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LOCAL FAMILIES OF K3 SURFACES AND 5 APPLICATIONS

KEILJI OGUISO

1. INTRODUCTION

A hyperkihler manifold is by the definition a simply connected, compact Kahler
manifold F with H?°(F) = Cwp, where wp is an everywhere non-degenerate holo-
morphic 2-form. In this terminology, a K3 surface is nothing but a hyperkahler
manifold of dimension 2. Due to the fundamental work by Bogomolov and Beauville
[Be], the following results hold for a hyperkahler manifold F of any dimension:

(1) The Kuranishi space of F is smooth and universal;

(2) There is a natural, integral non-degenerate symmetric bilinear form (*, x)
of signature (3,b3(F) — 3) on H?(F,Z). This bilinear form induces on
H?(F,C) = HY"!(F) ® Cwr ® Cwr the Hodge structure of weight two;

(3) The local Torelli Theorem holds for the period map given by the Hodge
structure on H2(F,Z) defined in 2. above.

In this report, we consider a smooth family of hyperkahler manifolds f : X — A
over a disk A. In this setting, the following two statements are equivalent:

(1) f is trivial as a family, i.e. isomorphic to the product F x A over A;

(2) all the fibers of f are isomorphic.

We denote by p(F) the Picard number of F, i.e. the rank of the Néron-Severi
group NS(F) :=Im(c; : HY(F,0%) — H*(F,Z)) = (Cwr)* N H*(F,Z). Here the
last equality is due to the Lefschetz (1,1)-Theorem. Note also that NS(F) has a
natural lattice structure induced by the bilinear form (x, *x).

Our starting point is the following:

Theorem 1.1. [Og] Let f : X — A be a non-trivial family of hyperkdhler man-
ifolds. Set m := min {p(X;)|t € A}, G == {t € Alp(A) = m} and S = {t €
Alp(X) > m}. Then,

(1) The lattices NS(X:) are all isomorphic fort € G;

(2) S is a dense countable subset of A in the classical topology.

This is a generalization of a result of R. Borcherds, L. Katzarkov, T. Pantev and
N. I. Shepherd-Barron [BKPS].

The following example illustrates the phenomenon in the theorem fairly well:

Example 1.2. Let us denote by FE; the elliptic curve of period t. Let A be a small
disk in the upper half plane H. Then, one has a family of elliptic curves f; : £ - A
with the level two structure such that & = F;. Taking a crepant resolution of the
quotient of the product f; : £ x E /=1 — A by the inversion, one obtains a family
of K3 surfaces f3 : X — A such that X; = Km(FE; x E 7). This family f3 satisfies

p(X;) = 20 for t € Q(v/—1) and p(X;) = 18 for t ¢ Q(v/—1). In this example, we
have S = AN Q(v/-1). a
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It is an easy fact that S is at most countable and that G is dense and uncountable.
Therefore G is "much bigger” than §. We regard the fibers over G general and the
fibers over S special. The essential part of the theorem 1.1 is the existence of enough
special points.

As it is shown in section 2, the proof of theorem 1.1 is extremely easy. However,
by combining theorem 1.1 with other known results, one can obtain several inter-
esting new results. I would like to state 5 of such results without proof. For proof,
I refer to the readers the original papers.

1st Application. The first application is the following filling up of Picard numbers:

Application 1.3. [Og] Let F be a hyperkihler manifold with by(F) = N + 2. Let
u: U — K be the Kuranishi family' of F. Then, for each integer j such that
0<j <N, the locus {t € K|p(U) = 7} is dense in K. a

2nd Application. One can also apply theorem 1.1 for clarifying certain relationships
among all of the Mordell-Weil lattices of Jacobian K3 surfaces ¢ : X — P1. Here
the Mordell-Weil group MW () with Shioda’s positive definite, symmetric bilinear
form (*, *) is called the Mordell-Weil lattice [Sh 1, 2]. We remark that the Mordell-
Weil rank r of a Jacobian K3 surface satisfies 0 < r < 18. By the narrow Mordell-
Weil lattice MWP°(), we mean the sublattice of MW () consisting of the sections
which pass through the identity component of each fiber. As it is well known,
MW?®(y) is of finite index in MW (y). Contrary to the case of rational Jacobian
surfaces, the isomorphism classes of both MW () and MW%(¢) of Jacobian K3
surfaces are no more finite.

The second application is the following:

Application 1.4. [Og] For any given Jacobian K3 surface ¢ : J — P! of Mordell-
Weil rank r := r(p), there is a sequence {@m : Jm — P}8__ of Jacobian K3
surfaces such that

(1) ¢y : Jr = P! is the original ¢ : J — P1;

(2) r{(¢om) = m for each m; and

(3) there is a sequence of isometric embeddings:

MWO(p) = MW°(py) C MW (pr41) C --- C MW (p11) C MW®(p1s).

In particular, the narrow Mordell- Weil lattice of a Jacobian K3 surface is embedded
into the Mordell-Weil lattice of some Jacobian K& surface of rank 18. Conversely,
Jor every sublattice M of the (narrow) Mordell-Weil lattice of a Jacobian K3 sur-
face of rank 18, there is a Jacobian K3 surface whose narrow Mordell-Weil lattice
contains M as a sublattice of finite index. Moreover, for each given M, there are
at most finitely many isomorphism classes of the Mordell- Weil lattices of Jacobian
K3 surfaces which contains M as a sublattice of finite index. 0O

This coarsely reduces the study of the Mordell-Weil lattices MW () to those of
the maximal rank 18.

3rd Application. One can also apply theorem 1.1 for studying the behavior of
the automorphism groups of K3 surfaces under small one-dimensional projective
deformation. More explicitly, one can discuss about the phrase, ” the automorphism

INote then that 0 < p(l;) < N for each t € K.
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groups of projective K3 surfaces become larger at special points in their moduli.”
from the view of theorem 1.1.

The third application is the following:

Application 1.5. [Og] Let f : X — A be a smooth projective family of K3 sur-
faces. The sets G and S are the same as in theorem 1.1. Then,
(1) There are a (possibly empty) finite subset F C S, a group G°, and a positive
integer N depending only on f such that

GY < Au(X,) for allt e A —F

and
[Aut(X;) : G°) < N for alit € G.

In particular, the map Aut: A — {groups}/ =;t — [Aut(X:)] is "upper-
semicontinuous” on A - F, in the sense that the map Aut is constant on G
with value [G°] and the indices [Aut(X;) : G°] can be of infinite order only
at the special pointst € S — F.

(2) There is a smooth projective family of K3 surfaces f : X — A such that
F #£0. More concretely, there is a smooth projective family of K3 surfaces
f: X — A such that p(X;) = 2 and |Aut(X;)] = oo fort € G but p(Xp) =19
and |Aut(Xp)| < oo at the special point 0 € A.

(3) There is a subset D C S such that D is dense in A and such that

[Aut(Xe)| =00 forallte D. 0O

The first assertion mostly justifies the phrase quoted at the beginning, while the
second denies the phrase in the most strict sense. It is also interesting to compare
the second statement with the fact: If X 4s a K3 surface, then [Aut(X)| < oo if
p(X) =1 and |Aut(X)]| = oo tf p(X) = 20, the maztmum value by [SI].

As a direct consequence of the third assertion, one obtains the following:

Corollary 1.6. Let f : X — A be a (not necessarily projective) non-trivial family of
projective K8 surfaces. Then, there is a dense subset D C A such that |Aut{Xy)] =
oo for allt € D. In particular, the nef cone A(X;) is not finite rational polyhedral
ifteD. O

For the statement, the projectivity of K3 surfaces in a family is essential.

The third assertion of our application 1.5 and corollary 1.6 are somewhat sur-
prizing. For instance, let us take the component H of the Hilbert scheme consisting
of quartic K3 surfaces and consider the universal family » : &/ — H. Then for any
sufficiently general A — H, the induced family ¢ : X — A satisfies Pic(X:) = ZL,
for t € G, where L, is the plane section class of X; C P3. So |Aut(X:)] < oo
if t € G. Application 1.5 or corollary 1.6 claims, however, that there is a dense
subset D such that |Aut(X;)| = oo for all ¢ € D in this family. This also provides
an explicit example of a family in which the automorphism groups actually jump
above at special points.

On the other hand, one has by Kollar([Bo]): If f : Y — A is a smooth family of
Calabi- Yau manifolds in | — Kv| of a Fano manifold V, then the nef cones A(Y;)
are finite rational polyhedral, whence |Aut(Y:)| < oo, for allt € A provided that
dimV > 4. Thus, the statements similar to application 1.5 and corollary 1.6 do
not hold for Calabi-Yau manifolds of higher dimension.
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4th Application. As the forth application, one can add some evidence to the fol-
lowing interesting conjecture posed by De-Qi Zhang:

Conjecture 1.7. (De-Qi Zhang) The universal cover of the smooth locus of
a normal K3 surface is a big open set of either a normal K8 surface or of C2.
Furthermore, in the latter case, the universal cover factors through a finite étale
cover by a big open set of a torus.

Here, a normal K3 surface means a normal surface whose minimal resolution is
a K3 surface and a torus is a 2-dimensional complex torus. By a big open set we
mean the complement of a discrete subset.

Let S be anormal K3 surface, let S° := 5—SingS and let v : § — § the minimal
resolution. We set E to be the reduced exceptional divisor E := v~1(Sing S) and
decompose F into irreducible components E := 3 _;_, F;. An important invariant is
the number 7 := r(5) of irreducible components of the exceptional divisor. Clearly,
S'=8~FE.

The forth application is the following sharp sufficient condition for the validity
of the first alternative in Zhang’s conjecture:

Application 1.8. [CKO] Ifr = r(S) < 15, then m1(S°) is finite and the universal
cover of SO is a big open set of a normal K8 surface. O

This is the best possible uniform bound on r in order that m;(S°) be finite, in
view of the following fact: A normal Kummer surface A/ — 1 satisfies r = 16 and

Im((A/ = 1)°)| = o0

Theorem 1.1 is used in reducing the proof to the following:

Theorem 1.9. [CKO)] If the normal K8 surface § admits an elliptic fibration then
either m1(S°) is finite or there is a finite covering of S, ramified only on a finite
set, which yields a complex torus?. [

5th Application. As the fifth application of theorem 1.1, one can also show the
following result which claims that the moduli space of (unpolarized) K3 surfaces is
highly non-Hausdorff:

Application 1.10. [HLOY?2] There are a pair of smooth projective families of K3
surfaces

XA Yo A
and a sequence {tx} C A such that

klim te=0,X, =V, butXo#)o. O

One can construct such examples by combining theorem 1.1 with theory of
Fourier-Mukai partners of K3 surfaces found by Mukai [Mu] and Orlov [Or] and
developped further by Hosono-Lian-Oguiso-Yau [HLOY1, 2].

2The argument in [CKO] becomes correct if one just erases the following sentence which acci-
dentally inserted there: Therefore, in the new fibration, for each fibre the G.C.D. of the multi-
plicities of the components equals 1.
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2. PROOF OF THEOREM 1.1

In the rest, I would like to prove theorem 1.1.

Let us choose a marking 7 : R2f,Zx ~ A x A, where A = (A, (+.¥)) is a lattice
of signature (3, N — 1) and consider the period map

p:A-P={wePA®C)|(ww) =0, (wr) >0} CPA® C) =PV,

This map p is defined by p(t) = 7¢(lwx,]). It is known that p is holomorphic. We
notice that p is not constant by the local Torelli Theorem.

Let us consider all the primitive sub-lattices A™ (n € ) of A. Put A, = {t €
A|r(NS(X:)) = A™}. Then one has a decomposition & = U,enOn. Since A is
countable but A is uncountable, there is an element of A/, say 0, such that Ag is
uncountable. Since p(t) € A% ® C for all t € Aq and since p is holomorphic, one
has then:

p(A) C P = {[w] e PA™ ® C)j(ww) =0, (wD) >0} c P(A’ @ C) = P™.

Here we regard P(A%- ® C) as a linear subspace of P(A® C) defined by (A%.x) = 0.
Set § := A — Ag and G := Ag. Then, by the Lefschetz (1, 1)-Theorem, we also
have that:

(1) A° C 7(NS(X;)) for all t € A and A® = 7(NS(&,)) for all t € G;

(2) t € Sif and only if there is a vector v € A — A such that (v,p(t)) =0, i.e.

if and only if 7(NS(X;)) is strictly bigger than (the primitive) A°.

Since both A — A% and {t € Al|(v, p(t)) = 0} for each v € A — A are countable, S
is countable as well.

In order to complete the proof, it remains to show the density of S, i.e. the fact
that SN U # @ for any sufficiently small disk U.

Claim 2.1. rank A% > 3.
Proof. If rankA%" < 2, then At ® R is spanned by the images of the real and
imaginary parts of a holomorphic 2-form. This implies that A%l is a positive

definite lattice of rank 2 and that P’ consists of two points. However, the period
map p is then constant, a contradiction. O

Let us choose a holomorphic coordinate z of U centered at P. We also choose

integral basis of A% and write p|U as p(z) = [1 : fi(2) : fa(2) : --- : fu(z)] with
respect to this basis. Here we have n > 2 by Claim 2.1. We may also assume
that fj(z) is not constant. In what follows, for each @’ = (ag, a1,a2, -+ ,a,) €

R™! — {0}, we put:

f2(2) =a0+a1fi(z) + aafa(2) + - + anfn(z);

lg = apzo+a1z1 +azzo+ -+ antn, where fzo : 2y : - -+ : z,] is the homogeneous
coordinates of P™; and

H— = (l3 =0) C P", the hyperplane defined by the linear form I

Let k be an element of {2,---,n}. Since dimprC = 2, there is an element
—

(roksT1ksT2,6) € R — {0} such that ok - 14 71 % f1(0) + 72 £ f5(0) = 0 — (*). Put

o= (ro,esT1,k,0,-+-,0,724,0,---,0). Here ry; is located at the same position

as ¢ in [zg : z1 : --- : z,]. In this notation, the equality () is rewritten both as

p(0) € Hr; and as f=(0) =0.
Claim 2.2. p(U) is not contained in Ny_, Hs.
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Proof. Assuming to the contrary that p(U) C N;_, H;;, we shall derive a contradic-
tion. Since fi(z) is not constant, we have r; x # 0 for each k. Therefore N;_,Hz
is a line L ~ P! defined over R in P™. We note that the bilinear form (x,*x) is
not identically zero on L, because {w, @) > 0 for [w] € p(U). This leads the same

contradiction as in claim 2.1. O

By claim 2.2, there is k such that p(U) ¢ H, i.e. fr(z)# 0. Since f(0) =0,
we may choose a small circle y C U around z = 0 such that fz(z) has no zeros
on v. Set K := min{|fz(2)||z € v} and M := max{|fi(z)||z € v,7 =0,1,--- ,n},
where we define fo{z) = 1. Note that K > 0 and M > 0. Then, by using the
triangle inequality, we see that |f;;(2) — f3(z)| < [fr(2)] on v provided that
@ —7x] < KM~!(n+1)~1. Denote by V the open disk such that 8V = . By the
Rouché Theorem, the cardinalities of zeros (counted with multiplicities} on V are
the same for f-» and fz. In particular, f- admits a zero on V. Since Q™! — {F}

is dense in R**!1 — {0}, one can then find an element 7 € Q"*! — {0} such
that f(z) has a zero on V. Let us denote this zero by @ € V(C U). We have
f7(Q) = 0 and p(Q) € Hp. Recall that A% is primitive in A, that A is non-
degenerate, and that our homogeneous coordinates [zg : =) : -- - : T,] are chosen by
means of integral basis of A and the rational linear equations (A°.x) = 0. Therefore
one can find an element 0 # v € A such that H3 = {z € P"|(v.z) = 0}. Since
this v satisfies (v.p(Q)) = 0, one has v € 7(NS(Xg)). On the other hand, since

T # F, we have v ¢ A®. Hence this Q satisfies @ € SN U. Now we are done. [J
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