(a) wx = Ox,

(b) H*"}(X,0x) =0, and

(c) H (X9, Oxpa) = 0.
Then X is smoothable by a flat deformation. O

3 Example of normal crossing varieties

In this section, we construst a n.c.variety whose fundamental group is the
quaternionic group H. The quaternionic group acts S freely. So we should
just give a triangulation to the quotient S3/H, and construct a n.c.variey
whose dual graph is the triangulation.

Write S = {z € H; ||z|| = 1} where H is a set of quaternions. Then the
action of H = {£1,4:,+j,+k} on S is given by

e — S5
¢ +— hz (he H).

Thus the fundamental domain for the quotient space S3/H is given as a
cube. Opposite faces of the cube are identified under a right-helix turn of
angle 7 as in Figure 1. (see [Mo] Ch.3) So we take a triangulation for
S3/H as in Figure 2. At first, put the points, circles and triangles, on the
vertices of the cube. Circles and triangles are identified by right-helix turns
respectively. Next, connect a circle to a triangle on a edge and circles on a
face. Finally, put the point, a square, on the center of the cube and connect a

square to circles and triangles. This gives a triangulation of S3/H. (Figure 2)

We shall construct a n.c.variety whose dual graph is the above triangula-
tion. Let X and X3 be the blowing-ups of P? = ProjC[Ty, T1, Tz, T3] along
four points (1:0:0:0),(0:1:0:0),(0:0:1:0)and (0:0:0:1).
Let X; be the blowing-up of X, along the proper transforms of six lines
{I: =T; =0} (0 <1< 3 <3). Moreover let D,-;) be the plane in X; as in



Figure 3. The isomorphism Lpgc) : D,(f) — Dgf) gluinig X; to X; are defined as

canonical identifications of local coordinates by the correspondence of same
numbers in Figure 3.
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Figure 3.



For example, (pﬁ‘;) : Di‘;) — Dg?) is defined by

P19 (co) = ta, sou (1) = t1, apl 9 (vo) = ue, so‘n’(v?,) = uy,

Pz (dr) = to, ﬂPu )(ds) = ta, 3 (va) = wy, ‘P12 ) (vo) = ws,
9912)(33) =t, ‘1012 (30) = to, ‘sz)(UB) = 53, ‘P12 (Ul) = So.
Then by these isomorphisms cpsf), we can glue X; together. Let X be the
variety given by the gluing of X; on D(1) and DY;) by 4,951) and let X be
the variety given by the gluing of X; by gofj) . Note by D the singular lo-
cus of X. For these X and D, it follows from van Kampen Theorem that

7r1(X) = ﬂ'l(D) = H.
Theorem 3.1. X is a projective n.c.variety.

Proof.  We can construct an divisor L on X such that L|x, is an ample
divisor for all 7. O

4 Trivialization of mmfinitesmal normal bun-
dle

In section 3, we constructed a n.c.variety X with m(X) = H. But X is
not d-semi-stable. To apply Theorem 2.1 to X, we will blow-up X along the
divisor C on D = Sing(X) associated to Op(X). At first, we must construct
the divisor C.

Define the hypersurface R in P* by R = {}_.
be the proper transform of R in X; and let

T; = 0} C P> Let R;

1<]

D; = U D(k C X;, the anti canonical divisor on X;

C,' == RiID. and C( ) C |D(k)
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(%)

Then C; are patched each other by ¢;;’, so define by it a Cartier divisor C

on D.
Proposition 4.1 Op(C) = Op(X).

Proof. To show this, we may observe invertible holomorphic functions

defining Op(X). O

Next, by blowing-up X along C, we construct a d-semi-stable n.c.variety.
To preserve the projectivity, we must blow-up X according to the order of
indices of components of X. This operation is as follows. (locally, in Figure 4)

stepl Blow up X, along (.

step2 Blow up X, along ng).

(k)
12

step3 Blow up X along the proper transform of D}, to resolve ordinary

double points.

Figure 4.



Let Y; be the blowing-up of X; and let E,(Jk ) be the exceptional divisor

over ijk ), Replace D (resp. D;, D;;} by the proper transform of D (resp.
D;,D;;). Let Y = Y1 UY,UYj3, then Y is a d-semi-stable n.c.variety and
there is a birational map 7 :Y — X.

Theorem 4.2. Y is a projective d-semi-stable n.c.variety satisfying all
of the assumptions in Theorem 2.1. O

5 Smoothing

By Theorem 2.1, Y is smoothable by a flat deformation. Let f : J — A be
this deformation, Y = f71(0) and Y; = f~1(f) (¢ # 0) the general fiber of f.
Then Y; is a Calabi-Yau manifold. We can culculate topological invariants
of Y; such as the Euler number, the Betti number and the fundamental group.

Proposition 5.1. ([Pe]) Let f : Y — A be a flat deformation of a
n.c.variety. Let Y = f~1(0) be a smoothable n.c.variety and let Y, = f~1(¢)
be a smoothing of Y. Then

e(Y:) = e(Y) — e(Sing(Y))
Proof. Topologically, Y; is given as a so-called real blowing-up of Y along
Sing(Y). O

Proposition 5.2. Let Y be a n.c.variety with a flat deformation f : Y — A
and a smoothing Y;. Assume that HY(Y,Oy) = 0 and wy = Oy. Then

ba(¥s) = ba(¥) + BO(Y™, Oyua) — BV, Op). O

Theorem 5.3. Let Y and Y; be the above. Then

m(Y:) 2 m(Y) = H.

47
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Proof. In general, there is a natural surjective map s : m(Y:) = m(Y).
([Ko] Lemma 5.2.2) Now, Ker(S) is generated by cycles in S* which is a fiber
over Sing(Y). By observing the relations among the cycles, we can show that

Ker(S) ={1}. O
Corollary 5.4. Y, is a Calabi-Yau manifold with

e(Y;) = 0,b2(Y;) =2 b3(Y;) = 6, and
n(Y,) = H. O

6 Birational contraction map

In the previous sections, we constructed a Calabi-Yau manifold Y; with
m1(Y;) = H and the Picard number p(Y;) = 2. In this section, we find a
birational contraction map of Y; to a Calabi-Yau threefold with p = 1.

Let R, be the proper transform of {}_, . TiT; = 0} C P? in X as in
section 4. Let S be the proper transform of R; in Y. Then S is a del Pezzo
surface of degree 4. There is an obstruction in H'(S,Ngjy) to extending S
to a subvariety in Y;. ([Mu]) Since S N Sing(Y) = @ by the construction of
Y,

HY(S,Ns)v) = H' (S,ws) = H'(S,05) =0

by the édjunction formula. So S extends to a del Pezzo surface S; in Y;.

Proposition 6.1. There is a birational map ¢ : Yy —» Z contracting
S, to a pointp € Z.

Proof. 'This follows from contraction theorem and intersection theory. O

Since S, is del Pezzo surface of degree 4, the singularity (Z,p) is an iso-
lated complete intersection singularity defined by two equations f and g in
C®. Let f; and go be the initial parts of f and g. f, and g, are homogenious
of degree 2, so we may assume fo = zZ + --- + z2. Tt follows from the next



theorem by Namikawa that Z smooth by a flat deformation.

Theorem 6.2. ([Na] Theorem 5) Let Z be a Calabi-Yau threefold with iso-
lated rational Gorenstein singuralities, that is, Z is a projective variety of di-
mension 3 with isolated rational Gorenstein singularities such that wz = Og
and HY(Z,0z) = 0. Assume that

(a) Z is Q-factorial,

(b) every singularity on Z is locally smoothable, and

(¢) Kuranisht space of every singularity on Z is smooth.
Then Z is smoothable by a flat deformation. O

It is easy to show that Z satisfies all of the assumptions in Theorem 6.2.
So Z is smoothable. Let Z, be a smoothing of Z. Then Z is a Calabi-Yau
manifold. Moreover, we can calculate topological invarints of Z..

Theorem 6.3. Z; is a Calabi- Yau manifold with
e(Z,) = —16, b(Z,) = 1 and b3(Z,) =20. O
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