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1 Introduction

Today, there are a variety of ways of defining the Painlev6 equations. Most
of them are unimaginable from the original definition,
   (1) Historically the origin of the Painleve equations goes back to the
pursuit of special functions defined by algebraic differential equations of the

second order. Around 1900 Painlev6 succeeded in classifying algebraic dif-
ferential eqgatioRs y" =- f(t,y,y') without movable sing"lar peints, where
F is a TatieRa} fuRctioR of t, y aR{il y' ftkd[ t is the ik{iepek{leRt variab}e so

tkat y' = dy/dt aRd y" rm d2y/dt2. The property being free from the movab}e

singu}arites is nowadays cal}ed the Painlev6 preperty. After he c}asified the

equations satisfying the condition, Painlev6 then threw away those equations

that he could integrate by the so far known functions and thus he arrived
at the Iist of the six Painlev6 equations. This is the first definition of the

Painlev6 equations. It is, however, very lucky that he could discover the
Painlev6 equations in this manner.
   (2) IR 1907, R. Fuchs discovered that the sixth Painlev6 equatioit desÅëribes

a mokgdygmy preserviRg deformatioR gf a secgnd erder ordiRary linear eqga-
tiox y" = p(x)y. Later R. Garnier gekera}ized this forkhe gther ]}aiglev6
equations.
   (3) In our former work [21, we showed that we carm recover the second
Painlev6 equation form a raional surface with a rational double point. We
can regard this as an algebro-geometric definition, of the second Painlev6

equation.
   (4) Masatoshi Noumi and Yasuhiko Yamada interpreted theory of Painlev6
equations form the view point of Ka6-Moody Lie algebra. They not only
unifromly reviewed the threory of 7 functiofi of the Painlev6 equatioRs but
also gekeya!ized the Painiev6 equatigks ig the Rat\ivaI frame wcrk.
   (5) r]]here is another definitioR d"e to J. Drach [l] in 1914. He assei'ts the

equiva}ence of the fo}!owing two conditions for a function A(t).
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(i) A(t)

(ii) The

satisfies the sixth Painlev6 equation.

dimensjon of the Galois group of a non-linear differential equation

dy
7t=

y(y - 1)(t - A)

t(t - 1)(y - A)

is finite.

   In the second assertion, the Galois group of general algebraic differential

equation is involved. Namely the second assertion depends on his infinite
dimensional differential Galois theory, which has been an object of discussion

since he proposed it in his thesis in 1898.

   In this note, we appiy our infinite dimensional Galois theory of differential

equations [3] to study the result of J. Drach. It is difficult to imagine the

equivalence of the assertions. We prove that (i) imp}ies (ii) for the first

Painlev6 equation.

Theorem 1 Let A(t) be a function satisfying the fAitst Painleve' equation X' =
6A2 +t. Then the Galois group Infgal(L/K) = SL2, where

K - C(t, A(t), A'(t)), L - K(y)

such that y is transcendentat over K satisfying

                         dy 1 1
                         dt 2y- A(t)'

Then .
                      Infgal(L/K) fit S;)L2Lb•

   Why is the theorem interesting? Because the Galois group, which is a
formal group of infinite dimension in general, is very diMcult to calculate.We

have only two types of examples where we can calculate the Galois group.
(1) If L/K is a strongly normal extention in the sense of Kolchin which is
his generalization of classical Galois extention so that the Galois group G :=:
Gal(L/K) of the extension is an algebraic group, then Jnfgal(L/K) = a

and (2) the Galois group of a Riccati equation coincides with the formal
completion of the Galois group of the linearization of the Riccati equation.

   Since we can prove only one dirrction of the assertion of Drach, our result

is not satisfactory in the sense that it does not give us a new definition of

the Painleve equation. It offers us, however, a highly non-trivial example of

a differential field extension of which we can caluculate our Galois group.
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2 Review ofR. Fuchs' paper
R. Fuch studied a monodromy preserving deformation of a linear different,ial
equation d2y/dx2 rv- p(x)y. Namely he considered a system of linear equations

(i) ( tbl2x2 lll [li(ll-A,,zg}., forz== i7 2,

where
                ab ce            ;P : IFT' + (v-i)2 + (x .- t)2 thlww (v- A)2 -l- '''

and we assume that A is not a function oftbut it is a function of x, i.e.
6A/Ox = O. yi and y2 are Iinearly independent solutions, The integrability
cf the system () imp}ies

           A(x, t) == fi,Xi ,i) )((,,t i AAi and B(x, t) - gi](/ÅÄ

and A(t) satisfies the sixth Painlev6 equation Pvi.

   Wkere cemes the ReR--}iRear differeRela} eq=atloR

                      dy y(y - 1) (y -- A)
                      ny- rm                      dt t(t-1)(t-A)

from?

Lemma 1 We may assume that the Wronskian

(2)

                          Yl Y2
                   Wr rm =rm 1.
                         Me ESISCk
                          ax 3x
Proof. It is an exercise to check 0W./0t xx OWr/0x =: O.

From now on we write T for t, VV for x so that we consider the system

Lemma 2

( ec,ew2,, :llY"lv, T)y,-A(w,T)i}.4,

ij we set y = yi/y2, then we have

z;el}. -i,}

faiig ==-Ark,!•

fgr i = l, 2,
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We are working in the differebtial field

(3) C(VV, T)ÅqA(T)År - C(W, T, A(T),X(T),•••)(y,,y,, O oYil,aoYT2)

with derivations {O/OW, 0/OT}. The differential field extension

                              6y, Oy,
           c(w, T)ÅqA(T)År(Yi, Y2, oT , 0T                                     )/C(W, T) ÅqA(T)År

is defined by the adjunction of the solutions yi, y2 of the system (1) of linear

equations.
   Now we introduce differential operators

                      (.D.t:t,,tbu,-'e.'

so that the field (3) is a differntial field with derivations {Dt, D.} . If we

regard the the field (3) as a differential field with derivations {Dt, D.}, then

it involvs non-linear differential equations.

Lemma 3 DtW = A(W, T).

Proof. This follows from the definition of the operator Dt.

                            'Lemma 4
                 0y                        0y
                ZitT7 + A6vv =O so that Dty = o.

ProoÅí This is a consequaence of Lemma 2.
   Lemma 4 shows that y is a first integral of dY/dT == A(Y, T).
   It follows from Lemma 2 D.(W) == y? and hence yi is algebraic of de-
gree (at most 2) over C(t)ÅqAÅrÅqyÅrÅqVVÅr. Here ÅqÅr should be interpreted in the

differential field (3) with derivations {Dt, D.} • Since y2 = yyi,

                          ay, oy,
                                   : C(t)ÅqAÅrÅqyÅrÅqVVÅr) - 2.          (C(W, T) ÅqAÅr (y,, y, ,
                          0W'OW

3 Infinite dimensional differential Galois the-

     ory

We start from a differentail field extension L = C(t)ÅqAÅrÅqI2VÅr over K =
C(T)ÅqAÅr with derivation Dt. They are subfields of

                                   0yi ay2
                   C(VV, T)ÅqAÅr(y,,y,,                                          )•
                                  0W'OW
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Recall that we have

                                  W(W - 1(t - A)
               D,(T)=1, DtVV=
                                  T(T - 1)(W - A)

and W is transcentental over the field K.

   Let us now review our differential Galois theory of infinite dimension
using a particular example. We start from the differential field extension
L = K(W)/K with derivation Dt. We define its Galois, g;roup. We consider
the universal Taylor morphism i : L - Lb[[Tl]. Namely we set for an element
a E LU[[T]]

                       i(a) - .ZO.O., iliT/ D?(a)T".

Here Lh is the abstract field structure of the differential field L. Namely

we forget in the differential field L the drivation Dt. The map i introduced
above is a morphism of rings compatible with the derivations Dt and 0/0T.
   Consider now on Lh, the derivation 0/0W, which we denote by (a/0W)U
to avoide confusions. So we have in the power series ring Lh[[T]] two mutu-
ally commutative derivations 0/OT and (a/0VV)h. The latter operates as a

drivation of coeficients of a power series.
   The quotient field of Lin[[7]] is the field Lh[[T]][7-'] of Laurent series that is

the differential field with derivations 0/0T and (0/aVV)b. In this differential

field Ln[[T]][T'i], let L be the differential sufield generated by i(L) and LU

and we define rc as the differential subfield generated by i(K) and Lh.

   Remark. Since the Lla-vector space Der(Lh/Kh) of Kh-derivations of Lb is
1-dimensional and so it is spanned by any non zero element of the Lh-vector

space Der(Lb/Kh). Hence we have

                     Der(Llt/Kb) = Lh(a/aw)lt

Therefore the construction of L and )C is independent of the choice of a
generator of the Lh-vector space Der(LU/Kn).

   Now considering again the Taylor expansion of the coeflicients of a Lau-
rent series, we have a differential algebra morphism Lin [[TI] [7-'] . Lltlt [[e]] [[T]] [T-i] ,

where e is the variable appearing when we expand the coefficients of our Lau-

rent series.
             Lh.Lhh[[c]] aH.20=O,llir/ ((aavv)h)"(.)en

So now L and rc are differential subfields of Linta[[e]][[T]][7"] with derivations

{a/ac, a/a7}.
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   Now we consider the functor of lnfiRitesimal deformatioRs of Åí/rc iR

                         L"ta[[e]][[T]][rdewi]

that is a principa} hgmogeRecgs space of a formal grrG=p Infg61(L/K) gf
infinite dimension in general. This is the definition of our Galois group. To be
more precise, we consider the category Alg(LUlt) of commutative LUU-alebras.
We defixe the fuRc#er F : ALIg(L#it) --ÅÄ (Sets) by setting fer A E AIg(Lk#)

                                                  '      F(A) :me {g E L - A[[C]][[T]][7-'] 1g is a differential algebra

         morphism satlsfyigg the fe}}ewing twe coxditioRs be}ew}

  (i) q induces the identity map orm rc.

 (ii) Let N(AL) be the idea} ef the &}gebra A ceRsistiRg ef all the Rilpotent

     elements of A. So we have a canonical morphism

                r ; AiiC]}iiTMr-'] - A/N(A)i[6j][iT]iiT-i]

     of reducing the coefficients of Lauremt series modulo the ideal N(A).
     Let 3' ; L - Al[C]l[[rl][T-i] be the composite of the inclusions

                  L (i L""[Ie]][[r]][7-i] c A[[e]][[r]][T-'].

     Vsillg tl}is getaeieft, t}}e cgRÅqlitigR thag we reqgire is r o ge == T oj.

Intuitively g is an infinitesimal deformation of the inclusion map j. Let

                    }!V(e,7) ff L##[[Cll[[rll{T-il

be the image of W E L by the canonical map

                       L - Lkk{[g]][{r]][T-i].

Let g G llF(A). The there exists a power series

                zb(e) : ao + aie+ a2e2 + •t• E A[[e]]

sgch thaS
                       g(W) = }!V(zb(e),T)

and such that th(e) is congruent to e modulo N(A). More precisely

                   ao, ai - 1, a2, a3, -•• E N(A).
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The infinitesimal defromation g is determined by the pwoer series th(C) be-
cause {Dt, (0/OW)b}-differential field L over rc is generated by )iV(e, T). The

set

G(A) = {th(C) = ao +aie+2 C2+••• E A[[e]] l ao, ai -1, a2, a3, ••• E N(A)•}

of formal power series congruent to the identity e modulo N(A) forms a
group by the composite of power series. The group functor G plays the role
bf the Lie pseudo-group of all the coordinate transformations of 1-variable.

We can show that

         H(A) = {th 1 )!V(ip(e),T) defines an element of F(A)}

forms a subgroup of G(A). The subgroup functor H is defined by a set
of algebraaic diferential equations. So in the classical language H is a Lie
pseudo-group and H(A) operates on F(A) functorially. The group functor
H is the Galois group of L/K.

   We want to show Infgal(L/K) t-v ASL2Llt. It follows form Lie's classifi-

cation of Lie algebras operating on a manifold of dimension 1. We have to
show tr.d.[L : rc] == 3. We have to connect L/K with the differential field
(3) of g2. Ignoring the technical points, we have to show

   Question. The field of constants of the differential fceld

                    C(T, A, A', W, y,, Oy,/OIÅrV)

utth derivation Dt coincides with C9

   We can not answer the Question but we can answer an analogue of the
Question for the first Painlev6 equation.

   Theorem 1. Let us considera differentialfield extensionL = C(T, A, N, W)
overK= C(T, A, X) with derivation Dt such that DtT= 1,

                              11                       D,VV=iw-A(t)

and such that A satisfies the .first Painleve' equation D,2(A) = 6A + t. We

assume that l?V is transcendental overK. Then

                      Jnfgal(L/K)2 SIL)2Lb•

   The proof ofthe theorem is as much invilved as the proof ofthe irreducility

theorem.
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