Nobuyuki Kakimi

Freeness of adjoint linear systems on threefolds with \mathbb{Q} -factorial terminal singularities or some quotient singularities

Abstract. We define and calculate the weighted multiplicities of non-Gorenstein terminal singularities on threefolds and some quotient singularities. As an application, we improve freeness conditions on threefolds.

0 Introduction

Our results are generalization of the following conjecture by Fujita [F1]:

Conjecture 0.1. For a smooth projective variety X and an ample divisor L on X, the linear system $|K_X + mL|$ is free if $m \ge \dim X + 1$.

A strong version of Fujita's freeness conjecture is the following:

Conjecture 0.2. Let X be a normal projective variety of dimension $n, x_0 \in X$ a smooth point, and L an ample Cartier divisor. Assume that $L^n > n^n$, $L^d Z \ge n^d$ for all $Z \subset X$ with $x_0 \in Z$, and $d = \dim Z < n$. Then $|K_X + L|$ is free at x_0 .

We denote the cases where the conjectures are already proved. For smooth complex algebraic surface, Reider [Rdr] proved the strong version of Fujita's freeness conjecture by applying Bogomolov's instability theorem to study adjoint linear series on surfaces. For a projective normal surface, Ein and Lazarsfeld [EL], Matsushita [Mat], Kawachi [KM][Kwc], and Maşek [Ma] extended the result of Reider [Rdr] to singular cases. Langer [La1][La2] obtained the best estimates for a normal surface by applying a rank 2 reflexive sheaf. For Fujita's freeness conjecture, it is quite hard in dimension three proved by Ein and Lazarsfeld [EL]. The lectures of Lazarsfeld [L] provided a

⁰Nobuyuki Kakimi: Department of Mathematical Sciences, University of Tokyo, Meguro, Komaba, Tokyo 153-8914, Japan. e-mail:kakimi@318uo.ms.u-tokyo.ac.jp Mathematics Subject Classification (2000): 14C20 (14J17, 14J30)

very good introduction. Kawamata[Ka] proved in dimension four case. For the strong version of Fujita's freeness conjecture, Fujita [F2] proved that, if $LC \ge 3$, $L^2S \ge 7$, and $L^3 > 51$, then $|K_X + L|$ is free at x_0 . Kawamata [Ka] proved the following:

Theorem 0.3 ([Ka, Theorem 3.1]). Let X be a normal projective variety of dimension 3, $x_0 \in X$ a smooth point, and L an ample Cartier divisor. Assume that $L^3 > 3^3$ and $L^d Z \ge 3^d$ for all subvariety $Z \subset X$ with $x_0 \in Z$ and $d = \dim Z < 3$. Then $|K_X + L|$ is free at x_0 .

Helmke [He] proved the following:

Theorem 0.4. Let X be a smooth projective threefold and L be an ample divisor on X. Assume that for some point $x \in X$ $L^3 > 27$, $L^2S \ge 9$ for all surfaces S which are smooth at x, $L^2S \ge 3$ for all surfaces S with a RDP at x, $LC \ge 3$ for all curves C which are smooth at x. Then $\mathcal{O}_X(K_X + L)$ is globally generated at x.

For a projective variety X of dimension 3 with some singularities, Oguiso and Peternell [OP] proved that, with only Q-factorial Gorenstein terminal (resp. canonical) singularities and an ample divisor L on X, the linear system $|K_X + mL|$ is free if $m \ge 5$ (resp. $m \ge 7$). Ein, Lazarsfeld and Maşek [ELM], and Matsushita [Mat] extended some of the results of Ein and Lazarsfeld [EL] to projective threefolds with terminal singularities.

We [K1] extended the result of Kawamata [Ka] to normal projective threefolds with terminal Gorenstein singularities or some quotient singularities. Our freeness conditions in terminal Gorenstein singularities or quotient singular points of type 1/r(1, 1, 1) are better than in smooth case. We noticed that our proof [K1, Theorem 3.8] of canonical and not terminal singular point case is wrong. Note that Lee [L1] [L2] also obtained some results on only Gorenstein canonical singularities independently.

Theorem 0.5. Assume $x_0 \in X$ is a quotient singular point of type (1/r, a/r, b/r)such that an integer r > 0, (r, a) = 1, and (r, b) = 1. Let $L^3 > 3^3/r$, $L^2S \ge 3^2/r$ for all surfaces S which $(S, x_0) \cong \mathbb{C}^2/\mathbb{Z}_r(1, a')$ for (1, a') = (1, a), (1, b), or (a, b), $L^2S \ge 3/r$ for all surfaces S which $(S, x_0) \cong (x^2 + f(y, z) =$ 0 or $xy + z^{n+1} = 0 \subset \mathbb{C}^3/\mathbb{Z}_r(1, a'', b''))$, for $(1, a^{"}, b^{"}) = (1, a, b), (1, b, a), (a, 1, b), (a, b, 1), (b, a, 1), or <math>(b, 1, a),$ and $LC \geq 3/r$ for all curves C which are smooth at x_0 . Then $|K_X + L|$ is free at x_0 .

The following shows that the conditions in Theorem 0.5 is best possible:

Example 0.6. Let $X = \mathbb{P}(1, 1, 1, r)$ and $x_0 = (0:0:0:1)$. Then x_0 is a quotient singular point of type (1/r, 1/r, 1/r) and $K_X = \mathcal{O}(-r-3)$. If $K_X + L$ is Cartier at x_0 and L is effective, we have $L = \mathcal{O}(rk+3)(k \in \mathbb{Z}, rk+3 \ge 0)$. If $L = \mathcal{O}(3)$, $S = \mathbb{P}(1, 1, r)$, and $C = \mathbb{P}(1, r)$, then $|K_X + L|$ is not free at x_0 and we have $L^3 = 27/r$, $L^2S = 9/r$, and LC = 3/r.

We have the following that $K_X + L$ is not free at a quotient terminal singular point for $L^3 > 27/r$ but LC < 3/r:

Example 0.7. Let $X = \mathbb{P}(1, a, r - a, r)$ for r > 2a and $x_0 = (0 : 0 : 0 : 1)$. 1). Then x_0 is a quotient singular point of type (1/r, a/r, (r - a)/r) and $K_X = \mathcal{O}(-2r - 1)$. If $K_X + L$ is Cartier at x_0 and L is effective, we have $L = \mathcal{O}(rk+1)(k \in \mathbb{Z}, rk+1 \ge 0)$. If $L = \mathcal{O}(r+1)$ and $C = \mathbb{P}(r-a,r)$, then $|K_X + L|$ is not free at x_0 and $L^3 = (r+1)^3/ra(r-a) > 27/r$ but LC = (r+1)/r(r-a) < 3/r.

We obtain estimates for not quotient Q-factorial terminal singularities.

Theorem 0.8. Assume $x_0 \in X$ is a nonhypersurface and not quotient \mathbb{Q} -factorial terminal singular point of $\operatorname{ind}_{x_0} X = r \geq 1$. Let $L^3 > 2^3 \cdot 2/r$, $L^2S \geq 2^2 \cdot 2/r$ for all surfaces S with $x_0 \in S$, and $LC \geq 2/r$ for all curves C which are smooth at x_0 . Then $|K_X + L|$ is free at x_0 .

Helmke[He] proved the following of dimension n:

Theorem 0.9. Let X be a smooth projective variety of dimension n and L an ample divisor on X. Let $x \in X$ and assume that $L^n > n^n$, $L^{n-1}H \ge n^{n-1}$ for all hypersurfaces H containing x, $L^dZ \ge m_x(Z) \cdot n^d$ for all $Z \subset X$ with $d = \dim Z \le n-2$ and multiplicity $m_x(Z) \le \binom{n-1}{d-1}$ at x. Then $\mathcal{O}_X(K_X + L)$ is globally generated at x.

1 Definition and Calculation of the weighted multiplicities

We define the new following notions which we derive from the multiplicity of a point on a normal variety X and the multiplicity of an effective \mathbb{Q} -Cartier divisor D on X at a point:

Definition 1.1. Let X be a normal variety of dimension n, x_0 a point of X, $\mu: Y \to X$ a weighted blow up at x_0 with exceptional divisors $E, W \subset X$ the subvariety of dimension p such that W is normal at x_0, \overline{W} the strict transform of W, and $\overline{D}_{\overline{W}}$ on \overline{W} the strict transform of an effective Q-Cartier divisor D_W on W. The weighted multiplicity of W at x_0 for μ (w-mult_{$\mu:x_0$}W) is defined by the equation

$$\dim \frac{O_{W,x_0}}{\mu_* O_{\bar{W}}(-hE|_{\bar{W}})} = \operatorname{w-mult}_{\mu:x_0} W \cdot \frac{h^p}{p!} + \text{lower term in } h.$$

The weighted order of D_W on W at x_0 for μ (w-ord_{$\mu:x_0$} D_W) is defined by the equation

$$\mu^*(D_W) = \bar{D}_{\bar{W}} + \operatorname{w-ord}_{\mu:x_0} D_W \cdot E|_{\bar{W}}.$$

Definition 1.2. Assume $x_0 \in X$ is a *n*-dimensional quotient singular point of type $(1/r, a_1/r, \dots, a_{n-1}/r)$. Then we denote $(X, x_0) \cong \mathbb{C}^n/\mathbb{Z}_r(1, a_1, \dots, a_{n-1})$.

We calculate the weighted multiplicities of some quotient singularities and non-Gorenstein terminal singularities on threefolds.

Theorem 1.3. Let $(X, x_0) \cong \mathbb{C}^n / \mathbb{Z}_r(1, a_1, \dots a_{n-1})$ such that an integer r > 0, $(r, a_1) = 1$, and integers a_j $(0 \le a_j < r)$ for $1 \le j \le n-1$. Let $l := \min\{i \mid a_j i \equiv i \pmod{r} \ (1 \le j \le n-1) \text{ for } 0 < i \le r\}$. Let $\mu : Y \to X$ be the weighted blow up of X at x_0 such that $\operatorname{wt}(x_0, x_1, \dots, x_{n-1}) = (l/r, l/r, \dots, l/r)$ with the exceptional divisor E of μ . Then we have

w-mult_{$$\mu:x_0$$} $X = r^{n-1}/l^n$.

Theorem 1.4. Let (X, x_0) be a 3 folds nonhypersurface and not quotient terminal singular point of $\operatorname{ind}_{x_0} X = r > 1$ over \mathbb{C} and $\mu : Y \to X$ the weighted blow up with the weights $\operatorname{wt}(x, y, z, u) = (1, 1, 1, 1)$ with the exceptional divisor E of μ such that $K_Y = \mu^* K_X + E$. Then

$$\operatorname{w-mult}_{\mu:x_0} X = 2/r.$$

By applying the weighted multiplicities, we improve freeness conditions on threefolds.

2 General methods for freeness of adjoint linear systems

We recall notation of [Ka] (cf [KMM]).

Definition 2.1. Let X be a normal variety and $D = \sum_i d_i D_i$ an effective \mathbb{Q} -divisor such that $K_X + D$ is \mathbb{Q} -Cartier. If $\mu : Y \to X$ is an embedded resolution of the pair (X, D), then we can write

$$K_Y + F = \mu^*(K_X + D)$$

with $F = \mu_*^{-1}D + \Sigma_j e_j E_j$ for the exceptional divisors E_j .

The pair (X, D) is said to have only log canonical singularities (LC)(resp.kawamata log terminal singularities (KLT)) if $d_i \leq 1$ (resp. < 1) for all

 $i \text{ and } e_j \leq 1 (\text{resp.} < 1) \text{ for all } j.$

A subvariety W of X is said to be a center of log canonical singularities for the pair (X, D), if there is a birational morphism from a normal variety $\mu : Y \to X$ and a prime divisor E on Y with the coefficient $e \ge 1$ such that $\mu(E) = W$. The set of all the centers of log canonical singularities is denoted by CLC(X, D). For a point $x_0 \in X$, we define $CLC(X, x_0, D) =$ $\{W \in CLC(X, D); x_0 \in W\}$.

We can construct divisors which have high weighted order at a given point from the following:

Lemma 2.2. Let X be a normal projective variety of dimension n, L an ample \mathbb{Q} -Cartier divisor, $x_0 \in X$ a point, and t,t_0 a rational number such that $t > t_0 > 0$. We assume that $\mu : Y \to X$ is the weighted blow up of X at x_0 with the exceptional divisor E of μ . Let $W \subset X$ be a subvariety of dimension p such that W is normal at x_0 . Then there exists an effective \mathbb{Q} -Cartier divisor D_W such that $D_W \sim_{\mathbb{Q}} tL|_W$ and

w-ord_{$$\mu:x_0$$} $D_W \ge (t_0 + \epsilon) \sqrt[p]{\frac{L^p W}{\text{w-mult}_{\mu:x_0} W}}$

which is a rational number for $0 \leq \epsilon \ll \sqrt[p]{\mathrm{w-mult}_{\mu:x_0}W/L^pW}$.

Proof. We change the multiplicity of subvariety at the point with the weighted multiplicity of subvariety at the point for μ in [K1 2.1 (cf [Ka 2.1])]. The proof is the same as [K1 2.1 (cf [Ka 2.1])].

The following proposition is the key of the proofs of our results of freeness:

Proposition 2.3 ([K1, 2.2] cf [Ka, 2.3]). Let X be a normal projective variety of dimension $n, x_0 \in X$ a KLT point, and L an ample Q-Cartier divisor such that $K_X + L$ is Cartier at x_0 . Assume that there exists an effective Q-Cartier divisor D which satisfies the following conditions: (1) $D \sim_{\mathbb{Q}} tL$ for a rational number t < 1, (2) (X, D) is LC at x_0 , (3) $\{x_0\} \in CLC(X, D)$. Then $|K_X + L|$ is free at x_0 .

References

- [EL] L. Ein and R. Lazarsfeld: Global generation of pluricanonical and adjoint linear series on smooth projective threefolds. J. Amer. Math. Soc. 6 (1993) 875 - 903
- [ELM] L. Ein, R. Lazarsfeld, and V. Maşek: Global generation of linear series on terminal threefolds. Internat. J. Math. 6 (1995) 1 18
- [F1] T. Fujita: On polarized manifolds whose adjoint bundles are not semipositive, in Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10 (1987), 167 - 178
- [F2] T. Fujita: Remarks on Ein-Lazarsfeld criterion of spannedness of adjoint bundles of polarized threefold. preprint e-prints/alggeom/9311013
- [He] S. Helmke: On global generation of adjoint linear systems, Math. Ann. 313 (1999), 635 – 652
- [K1] N. Kakimi: Freeness of adjoint linear systems on threefolds with terminal Gorenstein singularities or some quotient singularities. J. Math. Sci. Univ. Tokyo 7 (2000) 347 - 368
- [K2] N. Kakimi: On the multiplicity of terminal singularities on threefolds. preprint e-prints/math.AG/0004105
- [K3] N. Kakimi: Freeness of adjoint linear systems on threefolds with non-Gorenstein Q-factorial terminal singularities or some quotient singularities. preprint eprints/math.AG/0101176

- [KM] T. Kawachi and V. Maşek: Reider-type theorems on normal surface. J. Alg. Geom. 7 (1998) 239 – 249
- [Kwc] T. Kawachi: On the base point freeness of adjoint bundles on normal surfaces. manuscripta math. 101 (2000) 23 38
- [Ka] Y. Kawamata: On Fujita's freeness conjecture for 3-folds and 4-folds. Math. Ann. 308 (1997) 491 - 505
- [KMM] Y. Kawamata, K. Matsuda, and K. Matsuki: Introduction to the minimal model problem. Adv. St. Pure Math. 10 (1987) 283 – 360
- [La1] A. Langer: Adjoint linear systems on normal surfaces II. J. Alg. Geom. 9 (2000) 71 – 92
- [La2] A. Langer: Adjoint linear systems on normal log surface. ICTP preprint March 1999 to appear Compositio Math.
- [L] R. Lazarsfeld: Lectures on linear series. Complex Algebraic Geometry - Park City / IAS Math. Ser., 1996
- [L1] S. Lee: Remarks on the pluricanonical and the adjoint linear series on projective threefolds. Comm. Alg. 27 (1999) 4459 – 4476
- [L2] S. Lee: Quartic-canonical systems on canonical threefolds of index 1. Comm. Alg. 28 (2000) 5517 – 5530
- [Ma] V. Maşek: Kawachi's invariant for normal surface singularities. Internat. J. Math. 9 (1998), no. 5, 623 - 640
- [Mat] D. Matsushita: Effective base point freeness. Kodai. Math. J. 19 (1996) 87 – 116
- [OP] K. Oguiso and T. Peternell: On polarized canonical Calabi-Yau threefolds. Math. Ann. 301 (1995) 237 248
- [Rdr] I. Reider: Vector bundles of rank 2 and linear systems on algebraic surface, Ann. Math. 127 (1988) 309 316