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On the definitions of the Painlevé equations

Hiroshi Umemura,
Graduate school of mathematics,
Nagoya University

1 Introduction

Today, there are a variety of ways of defining the Painlevé equations. Most
of them are unimaginable from the original definition.

(1) Historically the origin of the Painlevé equations goes back to the
pursuit of special functions defined by algebraic differential equations of the
second order. Around 1900 Painlevé succeeded in classifying algebraic dif-
ferential equations y” = f(t,y,y’) without movable singular points, where
F is a rational function of t, ¥ and ' and t is the independent variable so
that y = dy/dt and y” = d*y/dt*. The property being free from the movable
singularites is nowadays called the Painlevé property. After he clasified the
equations satisfying the condition, Painlevé then threw away those equations
that he could integrate by the so far known functions and thus he arrived
at the list of the six Painlevé equations. This is the first definition of the
Painlevé equations. It is, however, very lucky that he could discover the
Painlevé equations in this manner.

(2) In 1907, R. Fuchs discovered that the sixth Painlevé equation describes
a monodromy preserving deformation of a second order ordinary linear equa-
tion 3" = p(x)y. Later R. Garnier generalized this for the other Painlevé
equations.

(3) In our former work [2], we showed that we can recover the second
Painlevé equation form a raional surface with a rational double point. We
can regard this as an algebro-geometric definition of the second Painlevé
equation. ‘

(4) Masatoshi Noumni and Yasuhiko Yamada interpreted theory of Painlevé
equations form the view point of Ka¢-Moody Lie algebra. They not only
unifromly reviewed the threory of 7 function of the Painlevé equations but
also generalized the Painlevé equations in the natural frame work.

(5) There is another definition due to J. Drach (1} in 1914. He asserts the
equivalence of the following two conditions for a function A(t).



(i) A(t) satisfies the sixth Painlevé equation.

(ii) The dimension of the Galois group of a non-linear differential equation

dy _yly—DE-N)
dt tt— 1y — N

is finite.

In the second assertion, the Galois group of general algebraic differential
equation is involved. Namely the second assertion depends on his infinite
dimensional differential Galois theory, which has been an object of discussion
since he proposed it in his thesis in 1898.

In this note, we apply our infinite dimensional Galois theory of differential
equations [3] to study the result of J. Drach. It is difficult to imagine the
equivalence of the assertions. We prove that (i) implies (ii) for the first
Painlevé equation.

Theorem 1 Let A(t) be a function satisfying the first Painlevé equation X7 =
6\% +t. Then the Galois group Infgal(L/K) = SL,, where

K =C(t, M), X(t)), L= K(y)
such that y 1s transcendental over K satisfying

dy 1

1
dt 2y - A\t

Then . -
Infgal(L/K) ~ SLys.

Why is the theorem interesting? Because the Galois group, which is a
formal group of infinite dimension in general, is very difficult to calculate. We
have only two types of examples where we can calculate the Galois group.
(1) If L/K is a strongly normal extention in the sense of Kolchin which is
his generalization of classical Galois extention so that the Galois group G :=
Gal(L/K) of the extension is an algebraic group, then Infgal(L/K) = G
and (2) the Galois group of a Riccati equation coincides with the formal
completion of the Galois group of the linearization of the Riccati equation.

Since we can prove only one dirrction of the assertion of Drach, our result
is not satisfactory in the sense that it does not give us a new definition of
the Painlevé equation. It offers us, however, a highly non-trivial example of
a differential field extension of which we can caluculate our Galois group.

77



78

2 Review of R. Fuchs’ paper

R. Fuch studied a monodromy preserving deformation of a linear differential
equation d?y/dr? = p(z)y. Namely he considered a system of linear equations

2,,.
= =y ,
(1) . . fori=1, 2,
‘ % = Byt——AB%L
where
a b c e
p=—+ + + +-o

2 (r—-1)2 (z—-t)2  (z-)N)?
and we assume that X is not a function of ¢ but it is a function of z, i.e.

0M/0z = 0. y; and Yy, are linearly independent solutions. The integrability
of the system ( ) implies

z(x — 1)t —N)
tt—1(z— M)

_104
T 20x

Az, t) = and B(z, t)

and \(t) satisfies the sixth Painlevé equation Pyj.
Where comes the non-linear differential equation

dy _yy-Dy—-N
dt — t(t—1)(t— \)

from?

Lemma 1 We may assume that the Wronskian

o Y

W, = — 1.
8y By
ox oz

Proof. It is an exercise to check OW,./0t = OW,./0x = 0.
From now on we write T for t, W for x so that we consider the system

{5—‘3% = Pl
%ﬁ :B(Wa T)y,—A(W,T)%VL,

(2) fori=1,2,

Lemma 2 If we set y = y1/y2, then we have

2} 1
A
By  _ a1
7 A;’f~



We are working in the differebtial field
1 Oye
o , e . — ———
(3) CW, T)NT)) = CW, T, XT), X(T), - )(y1, v2, 570 577
with derivations {9/0W, 8/0T}. The differential field extension
8?41 61/2
ylay2) aT oT

is defined by the adjunction of the solutions y;, yo of the system (1) of linear
equations.
Now we introduce differential operators

D = o
D, = yiS.

Yisw

CW, T)(MT))( 7))/ C(W, T){XT))

so that the field (3) is a differntial field with derivations {D;, Dy} . If we
regard the the field (3) as a differential field with derivations {D;, D, }, then
it involvs non-linear differential equations.

Lemma 3 D;W = AW, T).
Proof. This follows from the definition of the operator D;.

Lemma 4 p P
9y Yy
ar T aw =

Proof. This is a consequaence of Lemma 2.

Lemma 4 shows that y is a first integral of dY/dT = A(Y, T).

It follows from Lemma 2 D, (W) = y? and hence y; is algebraic of de-
gree (at most 2) over C(¢)(\)(y)(W). Here () should be interpreted in the
differential field (3) with derivations {D;, Dy} . Since ¥ = yy,

so that Dy = 0.

(COV, TYN (g1, o, 22, 02

vt s o CON )W) = 2

3 Infinite dimensional differential Galois the-
ory

We start from a differentail field extension L = C(t)(\)(W) over K =
C(T)(X) with derivation D;. They are subfields of

Oyr Oya

C(W7 T)<A)(y17y27 W) W)
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Recall that we have
W(W —1(t - X)
T(T - 1)(W - ))

and W is transcentental over the field K.

Let us now review our differential Galois theory of infinite dimension
using a particular example. We start from the differential field extension
L = K(W)/K with derivation D,. We define its Galois. group. We consider

the universal Taylor morphism i : L — L![[]]. Namely we set for an element
a € L¥[7)]

Dt(T) = ]., DtW -

i(a) = i%w(a)f".

Here LY is the abstract field structure of the differential field L. Namely
we forget in the differential field L the drivation D;. The map ¢ introduced
above is a morphism of rings compatible with the derivations D; and 9/9r.

Consider now on LY, the derivation 8/8W, which we denote by (8/0W)"
to avoide confusions. So we have in the power series ring L#[[7]] two mutu-
ally commutative derivations 8/87 and (8/8W)'. The latter operates as a
drivation of coeficients of a power series.

The quotient field of L¥[[7]] is the field L¥[[r]][r~!] of Laurent series that is
the differential field with derivations 8/87 and (8/0W)". In this differential
field L¥{[r]][r"!], let £ be the differential sufield generated by i(L) and L"
and we define K as the differential subfield generated by i(K) and L".

Remark. Since the Li-vector space Der(L!/K") of K'-derivations of L! is
1-dimensional and so it is spanned by any non zero element of the Li-vector
space Der(L!/K"). Hence we have

Der(LV /K = L88/0W )"

Therefore the construction of £ and K is independent of the choice of a
generator of the Li-vector space Der(Li/K").

Now considering again the Taylor expansion of the coefficients of a Lau-

rent series, we have a differential algebra morphism L*[[7]][7~!] — L¥[[¢]][[7]][77Y],

where £ is the variable appearing when we expand the coefficients of our Lau-
rent series.

0 B\ ™
D ) o X ((3%—) ) @

So now £ and K are differential subfields of L¥[[¢]][[7]][7~!] with derivations
{0/0¢,8/0r}.



Now we consider the functor of infinitesimal deformations of £/K in

LR

that is a principal homogeneous space of a formal group Infgal(L/K) of
infinite dimension in general. This is the definition of our Galois group. To be
more precise, we consider the category Alg(L™) of commutative L%¥-alebras.
We define the functor F : Alg(L") — (Sets) by setting for A € Alg(Lt)

F(A) :=={p e £L— All)[7]]Ir™"] | is a differential algebra
morphism satisfying the following two conditions below}

(i) ¢ induces the identity map on K.

(i1) Let N(A) be the ideal of the algebra A consisting of all the nilpotent
elements of A. So we have a canonical morphism

r AN — A/NAENI )

of reducing the coefficients of Laurent series modulo the ideal N(A).
Let 5 : £ — A{[¢]]{[7]][""] be the composite of the inclusions

c c LRENNE < Al

Using this notation, the condition that we require isrop =r o j.

Intuitively ¢ is an infinitesimal deformation of the inclusion map j. Let
W, ) e L[N
be the image of W € L by the canonical map
L — L¥{[E]([r )t
Let ¢ € F(A). The there exists a power series
$(€) = a0 + ar1€ + a6 + -~ € A[[¢]]

such that
(W) =W(H(),7)
and such that ¥(£) is congruent to £ modulo N(A). More precisely

ag, a1 — 1, ag, as, --- € N(A).
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The infinitesimal defromation ¢ is determined by the pwoer series ¥(£) be-
cause { Dy, (8/0W)!}-differential field £ over K is generated by W(, 7). The
set

G(A) = W(E) = a0+a1€+2€2+" € A[[é‘]] | Qo, a1 — 17 ay, as, - € N(A)}

of formal power series congruent to the identity £ modulo N(A) forms a
group by the composite of power series. The group functor G plays the role
of the Lie pseudo-group of all the coordinate transformations of 1-variable.
We can show that

H(A) = {4 |W(W(€),T) defines an element of F(A)}

forms a subgroup of G(A). The subgroup functor H is defined by a set
of algebraaic diferential equations. So in the classical language H is a Lie
pseudo-group and H(A) operates on F(A) functorially. The group functor
H is the Galois group of L/K.

We want to show Infgal(L/K) ~ E'IZL\,. It follows form Lie’s classifi-
cation of Lie algebras operating on a manifold of dimension 1. We have to
show tr.d.[£ : K] = 3. We have to connect L/K with the differential field
(3) of §2. Ignoring the technical points, we have to show

Question. The field of constants of the differential field
C(T) )‘a AI’ W) Y1, 8:’/1/81/‘/)
with derivation D, coincides with C?

We can not answer the Question but we can answer an analogue of the
Question for the first Painlevé equation.

Theorem 1. Let us consider a differential field extension L = C(T, A\, X', W)

over K = C(T, A\, ') with derivation D; such that D,T =1,
_1_ 1
C2W = A1)

and such that \ satisfies the first Painlevé equation DZ()\) = 6\ + t. We
assume that W 1is transcendental over K. Then

Infgal(L/K) ~ SLop.

DWW

The proof of the theorem is as much invilved as the proof of the irreducility
theorem.
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