
LOCAL FAMILIES OF K3 SURFACES AND 5 APPLICATIONS

KEIJI OGUISO

1. INTRODUCTION

  A hyperk5hler manifold is by the definition a simply connected, compact Kahler
manifold F with H2,O(F) = CwF, where wF is an everywhere non-degenerate holo-
morphic 2-form. In this terminology, a K3 surface is nothing but a hyperkahler
manifold ofdimension 2. Due to the fundamental work by Bogomolov and Beauville
[Be], the following results hold for a hyperkahler manifold F of any dimension:

   (1) The Kuranishi space of F is smooth and universal;
   (2) There is a natural, integral non-degenerate symmetric bilinear form (*, *)
      of signature (3,b2(F) -3) on H2(F,Z). This bilinear form induces on
      H2(F, C) = Hi,i(F') o CwF e C[ZIF the Hodge structure of weight two;
   (3) The local Torelli Theorem holds for the period map given by the Hodge
      structure on H2(F, Z) defined in 2. above.

In this report, we consider a smooth family of hyperkahler manifolds f : X -. A
bver a disk A. In this setting, the following two statements are equivalent:

   (1) f is trivial as a family, i.e. isomorphic to the product F Å~ A over A;
   (2) all the fibers of f are isomorphic.

  We denote by p(F) the Picard number of F, i.e. the rank of the N6ron-Severi
group NS(F) := Im(ci : Hi(F, OS) - H2(F, Z)) = (CwF)i A H2(F, Z). Here the
last equality is due to the Lefschetz (1, 1)-Theorem. Note also that NS(F) has a
natural lattice structure induced by the bilinear form (*, **).

  Our starting point is the following:

Theorem 1.1. [Ogl Let f : ,V -. A be a non-trivial family of hyperkdhler man-
ofolds. Setm := min{p(Xt)lt E A}, g := {t E AIp(Xt) = m} andS := {t E
AIp(Xt) År m}. Then,

   (1) The lattices NS(Xt) are all isomorphic fort E g;
   (2) S is a dense countable subset of A in the classical topology.

  This is a generalization of a result of R. Borcherds, L. Katzarkov, T. Pantev and
N. I. Shepherd-Barron [BKPS].

  The following example illustrates the phenomenon in the theorem fairly well:

Example 1.2. Let us denote by Et the elliptic curve of period t. Let A be a small
disk in the upper halfplane H. Then, one has a family ofelliptic curves fi : S . A
with the level two structure such that 8t = Et. Taking a crepant resolution of the
quotient of the product f2 : S Å~ Ev=ir . A by the inversion, one obtains a family
ofK3 surfaces f3 : ,Y . A such that Ut = Km(Et Å~ Ev=T). This family f3 satisfies
p(Xt) = 20 for t E Q(V=T) and p(Xt) = 18 for t Åë Q(vCi). In this example, we
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  It is an easy fact that S is at rnost countable and that g is dense and uncountable.

Therefore g is "much bigger" than S. We regard the fibers over 9 general and the
fibers over S special. The essential part ofthe theorem 1.1 is the existence of enough

special points.

  As it is shown in section 2, the proofof theorem l.l is extremely easy. However,
by combining theeyem 1.l wlth other kRewn results, one can obtaiR severa} IRter-
esti#g Bew yesu}gs. I wett}d }ike te $tate 5 of seck resuks wkheut proeÅí Fer pregf,
l refer te tke reader$ the origiRal papers.

Ist Appiication. The first app}ication is the following filling up ef Picard numbers:

Application 1.3, [Og] Let I7 be a hyperkdhler manofold with b2(F) = N+2. Let
u:U - rc be the Kuranishi familyi of F. Then, for each integerj such that

OS 7' -Åq N, the locus {tGrclp(Ut) == j} is dense in rc. O

2nd Application. One can al$o apply theorem 1.1 for clarifying certain relationships
among all of the Mordell-Weil lattices of Jacobian K3 surfaces g : X . Pi. Here
the Mordel}-Weil greup MW(ep) with Shioda's positive definite, symmetric bilinear
feim Åq*, *År i$ ca}led tke Morde}}-Weil lattice ISh 1, 2]. We reraark that the Mgrdell-

Weil raRk r gf a Jacebiaft K3 surface sati$fies e g r S 18. By tke Rarrow Merdell-
Weil }attice MWg(g), we meaR the sub}attice of MW(ge) comsistiBg okhe $ectieits
which pass through the identity compeRent of each fiber. As it is well known,
MWO(g) is of finite index in MW(q). Contrary to the 'case of rational Jacobian
surfaces, the isomorphism classes of both MW(g) and MWO(g) of Jacobian K3
surfaces are no more finite.

  The second application is the following:

Application 1.4. [Og] For any given Jacobian K9 surface v : J . Pi of Mordell-
Weil rank r := r(g), there is a seguence {grn : Jm --" Pl}h8=. of Jacobian K9
surfaces such that

   (l) gr : Jr - Pks the eriginai g : J- PiJ
   (2) r(g.) = m fer each m; and
   (3) there is a sequence of isemetric embeddings:

    MWO(g) = MWO(g.) C MWO(v.+i) c •• • c MWe(qm) c MVVO(pis).

In particular, the narrow Mordell- Weil lattice of a Jacobian K9 surface is embedded
into the Mordell- VVea lattice of some Jacobian K9 surface of rank 18. Conversely,
for every sublattice M of the (narrow? Mordell-- VVeat lattice of a Jacobtan K9 sur-
face of rank 18, there is a Jacobinn K9 surface whose narrow Moralell- Weil lattice
contains M as a sublattice of finite index. Moreover, for each given M, there are
at most fcnitely many isomorphism elasses of the Mordell- Weil lattices of Jacobian

K3 surfaces which eontains M as a su5lattice of finite inde:. =

  Tkis cearsely redgees the study ef the Merdell-Weil lattiees MW(g) te these ef
the maximal rakk l8.

9rd Applicatien. One caxx alse apply theerem 1.1 for studying the behavioT of
the automorphism groups of K3 surfaces under small one-dimensional projective
deformation. More explicitly, one can discuss about the phrase, " the automorphism

INote then that O s p(Ut) nf IV for each tE )C.
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groups of proo'ective K9 surface$ become larger at special points in their moduli."
from the view of theorem 1.1.

  'l['he third app}icatioR is the fol}owiRg:

Applicatien 1.5. {Og] Let f : X ---+ A be a smeoth projective famiiy of K3 sur-
faces. The sets G and S are the same as in theorem 1.1. Then,
   (1) There are a (possibly empty? finite subsetX ( S, agroup aO, and apositiwe

       integer N depending onty on f such that

                     GfO Åq Aut(,Vt) fgr aSlt ff A-1'

       and
                     [AuecXt) : Ge] s N for all t E 9.

       In particular, the map Aut : A --+ {groups}/ i!iii ; t H [Aut(Xt)] is "upper-

       semicontinuous" on A -- X, in the sense that the map Aut is constant on 9
       wiLth value iCO] and the ifbdices [Aut(.Vt) : aOl can be of infinite order only

       at the spentl paints t g S - .7'.
   (2) There is a smeeth pre]'ective fafniiy of K9 surfaees f : X -ÅÄ A such that
       .1' f Åë. Mere concretely, there is a smooth projective family of K9 surfaces
       f : ,V ---- A such thatp(,Vt) =: 2 and 1Aut(`Vt)l = cx) fort G 9 butp(`Vo) == 19

       and IAut(iVo)l Åq oo at the special point O G A.
   (3) There is a subset :EÅr c 5 such that P is dense in A and such that

                     IAIut( Xt)l nm oe foT aSit G P. =

  The first assertion mostlyjustifies the phrase quoted at the beginning, while the
second denies the phrase in the most strict sense. It is also interesting to compare
the second statement with the fact: If X is a Ksi surface, then IAut(X)1 Åq oo of
R(X) = 1 and IAnt(XX == oo ifR(X) = 2g, the maxi?n#m value by fSij.

  As a direct cemsegueRce ef tke third as$ertien, olle ebtaiRs tke following:

Corollary 1.6. Let f : ,U . A be a (not necessarily pro7"ective? non-trivialfamily of

proo'ective K9 surfaces. Then, there is a dense subset CP c A such that IAuqXt)l nm
oo for all t E 1). in particular, the nef cone A(ret) is not finite rational polyhedral

  FoT the statemexxt, the projectivity of K3 surfaces iR a fami}y is essentia}.

  The third assertion of our application 1.5 and corollary 1.6 are somewhat sur-
prizing. For instance, let us take the component 7t ofthe Hilbert scheme consisting
of quartic K3 surfaces and consider the universal family u : L( --. 7(. Then for any
suMcieRt}y geRera} A --+ C}t, the induced fami}y ue : ,Y . A satisfies Pic(Xt) = ZLt
for t E g, wheTe Åít is the p}axxe sectieR class of Xt c P3. Se IAut( Vt)I Åq oo

iftE g. Application l.5 or corollary 1.6 claims, however, that there is a dense
subset D such that IAut(,Vt)1 =: oo for alltE [) in this family. This also provides

an explicit example of a family in which the automorphism groups actually jump
above at special points.

  Oft the gther ha"d, oRe kas by Ko}}ar(iBo]): ij f : Y -. A is a smeeth famiiy of
Cata5i- Yau manofolds in l - Kvl of a Fano manofeld V, then the nef cones A(Yt)
are finite rational polyhedral, whence IAut( Yt)1 Åq oo, for allt G A provided that

dimV 2 4, Thus, the statements similar to application 1.5 and corollary 1.6 do
not hold for Calabi--Yau manifolds of higher dimension.
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4th Application. As the forth application, one can add some evidence to the fol-
lowing interesting conjecture posed by De-Qi Zhang:

Conjecture 1.7. (De-Qi Zhang) The universal coveT of the smooth locus of
a normal K9 surface is a big open set of either a normal K3 surface or of C2.
Furthermore, in the tatter case, the universat cover factors through a finite e'tale
cover by a big open set of a torus.

  Here, a normal K9 surface means a normal surface whose minimal resolution is
a K3 surface and a torus is a 2-dimensional complex torus. By a big open set we
mean the complement of a discrete subset.

  Let S be a normal K3 surface, let SO := S-Sing S and let u : S . S the minimal
resolution. We set E to be the reduced exceptional divisor E := vthi(Sing3) and
decompose E into irreducible components E : = Z):•=i Ei. An important invariant is

the number r :=: r(S) of irreducible components of the exceptional divisor. Clearly,

sO=S-E.
  The forth application is the following sharp suMcient condition for the validity
of the first alternative in Zhang's conjecture:

Application 1.8. [CKO] Ifr == r(S) S 15, then Ti(SO) is finite and the universal

cover of SO isabig open set ofanormal K9 surface. B

  This is the best possible uniform bound on r in order that Ti(SO) be finite, in

view of the following fact: A normal Kummer surface A/ - 1 satisfies r = 16 and
ITi((A/ - 1)O)l .. oo.

  Theorem 1.1 is used in reducing the proof to the following:

Theorem 1.9. [CKOKf the normal K9 surface S admits an e{lptic fibration then
either Ti(SO) is finite or there is a flnite covering of 3, ramified only on a finite

set, which yieldsacomplex torus2. M
5th Application. As the fifth application of theorem 1.1, one can also show the
following result which claims that the moduli space of (unpolarized) K3 surfaces is
highly non-Hausdorff:

Application 1.10. [HLOY2]• There are a pair ofsmooth prol'ective families of K9
surfaces

                            X-A,Y-A
and a sequence {tk} C A such that

                  klLM..tk=O,`Vtkft Vt,bzLt`Vo ze Vo. D

  One can construct such examples by combining theorem 1.1 with theory of
Fourier-Mukai partners of K3 surfaces found by Mukai [Mu] and Or}ov [Or] and
developped further by Hosono-Lian-Oguisc"Yau [HLOYI, 2].

  2The argument in [CKO] becomes correct if one just erases the following sentence which acci-

dentatty inserted there: Therefore, tn tlte new fibration, for each fibre the G.C.D. of the mutti-
plicities of the components equals 1.
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                      2. PRoOF OF THEOREM i.i

  IR tke yest, l wollld like to pyove Åíkeerem l.l.

  Let us choose a marking r : R2f.Zx tt A Å~ A, where A me (A, (*.*)) is a lattice

ef signature (3, N - i) and consider the period map

   p : A - IP :== {ltti] ff P(A x C)Kw.w) = e, (w.zv) År e} c p(A x c) ., pN"i.

This map p is defined by p(t) = rc([wx,l). It is known that p is holomorphic. We
notice that p is not coxxstant by the locai Torelli Theorem.

  Let us conslder alkhe primkive sub-lakices A" (n G N') of A. Put A. : = {t ff
AIT(NS(Xt)) = A"}. Then one has a decomposition A -- us.EyvA.. Since Ar is
cou"table but A is encegRtable, there is all e}emeRt of N' , $ay g, $uch tkat Ag i$
uncountable. Sinee p(t) E AOt x C for all t E Ao and since p is holomorphic, one

has theR:

  p(A) c P' :- {[wl E P(Aon x C)l(w.w) = o, (w.zzr) År o} c p(AOi x c) == pn.

Here we regard P(AOi XC) as a linear $ubspace of P(AxC) defined by (AO.*) = O.

Set S:= A -- Ae aRd g ;= Ae. TheR, by the Lefschetz (1,l)-TkeoTem, we also
have that:

   Åql) A" c T(NS(.Vt)) for all t G A and A" = T(NS(Xt)) for all t E g;
   (2) t E S if and only if there is a vector v E A- AO such that (v,p(t)) = O, i.e.
      if aRd enly if rÅqNS(,\t)) is strictly bigger than (the primitive) Ag.

Since both A - AO and {t E AKv,p(t)) = O} for each v E A - AO are countable, S
is countable as weii.

  IR ordeT te cgmp}ete tke preef, k rema!Rs te skew the density ef S, i.e. the fact
that Sn U pt Åë for any suMciently small disk U.

Claim 2.1. rafikAOi År 3.

Proof. If rankAOk Åqnt 2, thex AOll- xR is spamaed by the images gf the Teal and
imaginary parts of a holomorphic 2--form. This implies that AOÅ} is a positive

defiRite }akice ef raRk 2 aRd tkae iP' coRsists ef ewe peints. Kewever, the period

mappis then constant,acQntradiction, ur
  Let us choose a holomorphic coordinate x of U centered at P. We also choose
integral basi$ of AOÅ} and write plU as p(z) = [1:f!(z):f2(z):•-•;f.(z)] with

respect to this basis. Here we have n 2 2 by Claim 2.1. We may also assume
that A(z) is Rot constaRt. !R what follgws, for each 'Z2 = (ag,ai,a2,--•,an) G
Rn+i -{tr}, we put:

f-zr (x) :== ao t QIA(i) " a2 f2 (x) ÅÄ ' ' ' + an fn(Z)l

l-at := aoxo + aixi + a2x2 +•••+ anxn, where [xo:xi:•••:xn] is the homogeneous
ceerdinates of P"; akd
Hx := (IT me O) c P", the hyperplane defined by the linear form to.
  Let k be ait element ef {2,+•-,n}. Sikce dimRC = 2, there is aft elerr}eAt
(ro,k,ri,k, r2,k) E R3 -- {tr} such that ro,k • 1 + ri,kfi (O) + r2,kfk (O) = O - (*). Put

Sk := (re,k,rl,k,e,•••,e,r2,k,e,•••,e). Here r2,k is }ocated at the same position

as xk in [xo:xi:•••:xnl. In this notation, the equality (*) is rewritten both as
p(O) E H.-, and as f.-, (e) =e.

Claim 2.2. p(U) is not contaiRed iR fi#=2ffK,t•
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Proof. Assuming to the contrary that p(U) c fiZ,,,2ilF-z, we shall derive a contradic-

tion. Since fi(z) is not constant, we have r2,k pt O for each k. Therefore nZ,.2H,r-,,
is a line L or Pi defined over R in Pn. We note that the bilinear form (*,**) is
not idektical}y zero eB L, beca"$e Åqts,III) År g fer [wl E pÅqU). Thls leads the same

cor}tradictioit as iri claim 2.l. ll
  By claim 2.2, there is k such that p(U) Åë H.-,, i.e- f.-, (z) S O• SinCe fr-, (O) =: O,

we may choose a small circle ty c U around z : O such that f.-,+(x) has no zeros
on ty. Set K := min{lf.-,(z)11z G or} and M := max{lfi(z)llz E ty,i = O, 1,••• ,n},

witere we defiRe fe(x) =- l. Note that K År O and M År e. Then, by using the
triaxxgle ineguality, we see that lf.--,+(z) - f-g(z)I Åq lf.-,(i)l oft ty provided thae

I-cr -ilktl Åq KM-S(n+ 1)-i. Denote by V the epen disk such that OV = 7. By the
Rouch6 Theorem, the cardinalities of zeros (counted with multiplicities) on V arre
the same for f.-, and fT. In particular, f-d admits a zero on V. Since Q"+i-{-Cr}

is dense ln R"+i - {'6'}, one caxx then find an element 6 E Q"+i - {tr} such

that fv(x) has a zero eB Y. Let us deRete tkis zero by (? E VÅqc U). We haye
f-if(C?) = e and p(C?) E ll-v. Recall that AOi is primitiye in A, that A is non--

degenerate, and that our homogeneous coordinates [xo:xi:•••:xza] are chosen by
means of integral basis ofA and the rational linear equations (AO.*) :O. Therefore

one can find an element O l v e A such that Hff = {x E Pnl(v.x) = O}. Since
Åíhi$ v satisfies (v.p((?)) == O, one has v E T(NS(,VQ)). OR the ether hand, since
-V pt -5F, we kave v Åë Ae. Heitce tki$ Q satl$fies {? G 5 ft U. New we are doRe. M
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