
MONODROMY PROPERTY OF HYPERGEOMETRXC SERIES XN
                LOCAL MIRROR SYMMETRY

smNoBg xoseNe

ABsTRAcT. We study a cohomology valued-hypergeometric series which nat-
urally arises in the description of (local) mirror symmetry. We identify it as

a central charge formula for BPS states and study its monodromy property
frem tke viewpelRt ef Kontsevich's hemelogical mimor symmetry.

          1. Introduction - Motivation and Backgrounds
  bet us consider a (famous) hypergeemetric series of oRe variable {1,x] E Pi;

(xi) w(x) = ill.li, ((5.l))s•'x"

This is a hypergeometric series of type 41 T3(g,g, g, g; 1, 1,1;x) which arises in the

mirrer symmetry of quintic hypersurface Xs c P4. See the original work by Can-
delas et al (CdOGn] fer tke descriptieR ef the twror family Emd the peried iRtegral.
The hypergeometric series (1.1) represents one of the peried integrals ef the mirror
quintic Xs" and satisfies the following differential equation (Picard-Fuchs) equation:

(1.2) {es - ssx(e. - gxe. - g)(e. - g)(e. - g)}w(x) ww o,

wkere ex :=: xS.liT. As it is clea2r iR this ferm, the regular singulaJEity ag x :g

has a distinguished property, i.e., the menodromy around this point is maximaliy
unipotent. ln physics, the point x sc O is cal1ed a large complex structure limit and
plays an important role, e.g., near this point, we evaluate the quantum corrections
to the classicaJ (algebraic) geometry of the quintic Xs. Let us focus our attention to
the constructiolt ef local s"}utiens about $ = g by the classical }FkrcbeRigs method;

               we(x) := u7(x) , WlÅqx) := iSi{W(X,P)ip=e ,

           w2(x) := %op2 w(x,p)lp==o , w3(x) :me Re;s'; w(x,p)lpmo ,

where w(x,p) :me X.2o i II5."++p x"+P. With the mirror symmetry of Xs in p4

and XsV i mikd, we iRtr"duce the fellewiRg cohemelegy-valued hypergeomeuic

sexxes;

(1.3) w(x, rft) := w(x) + w, (x)(Sill7t ) + w, (x)(5I7/ )2 + w, (x)(St )3 ,

where J is the ample, integral generator of Pic(Xs) = Hi,i(Xs)nU2(Xs, Z). in this

ferm, we kgte tkat ghe classicai Slrebesius method is ceRcisely surnmEutze(l as the
T.ayler expansion w(x,p)l,k with respect to the nilpetent element J. Although
this seems just an advantage in bookkeeping, the following observation in [Hos]
indicates that we have more than that in (1.3):
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Observation: Arrange the Taylor empansion of the cohomology-valued hypergeo-
metric series w(x, rft) as

a•4) w(x 2J.i) ex= w(e)(x) +w(i)(.)ÅqJ- e2(ill2s)J - lllt;).(2)(.) Åq; +.Åq3) (.År(ww E3L).

Then the monodromy matrices of the coefiicient hyperpeometric sem'es w(O)(x),
w(iÅr(x), w(2)(x), w(3)(x) are integral and sympieetic.

  The integral and symplectic properties of the solutions w(k)(x) (k = O,1,2,3),

of Åëourse, originate from those of H3(XsV,Z). The point here is that we can re
cever these properdes from w(x, rkt) through a suitable arrangemeRt gf a basis of

Heven(X, Q) near the latrge complex structure limit•
  The aims (and main results) of this note are: 1) to interpret the cohomology-
hypergeometric series from the viewpoint of homological mirror symmetry, 2) to
preseRt sgppcrtiRg evidences fer the iRterpretaticR l) in cases ef local mirror sym-

metry.
  As an example of local mirror symmetry, we wil1 consider the crepant resolu-

     Atien C2/Zg" ef the two dimensional canenieal singularity. in studying relevant
Gel'Åíand-Kaprauev-Zelevinski(GKZ) hypergeometric series, we connect it te the
primitive form by K.Saito in the deformation theory of singularity. This seems to
be interesting in its own light, since GKZ hypergeometric series may provide a way
to express she `period iRtegrals' of the primitive form (er oscillatiRg iRtegrals) in

the theery of singnlarity.

           2. Central charge formula in terms ofw(x,rkt)

  Here, Åíc}}owing {Hos], we wlll interpret the eehomolegy va3ued bypergeometric
series in general from Kontsevich's homological mirror symmetry [Ko].

  Let X be a Calabi-Yau 3 fold and Y be a mirror of X. On the X side, Kontsevich
cgRsiders the bounded derived caeegery bb(Coh(X)) ef ceheTeRs sheaves (D-branes
of B type) on X. On the other hand, for the mirrer side, he comsiders the derived
1fukaya category DFrk(Y,6) with the Kiihler form viewed as a symplectic form
6. The objects of the latter category consist of (graded) Lagrangian submanifolds
witk flat U(1) bundie en them (D-brane gf type A) aRd merphisms ase giveR by
the Floer homology for Lagrangian submanifolds, and this constitute a triangulated
category (, see [F03] for more preÅëise definition). Kontsevich proposed that these
two different category are equiva3ent (as triangulated categoryÅr when X and Y
are mirrcr $ymmetric, and atse this skeuld be a mathematical defuitien ef mirrer
symmetry. This conjecture itself is of great interest, however let us consider this
conjecture at more tractable level (, i.e. at the level of cohomology or K-group as
shewn in the second line belowÅr;

                   Db(Coh(X)) --{!ts';-År" DFuk(Y,6)

               K(x)orHeven(x,Q) -l!tZ':-Årr H3(Y,Z)

where the left vertical arrow represents the map from Db(Coh(X)) to the K-group
gf algebrajc vector bgRdle K(XÅr, and its cempesitieR wigh the Chern character he-
momorphism ch(`) if we further map to He"e'"(X,Q) = di;,.oH2PÅqX,Q). The right
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vertical arrow is given simply takirig the homology classes of the graded Lagrangian
cycles. ln the second 1ine, the equivalence, Mir, of the two categories becomes sim-
ply an isomorphism, mir, between the K-group and H3(Y, Z). We should note that
this is not simply an tsemorphism but isomoTphism with the symplectic structures,
i.e.

           mir : (K(X), x(E, ,T7')) ; (H3 (Y, Z), #(LE n LF)),

where x(E,17) : Jx ch(EV)ch(F)To(ldx and #(LE nLF) : = fy pLE U pLp with
the Poincar6 duals pL.,pL. G N3(Y,Z) for the mirror homology cycles LE :=
mir(E),LF := mir(.F'). Here we remark that the Euler Rumhers x(E,FÅr is auti-
$ymaetric dge te Serre dualky and Kx = e, and atsc Rok-degeRerate. {rhus
x(E,F) introduces a symplectic $tructure on K(X), which is the mirror of the
symplectic structure on H3(Y, Z).
  im the diagram (2.1), we assumed a complex structure is fi)ced for Db(Coh(X))
side, which is mapped to the symplectic (Ktihler) form 5 in the right hand side.
en the othey himd, we may ckEmge tke (cemplexifted) KSUileT class of X wkich is
mapped te the complex structure moduli of Y under the mirror map. Changing
the (complexified) Kahler structure amount to changing the polarization aind thus
results in varying the stability condition on the sheaves on X. This change of
the stability (n-stability) condition has been studied in [Do] and its mathematicaJ
aspects are elaborated in ptr]. Kere, without going into the detai}ed definitioR of ge

$tabllity, we prepese a clesed forraula fer tke ce#trai eharge which is ikdispensable
for the definition of ll-stability.

Definition 2.1. (Central chargG formula.) A$sume K(X) is torsion free, and
let Ei,••• ,E. be a Z basis of K(X). Let st(Y.) be a holomorphic 3form of the
mirrer fiimily {Y.}xEB of X. Under the mirror symetry (2.1), we de{ine the
fellewing Z. as an elemeftt iR K(X) x C{s},

(2.2)

with (xlj) :=

(2.3)

         ZX := ;,J f.,.(E,) st(Yx) X'J EJ

(x(Ei,E,•))-!. TheR the ceRtrai charge of F E K(X) is de{ined by

Zt(F) = f. ch(F) ch(Z.") Toddx ,

where t = t(x) is the (complexified) Kaliler moduli.

  k the above defiRition, it sko"ld be Rgted that Zx dges net depend eR tke
cheice ef a basis Ei, t • - , Er. Alse the central charge Zt(F) conuins full 'quasttum

corrections' and coincides with that appeared in the literature[Do] (, where only
asymptotic forms alre given).
  Now we may connect our hypergeometric series w(x, il;.) to the centraJ charge

abeve. Befere doing this we reraark that, in the mirror symmetry of hypersur-
faÅíes by Baptev{Ball, the hypergeometric series (1.l) is Raturally generalize(l
to Gel'fand-Kapranov-Zelevinski(GKZ) hypergeometric series of multi variables
xi, - • • ,xr[GKZ]. Using the GKZ hypergeometric series, and also suitable integral,
(semi-)ample generators Ji , • • • , Jr of Hi'i(X)nU2 (X, Z), we have the cohomology-
valued hypergeometric series w(x, rkt ) as a generalization of (1.3), see [Hosl for more

details.
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Coniecture 2.2. The cohomology-valued hyperpeometric series (1.S?6 precisely its
generalization defined in Section 2 of [Hos],) gives the central charge;

(2'4) WÅqX!,•'''X';2JTii'''`'2Ji) xe ;" f.,.(E,)fi(Yx)X" Ch(E7)(= ChÅqZx))'

Using this, and also the mirror mop t = t(x), we ean wnte the central charge Zt(F)

ofFG K(X) as

(2.s) zt(}r) = f. ch(F) w(x; iitlt.) Toddx •

  Here we note that the hypergeomeuic series has a finite radius of converrgence
and shows a mouaodromy property when it is analytically continued around its (reg-

ular) singularities. As noticed by Kontsevich, this monodromy property should be
mirrered te scme liReaf (symplectic) trai}sfgrmatieRs en eh(Ei) wbich ceme ftem
Fourier-Mukai transforms on Db(Coh(X)). If we postulate that the cohomology-
valued hypergeometric series has an invariant meaning under these monodromy ac-
tions, our cohomology-valued hypergeometric series w(x, !X7t ) provides a connection

beeweeg these twe differeRt `meRedremy' transferms iR botk sides. The ceajectural
formula (2.4) has been tested in case X is an elliptic curve, (lattice polarizad) K3
surfaces, and several Calabi-Yau hypersurfaces[Hos].

  As studied in {Mu] fgr the cases of K3 surfaces and abelian varieties, and in
{Or] for gefieral, the Fourier-Mukai transform is an equivaience of the categery
Db(Coh(X)) which talces the form

                      Åëi)(.) ,me R.,. (plO Åq{5 P)

where P is an object in D(X Å~X), called the kemel, and pi and p2 are, respectively,

the natural projections to the first and the second factor from X Å~ X. Due to a
result in [Or], we may always assume the above form, i.e., there exists a suitable
kernel P, for any equivalence Åë : Pb(Ceh(X)) cr Db(Coh(X)) as triEmgulated
category. It is rather easy to see that the monodromy transforms around the 1arge
complex structure limit are given by tensoring invertible sheaves, which may be
expresse(l by tke kerRels;

               IP : •••-O- OA Å~pi(Ox (D)) .O••• ,

with P E Ac(X) and A representing the diagonal in X Å~ X. Kontsevich predicted
that a mekedremy transferm asseciated to a vanishing cycle, a Picard-Lefuchetz
transform, has its mirror FM transform with its kernel,

                 p; •••-o- ox.x - ex -e••• .
Seidel and Thomas [ST] (and Horja [Hor]) generalized the above irernel associating it
to so-called spherical objects S E Db(Coh(X)) with defining property: Exti(S, S) =

O (i pt e,n),C (i = O,n) where n me di?nX. Fer each spherical object, we have a
kernel giveR by the mapping ceRe;

                     p = cone(sV xL S -" OA) ,

Tke equiva3eace ÅëP is ca31ed Seidel-Tkemas twist. We wM see tkese equivaiekces
in the corresponding monodromy property of certain hypergeomeuic series.
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                                            A            3. llocal mirror symmetry -- X = C2/Zpa+i

  in this section and the subsequent sections, we will test our Conjecture 2.2 for the

case of mirror symmetry of non-compact toric Calabi-Yau manifolds (local mirror
symraetry). Batyrev's mirfer symmetry stM makes seRse fer sllch RoR-cempact
toriÅë Caiabi-Yau manifolds although the attractive propesal by Streminger-Yau-
Zaslow(SYZ)[SYZ], which is closely related to the homological mirror symmetry
(2.1), becomes less clear. Mirror symmetry of non-compact toric manifolds are also
formulated in physical terms[Hrv1.
  (3-1) Mirror symmetry and hyperk5hler retation. Let us consider the min-
                                                Aimal resolgtion ef a two dimeRsional simple singulaarity; X = C2IZp". This is an
exarnple of two dimensional, non-compact, toric Calabi-Yau manifold. Two dimen-
sional Calabi-Yau manifolds are hyperk5hler, and it is known that the mirror sym-
metry of them is weU-understood by the hyperktihler rotation, see e.g. [GW] [Huy].

Our minimal resolution X has a natural hyperktil}ler structure, and therefore its
mirrer is X itself witk a differellt Åëomplex structgre aSier & suitable rctatieR. Te
describe the mirror symmetry, let us first write the quGtient CIZp+i by a hyper-
surface UV : WP+i in C3. Bowing up the sirmgularities at the origin p times
results in the minirnal resolution X, and thereby we introduce exceptional curves
Ci es Pi (i = 1,••• ,p). On the other hand, we may deform the defining eqpation
UV : WP+i to UV = Ge ÅÄ aiW + • • • + ap+iWP+i with introducing finite sizes to
the vanishikg cycles Li ! S2 (pt : 1,••• ,p). Note that the kumber ef the maishng

cycles are given by the Milnor number p = dimRJ, where RJ is the Jacobian ring
of the singularity UV = WP+i. The vanishing cycles are Lagrangians, and become
holornorphic cycles under a suitable hyperkaliler rotation. The holomorphic geom-
etry after the rotation is bi-holomerphic to the blown-up geometry of X. ff we
Åíerget abgut tke roie of the B-fields, this descstbes the g}irrcr symmetry of X. (See

e.g. {Huy] fer fuli detaiis ef the mirrer symmetry via the hyperklihler rotation.)

Here we note the intersection form of these cycles are given in both holomorphic

and Lagrangian geometry by

                   (Ci•Cj) rm (#Li A Lj) ww -eij ,

where eij is the Cartan matrix for the reot system of Ap+i.
                                                       A  (3-2) GKZ hypergeometric series. The minimal resolution X = C2/Zp+i is
a (non-compact) toric variety whose resolution is described by a two dimensional
fan X with its integral generators for one dimensional cones (see Fig.1);

           A me { ye = (l, g), yi : (1, l), ••• , ypt+i = (1,#+ 1) } .

The half-lines bitri (i = O,••• ,p+ 1) from the origin o = (O,O) constitute the one

dimensionaJ cones of the resolution diagram X. in Batyrev's mirror symmetry,
the resolution diagram of X, up to flop operations, is identified with the Newton
pelytepe ef the defifiiRg equatioR ef ks mirror Y, i.e., the dwer Y is giveR by

.

y2 + v2 + f=(w) nm gc (C')3 with

             is(W) = ao + aiWi + a2 rv2 +-••+ ap+iWP+i .

In the case of local mirror symmetry, the meaning of the period integrals of holo-
morphic twe Åíerm beee!Res less clear than the compact cases. Hewever we ceksider
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the following integraJ for a cycle 7 G H3((C')3 N (U2 + V2 + fÅí(a; W) = o),Z):

(3•i) ll7(aÅr :me L u,+v,ef.(.; w) !ItU fltf dwW ,

which naturally follows from Batyrev's mirror symmetry. Starting from this in-
tegral, and through the parallel calculation done in [HKTY], we can extract the
genus zero (local) Gromov-WkteR invagiants (, see iCKYZ]). in the nexS sect}on,
we will relate this `period integral' te K. Saito's primitive form (or Gel'fand-Lerayi

form) in the deformation theory of singularities. Here we set up a hypergeometric
differential equations (GKZ system) satisfied by n.(a). This GKZ hypergeometric
system is aiso referred te as A-hypergecmetric systera since it is described by tke
set A in (3) through the lattice of relations,

(3.2) Lx { (lo,li,••• ,lp+i) l lo vo + li ui +'''+ lp+iup+i = (O, O) }•

Usikg this lattice eÅí relatiens, the system is writteR a$

(3.3) OilL,(a) =O(l ff L) , Zi",(a) =O(i =1,2),

where
     o,=(s.)`'-(gF.)`- , (k) :(,9o.',ec:;'1,ex"ii)i,:,)

witk l = lÅÄ -- l.. ar}d ek = Gkzil.i:. Nem the fgrmal selutiei}s of tbis system

in [GKZ], and setting w(x) = aollrr(a), it is easy to write down our w(x, rkt) (see

[Hos]). Another important aspect of this system is that there is a natural toric com-
pactification Ms..{=) of the parameter space {(ae,••• ,ap+i) E (C')P+21(C")2},
iR terms ef tke secendafy fan See(X), where the quetient by ÅqC')2 cerrespondg te

the linear (scaling) operators Zi and Zii. This compactification plays an important
role in the applications of mirror symmetry to Gromov-Witten invariants, since the
large ra{li#g limk appears as an intersectioR poin# ef the beuadary toric divisers.
Connecting the GKZ system to K. Saito's differential equations in singularity the-
ory, we see that this compactification will also provide a natural way to compactif3r
the deformation space of the singularity theory which is local in nature (, see (4-1)
fer a briaf deseriptick ef tke defermatick space).

V3

h
vt

vo

(2,O,3,1)

(3,e,o,3)

y
(t,2,2,l)

(l,3,O,2)

(-2,;År {e,g

(1,O)

(1,-2)

Fig.1. Crhe resolntien diagTam (leit), secondary polytope (mid-
dleÅr, and the secondary fan Sec(X) (right) fer pt ue 2. The secolldary
poJytope has its apexes parametrized by the (regular) triangulations
of the polytope as shown. For a triangulation T, the corresponding
apex is dete tw'Bed by a yecSor y7! = (gT(tie), {PT(YD} 9T(Y2), SRT(Y3))

With ger(ui) = X.,K. Vol(a)• As see in this example (pt .-.- 2), the
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convex hull of these vectors lies on LR = L X R. Normal cones of the
secondary polytope determines the secondary fan.

   (3-3) Example Åqp = 2). Here we present an example in stead of giving general
 Åíermulas valid Åíer any p. Fer p : 2, the cchemelegy-vallled hypergeemeuic $eries
 is simple and takes the following form;

              w(x, y; Eillt;i , illitii ) : w(x, y; pi , pi) lpi =: sii; ,p2= !i'e3r '

where w(x}y;pi,p2) : 2 .,.)ec(n ÅÄ pi,m+ p2)x"+PiyM+pa with

        c(n,m) me 1/(r(1 +n)r(1 --- 2n + m)r(1 +n - 2m)r(1 + m)) .

 Ji and J2 are seminy-ample classes which are dual to the exceptional curves Ci and
 C2 (, i.e. the toric divisors Dv, and Dv,), respectively. The local pararneters
 x ; ur 21.}?i-,y :== ftk.i- are depicted in Fig.1. Here we remark that the secondary

 polytepe ii} Fig.1 sk in the scaiar exteRsigR LR ef tke L lattice, and the summatioB
 in IIE .,.)oc(m,m)xMy" is iR fact that ever the integral points inside the normal

 cone from the vertex vT = (1,2,2,1). We may recognize this in a relation x"yM me
 ani(i)+mi(2) with l(i) = (1,--2,1,o), l(2) = (O,1,-2,1). Since the ring He"e"(X,Z)

 is generated by 1, Ji,J2, we have the expansion;

                      -                w(Åë-, ft) rc 1+wi(x,y)Ji +w2(x,y)J, ,

 with wi(x,y) = zrknyt logx+•••, w2(x,y) == Srt logy+•••. The mirrror map is defined

 from the relations,

 (3.4) gi := e2ntWi(X'Y) =x(1+gi(x,y)) , g2 :ww e2rriW2(X'Y) =y(1+g2(x,y)) ,

 Where gi(x,y),g2(x,y) represent powerseries ef x and y. Thek ti := i;?7t }egai(rm

 wi(x,y)) and t2 := zStt logq2(= w2(x,y)) are the complexified Kahler moduli amd
 measure the volumes of the exceptional curves Ct , and C2 , respectively. The inverse
 relation x = x(ai,a2),y = y(qi,q2) of (3.4) is often referred to as the mirror rnap,

 and has the fol}owing propertie$:

?repeskien 3.i.
1) The mirror map x == x(gi,q2),y :y(qi,q2) is rational of the form;

                  gi (1 + q2 + ai q2)                                     q2(1 + qi + qi q2) (3.5) xme                  (1+qi+aig2)2 'Y= (1+qi+qia2)2 '

 and ts e$pressed by x =: S!X.#2,y : fti.;#i with ai 's determised tkreugk

        ao + aiW + a2W2 + a3W3 = (1 + W)(1 + qi VV)(1 + qi a2W) .

2) The discriminant of the GKZ system (3.3? consists of three componentsi x rc
 O,y xe O and dis(x,y) =O with

   dis(x,y) = 1 -- 4x -- 4y + lsxy - 27x2y2 = (1(l+"wwg,g'e2iilg2-)2ag)2flg2-figgi2g)22)2 •

   It is easy to see that x = O, y me O are the toriÅë boundary divisors whose intersec-

 tion point define the large complex structure. Over the zeros of the discriminant
 dis(x,y), we see vanishing cycles in fÅí(a, VV) + U2 + V2 = O c (C')3. in fact, in

 tke holomcrphic picture, gi = l(g2 r= 1) represeRts a vanishing velwne lmit of the
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exceptional curve Ci (C2). After a hyperktihler rotation, these vanishing volumes

are viewed as the corresponding vanishing of the Lagrangian cycles Li,L2. We
remark that the above Proposition 3.1 and the interpretation done for p = 2 case
generaJizes to arbitrary pa in a straightforward way.

=/g-6
Tl

t2

giq2m

LCSL

9,ut1

qt

t2

tl

Fig.2. The discrirm"nant dis(x,y) = O jn VNPts,.(x) (left), the mirror

map to qiq2-plarie (3.5)(middle), and the complen'fied Kahler moduli
ti,t2 with the coinplexthed KaliJer cone (right). The discrim'nant is
an elliptjc curve with a node at (x,y) = (g,g), whict} is mapped to

(Gi,g2) = (1,1). Tke mirror map is l ; 6 at generic (x,y). Over the
discriminant, it is 1:3 aRd represented by tke tbeee imes gi = 1, g2 =
1,gs2 = "n She 6-plaRe.

  In the rest of this subsection, we take a close look at the mirror map (3.5),
and summarize its monodromy property. Let us first note that the moduli space
MsecÅë) is a two dimemsional singular toric variety, and may be desingularized to
vN;ts,.(Åí) = Bl4(Pi Å~ Pi) after blowing up four points (, see the dashed lines in

Fig.1). Then the discrirninant dis(x,y) = O describes a nodal eniptic curve written
in Fig.2. There, the mirror map (3.5) is depicted. Note that the mirror map form
(gi,q2) to (x,y) is six to one at generic points because (3.5) is invariant under the
refiectiong;

(3.6) r! :k- 11gk , 62 "kg2 , r2 : g2 - gl g2 , gl - l/g2 •
which satisfy r? = rg nm (rir2)3 = 1 and thus generate the symetric group of
order 3. By making an analytic continuation of the hypergeometric series, we can
verify the above invariance group actions (3.6) as the monodromy actions for the
loops ri and r2 depictod in Fig.2. Together with the monodromy matrices R., R"
about the 1arge complex structure limit, we summaarize the monodromy generators
with respect to a basis t(1,wi(x,y),w2(x,y)) = t(1, rkt logqi, SFTt log q2);

r,-
(g• pi g,),r,-(gi :• e•,),R.-(s• g• 1),.., (i g• 1)

Prepeskieg 3.2. ne mifver map (3.5] (preetsely its generdizatie# te Grgitrary wi
uniformiies tke solutionv of the GKZ system (3.3] mp to the shi#s wi(xi, • • • , xp) ,-ÅÄ

wi(xi,•••,xp)+1 (i ma 1,•••,p). More prectsely, the mimor coordinate qi,•••,qp
uniformizes the solutions utth the symmetric group Sp,

  The above result seems to be interesting from the viewpoint of the uniformization
of hypergeometric series[Yo], since our GKZ system provides an infinite number of
examples for which multi-valued hypergeometric serie$ are uniformizable. However
the result itself is not surprising, as we will show in the next section that our
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GKZ system has a close relation to K. Saito's differential equations for which the
monodromy property is well-studied.

                4. K.Saito's differential equations

  In the deformation thoory of a singularity, we have the notion of so-called
primitive form which satisfies a set oÅí dfferentiai equations, K. Saito's differential

eqllatiomsiSal. Tke primitive ferm is alse raferred te as Gel'fand-Leray ferm[AGVI.

Here we briefiy iktreduce the primitive form aad K. Saite's differeRtial equatiens,
and then cennect them to the `period integral' (3.1) and the GKZ system (3.3).
  (41) K.Saito's system. Let us first note that, in the deformation theory of
a singularity, the polynomiaJ equation fx(a, VV) + U2 + V2 ur O will be considered
in C3 and the pararneters are set to ap+i = 1,ap me O by a coordinate change
of VV. Namely we take the defining equation of the forrn ts(a, VV) + U2 + V2 :
ao + Fi (a, W, U, V) with

        Fi (a, VV, U, V) ww ai VV +•••+ ap-iVVP + WP+2 + u2 + v2 ,

and regard the parameters ag,ai,-••,ap-i as giving a deformation of the singu-
larity wpÅÄi + u2 + V2 rc: e c C2 at the origin. Since the parameter ae plays
a Åqiistinggisked rc}e frem the ethers, we set the leÅëa3 parameters (ai,...,a#-"
as a coordinate of T :me Cpt-i. The full parameters (ae,ai,•••,ap-i) will be
regarded as a coordinate of S = C Å~ T. We consider the total space ac with
coordinate (VV, U, V,ai,•-• ,ap-i). Then we have a natural map g : ec - S by
(VV, U, V, ai,••• ,ap-i) H ((-Fi (a, VV, U, V),ai,••• ,apwwi), This map plays impor-
tant roles in describing the deformation of the singularity. Consider a sheaf stPxlT

of germs of relative holomorphic p forrns for sc - T. We may consider the following
sheaves on S,

9t(OÅr = g.st3.!.ldFAd(y).stklT) , 7t(") = q.fl2scIT!(dlrAg*R}n+d(g*st}IT)) •

A primitive form Åq ls an elemeRt in He(S, X(eÅr) sad$fying certain cenditiens (eee

(Sa] fer detaits). in snd ef Åq, kereafter, we ceasider ks image llh in H{}(S,"(-i))
under an isemerphisms tN(C) bl 7tÅq-iÅr, which we may write explicitly as

             ub(a) me nes{ao+F=o} (.,d+WFA(.d,UvuA, iiXv)) '

in this from, the primitive form is cal1ed also as Gel'fandny-heray form in the study
of oscillating integrals (, see e.g. [AGVI). We note that a similarity of Ub(a) to
our ` period integraJ' (3.1), although, in (3.1), we do not $et ap+i = 1,ap = O but
consider torus actions (C")2 in stead.

  K.Saito's system is defir}od as a set of differential equations satisfied by the
primitive form Ue (a) : Ue (ae , ' ' ' , ap-D;

       pijut}(a) me{oeqa2e., -v,i,,,e5., -(il.lg "eO.,)eS.,}2Zb(a)=e

      Q(}ll.;)uo(a) ww (w(zl.:.)aa., -N(ill.i;)+gzjli )ub(a) =o ,

see [Sa] for detailed definitions. This system is defined for general setting of the

deformation theory of singularity and also known that it is a holonomic system.
The following proposition is shown in Appendix by Ambai in [Oda], not only for
our Ap+i case but also for other D•-E type singularities:
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Proposition 4.1. Let fu(a),••• ,fip(a) be the roots of lbo(VV) : : (to +aiW+•••+
a,..tWP + WPN which in satistw fio(a) +•••+ P.(a) mu O. 77ien the space of the
solutiens of KSaito's system is generated by

(4.1) 1, fio(a)-fii(a) , •••,Bp-i(a) -- fip(a) •

TIhe system has a regular singulan'ty at the discriminant locus

                diS(a) = ftisi"'.Åq..A(Bi(a) --- Bj(G))2 ma e ,

and the monodromy group about the discriminant coincides utth the symmein'c
group Sp acting as the permutations among the roots fi{(a).

       L  As we have neted in (3-1), p vanighing cycles appears in the deformation. New
it is easy to deduce that the above solutions ai := fii(a) - fli-i(a) represent the
integraJs f7Uo(a) over the corresponding mmishing cycles. In fact, it is known

that tkere is a residge pairiRg I(ai,aab among tke solutions which reprednce tke
intersection pairing #Li n LJt among the vanishing cycles.
  (4--2) GKZ system for U(a). As it is briefly sketched above, the primitive form
Ue(a) is parametrized by (ao,••• ,ap-i) E S and provides a way to describe the
deformatieR of sikgulafity Reas tke ofigik. As remarked there, we may ccRsider a
natural torus actions (C")2 in stead of setting ap :O,ap+i =1 as in Zfo(a). With
this slight change of the pararneter setting (`gauge'), we may connect K.Saito's
system to a GKZ system. Let us define a period integral of the primitive form

(4•2) fie(a) ;= f, u(a) = f. Resf.(w)+u2"v2=o (fx (da4vvA)d+UuA2d+Vv,) ,

where 7 is a two cycle of fx(a,W) + U2 + V2 = e c C3 and fx(a,W) :me G{} +
aiW + • • • + apa+iWP+2. The period integral above has a simi}ar form to that in
(3.1), and thus satisfies a GKZ systern which is similar to (3.3). The only difference

appears in the scaling properties expressed by the 1inear operators Zi.

Propeskien 4.2. 1] fXe period integrai (4.2] satisfies

(4.3) Oifi;(a) =O(l ff L) , Z;•llg(a)=o(i =1,2),
t{}here the operaters =i and tkg iattice L are the sGme as in (3.32, and Z;• (i ww l,2År

are given by
                i'z{N .- r e,+e, +--•+e.+i N
                NZ57 - ke, + 2e, •••+ (p + 1)ept, - 17

2] The syste,n (4.3) abeve ts reducible of rank pt+ 1 ws'th its irreducible part of rank

p. The p indapendent solutions of the irreducible part are given by

                  Pi(a) - fu(a),•••,5"(a) - 6p-i(a) ,

where 6i(a) 's are roets ef lb(W) = ao +aiW+•••+apa+iWP+2 me e.

  Derivation of 1) above is straightforward, but it should be noted that K.Saito's
system is replaced by a different but a simple GKZ system. The numbers of indepen-
dent $elutiens oÅí a GKZ system is given by the volume of a relewnt polytepe{GKZ],
which in our case Vol(Åí) = p + 1. It is straightforward to verify that the system
is reducible observing a factorization of a differential operator in our GKZ system
wheR expressing Bi eperaters in an a{line ceordinate ef Ms..{xÅr. (k is kkown that
the GKZ systems in mirror symmetry are often reducib}e in this way, see fHKTY].)
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The solutiens fer the irreducible part may be determined by using the follewifig
property(, see Appendix by Ambai in [Oda]):

Prepositieft 4.3. Tke root fi(a) (= fie(a),••• ,6.(a)) efV(W) = C sattsfies

(4•4) ee/ = -- $i?3') , e.O,2sl3., = Åëtlm iilis (Xii Iii)2) ...B'

  Using the relations (4.4) again and also the property in Proposition 3.1, 1), we
can obtain the so!utiens of the GKZ system (3.3), precisely w(x) = a{}IL,(a);

Proposition 4.4. 1) The independent solutions of the GKZ systefn (3.S?, with
multiplied by ae, i.e. w(x) = (ton.(a), are given by

         1 log i3i (a) - log Bo (a) , ••• , log fi. (a) - log fi.-i (a) .

2? Up to a suitable analytic continuation, these solutions are related to the empansion
w(x, "t) = l +Åí:--i wk(a)Jk near the iarge conzpiex structure by

           2nt wk (x) = - log flk (a) + log fik-i (a) (h = 1,••• ,p),

  The abeve ferm ef the solutiens may be connected to the piecewise linear func-
tions on the fan Z[Ba2]. Since we have established a relation of the GKZ sys-
            Atem (3.3) of C21Zp-+-i to K.Saite's system for primitive form, for which integral
monodromy property is known in Proposition 4.1, it is clear that we have the uni-
formization property of the mirror map stated in Proposition 3.2.

              5. Central charge formula and G-HilbC2

                                                           A  In the last twe sectiens, we have loeked the local mirror symmetry of C2/Zp"
paying our attentions to the monodromy property of the associated GKZ system.
Here we come back to our claim for the central charge formula (2.4) in this case.
  Let us {lrst recall that the ReR-compajct Calabi-Yau manifold X = C2/Z." is
given as the Hiibert scheme of points on C2, G-Hilb C2. Here G-Hilb C" is defined

for a finite subgroup G c SL(n,C) and consists of zero dimensional subschemes
Z iR C" ef leRgth equal IGI such tkat G ects ek Z akd .El{}(Oz) is the regular
representation of G. The following results for n = 2 are due to Gonzalez-Sprinberg
and VerdierlGVI and their generalizations to n = 3 are known in [Na][INI[BKR].
We sgmmarize the relevant resuks for eur case G = Zp+i:

1) The K-group K(X) of algebraic vector bundles are generated by the sascalled
  tautological buRdles fe, 2 i, • • • , Xpt, where the subscripts refer to the oRe-dimensional

  representations of Zp+i. Iftom this we have

            Heven(x, z) = Zci (-o) + Zci (Xi) + • •• + Zci (-p) •

2) Let KC(X) be the K-greup of the complexes of algebraic vector bundles which
  are exact off T-i(O) where T : X -År C2. Then there exist a complete pairing
  KC(X) x K(.X7) - Z, and the dual basis Se,Si,-•- , Sp gf KC(X) satisfyiRg

(5.1) Åqch(Si),ch(Jrrj)År := f. ch(SDch(lj)Todax xx:6iJ' •

3) The dual bases Sk(k l O) are given by Sk = Oa,(--1) with Ck es P' being the
  exceptional curves. And they satisfy

(5•2) x(Si,S,•):= f. ch(S,"• )ch(Sj)Tocldx = Ci,} (1 Si,e' -Åq pa),
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where CiJ• i the Cartamu matrix of the root system Apti.

  Now with these properties about the geometry of X, let us recall that our Con-
jecture 2.2;

        w(xi}''' ,xr; lil/l;i,''' } i'i) = ;. f.,.Åq&År st(YxÅr x'" ch(E3) •

ege sheuld Rete thect tbis is a ceajecture fer X a cempact Calabi-Yall mauifeld. It
is rather clear how to medify this relatign fer our non-compact X if we netice that
the expression Z)j xi"'ch(Ej) satisfy fx ch(EkV) Zj xidch(Ej) = 6ik, i.e., provides a

dual to ch(Ek). Flirom this, we claim the central charge formula for X non-compact

cases as
(s.3) w(xi,••• ,xr; Sl/l,.,''•,2J.'i) = Årii) f.,.(s,) st(Yx) ch(•JFk),

where the holomorphic two form st(Yx) should be understood as a holomorphic
two-form associated to the integrand of (3.l) which is similar te the primitive form
iR (4.2). New, sikce we verify ei(.Zk) = Jb Åqk ) 1) by Em explicit evalgatieR, we
have 2{i(x, di.-) = 1 + Xkwk(x)Jk. Threllgk these relatieRs, we kave the ceittral

charge of the sheaf Sk me ec,(-l) by

(5•4) Zt(Sk) = - f.,,(s,) st(YÅë) = -wk(x) = 2;i (logPk-i(a) - log fik(a)) •

In this form, we may refine the mirror symmetry described in (3-1) to the claim
that the mirror image mir(Sk) of the sheaf Sk = Oc,(-1) is the vanishing cycle
whose `period' is given by Zt(Sk) above.

  Finaily, we note that the sheaves Sk are spherical and thus define self-equivalences
of Pb(Coh(X)), the Seidei-Thomas twists summatzed in sectien 2. in {ST, Prepo-
s}tieR 3.191, k is shewn that these spheried ebjects, which ferm the se-ca}led (Ag)-

ceRfiguraticR, geRerate a weak braid greup ac{ieR ek Db(Coh(X)). This braid
group actieR sheuld be mirrered to the cerresponding "heR twists (Picard- LeÅí-
schetz transformations) in the symplectic side. in our (5.4), we see this mirror
correspondence in the 1inear transformations on the central charges.

                  6. Conclusion and discussions

  We have given an interpretation for a cohomology-valued hypergeometric series,
which was reported in [Hosl. Giving an interpretation for w(x, rft) (Conjecture
thn:coaj) as the central charge formula which Ratural}y appears in homologica3
tmer syiwnetry, we have previded suppertiRg evidences for tke conjecture in the
                               Acage ef leca3 gSrrer symmetry ef X = C2/Z#ÅÄi.
  As a bypreduct, we have Åíeund that K.Saito's differential equations satisfied by
the primitive Åíorms may be replaced by a suitable (resonant) GKZ system whose
solutions are easy to be setup[HKTY][HLY].

  As addressed after Conjecture 2.2, our cohomology-valued hypergeometric se-
ries (or the central charge formula) connects two different `monodromy' properties,

Fourier-Mukai transforms and the monodromy transforms of hypergeometric series
(Dhen twists in symplectie mapping class group). We see that the latter monodromy

l38

12



MONeDRfiMY PROPEexY eF XYPXUGEOMETRIC SrcXES

property arises associated with the discriminant locus in Ms,,(x) . As shown in sec-

            Ation 3 for X = C2IZp+i, the disÅëriminant splits into several irreducible components

in the q-coordinate and the monodromy transform around each irreducible compo-
Rent is ideagraed with a sgitable twist fuRctors. Inyrom these fact$, k is ceRceivable
that the greup ef self-equivalences ef Db(Ceh(X)), i.e. Auteq Pb(X), is generated

by these `monodromy' transformations up to the $hift functors,

          A    Auteq(C21Z.+i)1{ [k] lk G Z } = ÅqRi,''',R",To(-c,),''',To(-c.)År ,

where Rk represents the functor tensering the tautological line bllndie fk and
ToÅqww.c,) is the Seidel-Tkeii}as twist.

  Although in this note we have restricted our attention to two dimensional cases,
the claimed relation (5.3), for example, generalines to three dimensional G-Hilb
C3[IN][BKRI[Cq with G abelian. It is actually our motivation to see the homo-
logical mirror symmetry in such a special kind of non-compact (toric) Calabi--Yau
tl}reefolds. }iYem the hypergeemetric sestes side, tke meRedroray wiculatioms b&
come suddenly tedieus fer multi-valuable series. We can perform, however, seme
explicit calculations for lower number of parameters providing consistency check for
the conjecture (5.3), which will be reported in the forthcoming publication. Etrom
the holomorphic side, we have many possibilities other thax) G-Hilb C3 for the
Calabi-Yau reselutioR of the singularity C3!G, and it is known that we have a vairi-
ety cf Fewier-Muka3 transferms ek Db(X) fgr these diffeyent resolgtiemsIBKR](Cq.

Making a (homologicai) mirror picture for these is strongly desired.
  Finally, as for the compact CaJabi-Yau (hypersurfaces), several supporting ev-
idences for our Cormjecture 2.2 are presented in [Hos], especiaJly for dimensions
one and two. However, for example, the observation (1.4) made in three dimen-
$iok is still keed elarificatieR. Namely k is Rot clear that the specbic fgrm oÅí the
'charges' 1,J - ÅíkS gtEÅr l - llgt;, {i2L, liSL come frem an integral, symplectic basis of the

K-group K(Xs). Iihrom the SYZ construction we expect that K(Xs) is generated
by the structure sheaf Ox, the skyscraper sheaf Op, and additional sheaves S and
.1 which, respectively, have their support on a divisor and a curve (i.e. D4 and D2
branesÅr.
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