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MONODROMY PROPERTY OF HYPERGEOMETRIC SERIES IN
LOCAL MIRROR SYMMETRY

SHINOBU HOSONO

ABSTRACT. We study a cohomology valued-hypergeometric series which nat-
urally arises in the description of (local) mirror symmetry. We identify it as
a central charge formula for BPS states and study its monodromy property
from the viewpoint of Kontsevich’s homological mirror symmetry.

1. Introduction — Motivation and Backgrounds
Let us consider a (famous) hypergeometric series of one variable [1,z] € P!;

(L1) w(z) =Y if;})ﬁxn

n>0

This is a hypergeometric series of type 4F3(}, 2,2, %;1,1,1;2) which arises in the
mirror symmetry of quintic hypersurface X5 C P. See the original work by Can-
delas et al [CdOGP] for the description of the mirror family and the period integral.
The hypergeometric series (1.1) represents one of the period integrals of the mirror
quintic Xy and satisfies the following differential equation (Picard-Fuchs) equation:

(1) {0 =520 — 20— D)0 — )6 — Dule) =0,

where 8, := :z:g-;. As it is clear in this form, the regular singularity at z = 0
has a distinguished property, i.e., the monodromy around this point is mazimally
unipotent. In physics, the point z = 0 is called a large complez structure limit and
plays an important role, e.g., near this point, we evaluate the quantum corrections
to the classical (algebraic) geometry of the quintic X5. Let us focus our attention to
the construction of local solutions about z = 0 by the classical Frobenius method;

wo(@) = w(z) , wi(a) == Lw(z,p)lp=o ,
wa(z) = Lrw(z, p)lp=0 » wa(z) 1= Lx (2, p)lp=0 ,
where w(z, p) = ZﬂZO %{g}x"ﬂ. With the mirror symmetry of X5 in P*
and X in mind, we introduce the following cohomology-valued hypergeometric
series;
J., J J J 3

where J is the ample, integral generator of Pic(X5) = H*!(X5)NH?(X5,Z). In this
form, we note that the classical Frobenius method is concisely summarized as the
Taylor expansion w(x,p)l# with respect to the nilpotent element J. Although

this seems just an advantage in bookkeeping, the following observation in [Hos]
indicates that we have more than that in (1.3):
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Observation: Arrange the Taylor expansion of the cohomology-valued hypergeo-

metric series w(z, 2m) as

02(X5)-7 11 ) @ ()= +w(3)(z)(~:]5—3)~

(1.4) w(a:2—i2) = w® (z) + wD () (] -
Then the monodromy matrices of the coeﬂiczent hypergeometrzc series w(®(z),
w(z), w®(z), w®(z) are integral and symplectic.

The integral and symplectic properties of the solutions w(* (z) (k = 0,1,2,3),
of course, originate from those of H3(X,',Z). The point here is that we can re-
cover these properties from w(z, 5{'—1) through a suitable arrangement of a basis of
Hever (X, Q) near the large complex structure limit.

The aims (and main results) of this note are: 1) to interpret the cohomology-
hypergeometric series from the viewpoint of homological mirror symmetry, 2) to
present supporting evidences for the interpretation 1) in cases of local mirror sym-
metry.

As af_g)iample of local mirror symmetry, we will consider the crepant resolu-
tion C2/Z,4, of the two dimensional canonical singularity. In studying relevant
Gel’fand-Kapranov-Zelevinski(GKZ) hypergeometric series, we connect it to the
primitive form by K.Saito in the deformation theory of singularity. This seems to
be interesting in its own light, since GKZ hypergeometric series may provide a way
to express the ‘period integrals’ of the primitive form (or oscillating integrals) in
the theory of singularity.

2. Central charge formula in terms of w(z, ;L e

Here, following [Hos], we will interpret the cohomology valued hypergeometric
series in general from Kontsevich’s homological mirror symmetry [Ko].

Let X be a Calabi-Yau 3 fold and Y be a mirror of X. On the X side, Kontsevich
considers the bounded derived category D*(Coh(X)) of coherent sheaves (D-branes
of B type) on X. On the other hand, for the mirror side, he considers the derived
Fukaya category DFuk(Y,3) with the Kihler form viewed as a symplectic form
B. The objects of the latter category consist of (graded) Lagrangian submanifolds
with flat /(1) bundle on them (D-brane of type A) and morphisms are given by
the Floer homology for Lagrangian submanifolds, and this constitute a triangulated
category (, see [FO3] for more precise definition). Kontsevich proposed that these
two different category are equivalent (as triangulated category) when X and Y
are mirror symmetric, and also this should be a mathematical definition of mirror
symmetry. This conjecture itself is of great interest, however let us consider this
conjecture at more tractable level (, i.e. at the level of cohomology or K-group as
shown in the second line below);

Db(Coh(X)) M¥ . DFuk(Y, )

(2.1) i i
K(X) or Heven(X,Q) =2 Hy(Y,Z)

where the left vertical arrow represents the map from D?(Coh(X)) to the K-group
of algebraic vector bundle K(X), and its composition with the Chern character ho-
momorphism ch(-) if we further map to H****(X, Q) = ®3_oH**(X, Q). The right
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vertical arrow is given simply taking the homology classes of the graded Lagrangian
cycles. In the second line, the equivalence, Mir, of the two categories becomes sim-
ply an isomorphism, mir, between the K-group and H3(Y, Z). We should note that
this is not simply an isomorphism but isomorphism with the symplectic structures,
ie.

mir : (K(X),x(E,F)) = (Hs(Y,Z),#(Lg N Lr)),

where x(E,F) = [y ch(EV)ch(F)Toddx and #(Lg N Lp) := [, pre U pr, with
the Poincaré duals pr.,ur, € H3(Y,Z) for the mirror homology cycles Lg :=
mir(E), Lg := mir(F). Here we remark that the Euler numbers x(E, F) is anti-
symmetric due to Serre duality and Kx = 0, and also non-degenerate. Thus
x(E, F) introduces a symplectic structure on K(X), which is the mirror of the
symplectic structure on H3(Y, Z).

In the diagram (2.1), we assumed a complex structure is fixed for D?(Coh(X))
side, which is mapped to the symplectic (Kihler) form 8 in the right hand side.
On the other hand, we may change the (complexified) Kahler class of X which is
mapped to the complex structure moduli of ¥ under the mirror map. Changing
the (complexified) Kéhler structure amount to changing the polarization and thus
results in varying the stability condition on the sheaves on X. This change of
the stability (II-stability) condition has been studied in [Do] and its mathematical
aspects are elaborated in [Br]. Here, without going into the detailed definition of II-
stability, we propose a closed formula for the central charge which is indispensable
for the definition of II-stability.

Definition 2.1. (Central charge formula.) Assume K(X) is torsion free, and
let Ey,---,E, be a Z basis of K(X). Let Q(Y;) be a holomorphic 3-form of the
mirror family {Y;};ep of X. Under the mirror symmetry (2.1), we define the
following Z, as an element in K(X) ® C{z},

(2.2) 2= / Yz) X7 E;
i,j mir(E‘;)
with (x*7) := (x(Ei, E;))~!. Then the central charge of F € K(X) is defined by
(2.3) Zy(F) = / ch(F) ch(ZY) Toddx |,
X

where t = t(z) is the (complexified) Kahler moduli.

In the above definition, it should be noted that Z, does not depend on the
choice of a basis E,--- , E.. Also the central charge Z;(F) contains full ’quantum
corrections’ and coincides with that appeared in the literature[Do] (, where only
asymptotic forms are given).

Now we may connect our hypergeometric series w(z, 32;) to the central charge
above. Before doing this we remark that, in the mirror symmetry of hypersur-
faces by Batyrev[Bal), the hypergeometric series (1.1) is naturally generalized
to Gel'fand-Kapranov-Zelevinski(GKZ) hypergeometric series of multi variables
Z1,- - ,2-[GKZ]. Using the GKZ hypergeometric series, and also suitable integral,
(semi-)ample generators Jy, - - - , Jr of H1'1(X)NH?(X, Z), we have the cohomology-
valued hypergeometric series w(z, -2-,15) as a generalization of (1.3), see [Hos] for more
details.
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Conjecture 2.2. The cohomology-valued hypergeometric series (1.8)(, precisely its
generalization deﬁned in Section 2 of [Hos],) gives the central charge;

(24) (o, s 2 o) = > / 0042) X eh(E) (= ch(Z)

11"1'

Using this, and also the mirror map t = t(z), we can write the central charge Z;(F)
of F € K(X) as

(2.5) Zy(F) = /X ch(F) w(z; ‘;Ti) Toddx .

Here we note that the hypergeometric series has a finite radius of convergence
and shows a monodromy property when it is analytically continued around its (reg-
ular) singularities. As noticed by Kontsevich, this monodromy property should be
mirrored to some linear (symplectic) transformations on ch(E;) which come from
Fourier-Mukai transforms on D*(Coh(X)). If we postulate that the cohomology-
valued hypergeometric series has an invariant meaning under these monodromy ac-
tions, our cohomology-valued hypergeometric series w(z, 21“) provides a connection
between these two different ‘monodromy’ transforms in both sides. The conjectural
formula (2.4) has been tested in case X is an elliptic curve, (lattice polarized) K3
surfaces, and several Calabi-Yau hypersurfaces[Hos].

As studied in [Mu] for the cases of K3 surfaces and abelian varieties, and in
[Or] for general, the Fourier-Mukai transform is an equivalence of the category
D%(Coh(X)) which takes the form

27() = R,,, (p}() 8 P)

where P is an object in D(X x X), called the kernel, and p; and p, are, respectively,
the natural projections to the first and the second factor from X x X. Due to a
result in [Or], we may always assume the above form, i.e., there exists a suitable
kernel P, for any equivalence ® : D¥(Coh(X)) ~ DY*(Coh(X)) as triangulated
category. It is rather easy to see that the monodromy transforms around the large
complex structure limit are given by tensoring invertible sheaves, which may be
expressed by the kernels;

P30 Oa xp3(0x(D)) +0--- ,

with D € Pic(X) and A representing the diagonal in X x X. Kontsevich predicted
that a monodromy transform associated to a vanishing cycle, a Picard-Lefschetz
transform, has its mirror FM transform with its kernel,

P:---20=20xxx2+0x—20---

Seidel and Thomas [ST] (and Horja [Hor]) generalized the above kernel associating it
to so-called spherical objects £ € D®(Coh(X)) with defining property: Exti(£,€) =
0 (i # 0,n),C (i = 0,n) where n = dimX. For each spherical object, we have a
kernel given by the mapping cone;

P =Cone(EY QL€ = O4a) .

The equivalence &7 is called Seidel-Thomas twist. We will see these equivalences
in the corresponding monodromy property of certain hypergeometric series.
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3. Local mirror symmetry — X = C{ﬁ;ﬂ

In this section and the subsequent sections, we will test our Conjecture 2.2 for the
case of mirror symmetry of non-compact toric Calabi-Yau manifolds (local mirror
symmetry). Batyrev’s mirror symmetry still makes sense for such non-compact
toric Calabi-Yau manifolds although the attractive proposal by Strominger-Yau-
Zaslow(SYZ)[SYZ), which is closely related to the homological mirror symmetry
(2.1), becomes less clear. Mirror symmetry of non-compact toric manifolds are also
formulated in physical terms[HIV].

(3-1) Mirror symmetry and hyperkahler rotation. Let us consider the min-
imal resolution of a two dimensional simple singularity; X = C"f/zﬂ. This is an
example of two dimensional, non-compact, toric Calabi-Yau manifold. Two dimen-
sional Calabi-Yau manifolds are hyperkéhler, and it is known that the mirror sym-
metry of them is well-understood by the hyperkihler rotation, see e.g. [GW][Huy].
Our minimal resolution X has a natural hyperkéhler structure, and therefore its
mirror is X itself with a different complex structure after a suitable rotation. To
describe the mirror symmetry, let us first write the quotient C/Z,, by a hyper-
surface UV = W#*! in C3. Bowing up the singularities at the origin pu times
results in the minimal resolution X, and thereby we introduce exceptional curves
C; 2 P! (i=1,---,u). On the other hand, we may deform the defining equation
UV = Wkt to UV =ag + a1W + -+ + @, 1 WPH! with introducing finite sizes to
the vanishing cycles L; = S% (u = 1,--- , u). Note that the number of the vanishing
cycles are given by the Milnor number ¢ = dimR;, where R; is the Jacobian ring
of the singularity UV = W#+!, The vanishing cycles are Lagrangians, and become
holomorphic cycles under a suitable hyperkahler rotation. The holomorphic geom-
etry after the rotation is bi-holomorphic to the blown-up geometry of X. If we
forget about the role of the B-fields, this describes the mirror symmetry of X. (See
e.g. [Huy] for full details of the mirror symmetry via the hyperkahler rotation.)
Here we note the intersection form of these cycles are given in both holomorphic
and Lagrangian geometry by

(C,' . Cj) == (#L,‘ n Lj) = -—C,'j .

where C;; is the Cartan matrix for the root system of A,1.

(3-2) GKZ hypergeometric series. The minimal resolution X = C2/Z,,4, is
a (non-compact) toric variety whose resolution is described by a two dimensional
fan ¥ with its integral generators for one dimensional cones (see Fig.1);

A={v=01,0,n=001), - ,vpn=(Lu+1)} .

The half-lines 7; (i = 0,--- ,u + 1) from the origin o = (0,0) constitute the one
dimensional cones of the resolution diagram ¥. In Batyrev’s mirror symmetry,
the resolution diagram of X, up to flop operations, is identified with the Newton
polytope of the defining equation of its mirror Y, i.e., the mirror Y is given by
U?+V?+ fg(W)=0cC (C*)? with

fE(W) =ag + 01W1 +02W2 +o ot ap+1W“+1 )

In the case of local mirror symmetry, the meaning of the period integrals of holo-
morphic two form becomes less clear than the compact cases. However we consider
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the following integral for a cycle v € H3((C*)3 \ (U2 + V2 + fx(a; W) =0),Z):
1 U v dw

ZUR VI fo(aW)U V W °

which naturally follows from Batyrev’s mirror symmetry. Starting from this in-
tegral, and through the parallel calculation done in [HKTY], we can extract the
genus zero (local) Gromov-Witten invariants (, see [CKYZ]). In the next section,
we will relate this ‘period integral’ to K. Saito’s primitive form (or Gel’fand-Lerayi
form) in the deformation theory of singularities. Here we set up a hypergeometric
differential equations (GKZ system) satisfied by II,(a). This GKZ hypergeometric

system is also referred to as A-hypergeometric system since it is described by the
set A in (3) through the lattice of relations,

(3.2) L={(ol1, - s dug1) lovo+ i1 + -+ Luy1vu1 = (0,0) }.

Using this lattice of relations, the system is written as

(3.1) I (a) :=

(3.3) Oill(a) =0(l€L), Zll,(a)=0(i=1,2),
where
o= (2 l+_ 9 - (Zl [ Bo+b+-- 40,41 -1
'~ \8a da) ' \Za 0 +202- -+ (u+ 1)0,4s
8

withl =1, —I_ and 8, = akpas- From the formal solutions of this system
in [GKZ], and setting w(z) = aoIlL,(a), it is easy to write down our w(z, 5%;) (see
[Hos]). Another important aspect of this system is that there is a natural toric com-
pactification Mg,y of the parameter space {(aq, - ,au41) € (C*)#*+?/(C*)?},
in terms of the secondary fan Sec(X), where the quotient by (C*)? corresponds to
the linear (scaling) operators Z; and Z;. This compactification plays an important
role in the applications of mirror symmetry to Gromov-Witten invariants, since the
large radius limit appears as an intersection point of the boundary toric divisors.
Connecting the GKZ system to K. Saito’s differential equations in singularity the-
ory, we see that this compactification will also provide a natural way to compactify
the deformation space of the singularity theory which is local in nature (, see (4-1)
for a brief description of the deformation space).

A o

o,n
@.03,1) (1,2.2,1) %
{ (1,0)
w A
. A 1,2
Yo (3.0,0,3) (13,02

Fig.1. The resolution diagram (left), the secondary polytope (mid-
dle), and the secondary fan Sec(X) (right) for p = 2. The secondary
polytope has its apexes parametrized by the (regular) triangulations
of the polytope as shown. For a triangulation T, the corresponding
apex is determined by a vector vr = (pr(v0), o1(1), o1(v2), P1(Vs))
with o1 (¥i) = 3,, 4, Vol(c). As see in this example (u = 2), the
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convex hull of these vectors lies on Lg = L ® R. Normal cones of the
secondary polytope determines the secondary fan.

(3-3) Example (p = 2). Here we present an example in stead of giving general
formulas valid for any p. For p = 2, the cohomology-valued hypergeometric series
is simple and takes the following form;

‘U)( Y, 77— )" ( 7y7p1’p2)|p1_ ,pa_-!-l ’

27rz 2mi
where w(z,y; p1,p2) = 3o, >0 €(n + p1,m + pa)z™HP1y™ P2 with
c(n,m) =1/(T(1+n)L(1 - 2n + m)T'(1 + n - 2m)[(1 + m)) .

J1 and J, are semi-ample classes which are dual to the exceptional curves C; and
C, (, ie. the toric divisors D,, and D,,), respectively. The local parameters
T = ﬂg?l,y = %;#1 are depicted in Fig.l. Here we remark that the secondary
polytope in Fig.1 sit in the scalar extension Lg of the L lattice, and the summation
in 3, m>o0c(m,m)z™y" is in fact that over the integral points inside the normal
cone from the vertex vr = (1,2,2,1). We may recognize this in a relation z"y™ =
gV +mi® ith 1) = (1,-2,1,0), I® = (0,1,-2,1). Since the ring Hev*"(X, Z)
is generated by 1, J1, J2, we have the expansion;

. J
w(Z, 5—) = 1+ wi(z,y)) +w2lz,9) 2

with wy (z,y) = 51
from the relations,

(34) q =™ EY = (14 g1(2,y)) , g2 =@V = y(1 4 gz(z ) ,

where g, (z,y),92(z,y) represent powerseries of z and y. Then ¢, := ;- logqi(=
wy(z,y)) and t; := 5= logga(= wa(z,y)) are the complexified Kahler moduli and
measure the volumes of the exceptional curves C), and C,, respectively. The inverse
relation z = z(q1,¢2),y = y(¢1,¢2) of (3.4) is often referred to as the mirror map,
and has the following properties:

logz+---, wz(z,y) = 55 logy+---. The mirror map is defined

Proposition 3.1.
1) The mirror map = = z(q1,q2),y = y(q1,q2) is rational of the form;

_a(l+e+aen) y = el+a+ae)
1+q+ag)?’ 1+q +qg)?’

and i3 expressed by x = 9%‘:;2,1/ = %;;-‘1 with a;’s determined through

a0 +auW +aW2+a:W? = 1+ W)1+aW)1+qaeW) .

2) The discriminant of the GKZ system (8.3) consists of three components; z =
0,y =0 and dis(z,y) = 0 with

(3.5)

_ (1-a)’0-0)’0-qp)’

I+a+ae) l+e+qae)?’

It is easy to see that £ = 0,y = 0 are the toric boundary divisors whose intersec-
tion point define the large complex structure. Over the zeros of the discriminant
dis(z,y), we see vanishing cycles in fz(a,W) + U2+ V2 =0 c (C*)3. In fact, in
the holomorphic picture, ¢ = 1(g> = 1) represents a vanishing volume limit of the

dis(z,y) = 1 - 4z — 4y + 18zy — 27x%y?
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exceptional curve C)(C2). After a hyperkahler rotation, these vanishing volumes
are viewed as the corresponding vanishing of the Lagrangian cycles L;,L,. We
remark that the above Proposition 3.1 and the interpretation done for u = 2 case
generalizes to arbitrary u in a straightforward way.

9

;{2 G=1

LCSL Y t
9=}

Fig.2. The discriminant dis(z,y) = 0 in Msgc(z) (left), the mirror
map to ¢1¢a-plane (3.5)(middle), and the complexified Kihler moduli
t1,t2 with the complexified Kahler cone (right). The discriminant is
an elliptic curve with a node at (z,y) = (3, 3), which is mapped to
(@1,92) = (1,1). The mirror map is 1 : 6 at generic (z,y). Over the
discriminant, it is 1 : 3 and represented by the three lines ¢ = 1,2 =
1,q1q2 = 1 in the g-plane.

In the rest of this subsection, we take a close look at the mirror map (3.5),
and summarize its monodromy property. Let us first note that the moduli space
Msec(x) is a two dimensional singular toric variety, and may be desingularized to
/\:isgc(z) = Bly(P! x P!) after blowing up four points (, see the dashed lines in
Fig.1). Then the discriminant dis(z,y) = 0 describes a nodal elliptic curve written
in Fig.2. There, the mirror map (3.5) is depicted. Note that the mirror map form
(q1,92) to (z,y) is six to one at generic points because (3.5) is invariant under the
reflections;

(3.6) a2 la, e-2qae i@ Qg , 1 2 1/g.

which satisfy 72 = r2 = (r;r2)® = 1 and thus generate the symmetric group of
order 3. By making an analytic continuation of the hypergeometric series, we can
verify the above invariance group actions (3.6) as the monodromy actions for the
loops r; and r2 depicted in Fig.2. Together with the monodromy matrices Rz, R,
about the large complex structure limit, we summarize the monodromy generators
with respect to a basis (1, w1 (z,y), w2(z,y)) = (1, 52z log q1, 7= log g2);

) 2wi
1 0 O 1 0 0 1 00 1 00
=11 -1 0} ,r=|01 1}|;R=(1120},R={0120
0 1 1 00 -1 0 01 1 01

Proposition 3.2. The mirror map (3.5) (precisely its generalization to arbitrary u)
uniformizes the solutions of the GKZ system (3.3) up to the shifts w;(z1,--- ,z,) —
wi(z1, -+ ,2,) +1 (i =1,---,pu). More precisely, the mirror coordinate q,--- , g,
uniformizes the solutions with the symmetric group S,,.

The above result seems to be interesting from the viewpoint of the uniformization
of hypergeometric series[Yo], since our GKZ system provides an infinite number of
examples for which multi-valued hypergeometric series are uniformizable. However
the result itself is not surprising, as we will show in the next section that our
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GKZ system has a close relation to K. Saito’s differential equations for which the
monodromy property is well-studied.

4. K.Saito’s differential equations

In the deformation theory of a singularity, we have the notion of so-called
primitive form which satisfies a set of differential equations, K. Saito’s differential
equations{Sa). The primitive form is also referred to as Gel’fand-Leray form[AGV].
Here we briefly introduce the primitive form and K. Saito’s differential equations,
and then connect them to the ‘period integral’ (3.1) and the GKZ system (3.3).

(4-1) K.Saito’s system. Let us first note that, in the deformation theory of
a singularity, the polynomial equation fg(a, W) + U% + V2 = 0 will be considered
in C® and the parameters are set to a,4+1 = 1,8, = 0 by a coordinate change
of W. Namely we take the defining equation of the form fs(a, W) +U2? + V2 =
6o + Fi(a, W,U,V) with

F(a,W,U,V)=aiW +---+a, Wt + WHE 1+ U2 4+ V2,

and regard the parameters ag,a1,-- ,a,—1 as giving a deformation of the singu-
larity Wrt! + U2 + V2 = (0 C C? at the origin. Since the parameter ay plays
a distinguished role from the others, we set the local parameters (a1,...,a,-1)
as a coordinate of T := C#~!. The full parameters (ag,a1, - ,a,-1) will be
regarded as a coordinate of S = C x T. We consider the total space X with
coordinate (W,U,V,a,, -+ ,a,-1). Then we have a natural map ¢ : X - S by
(VV: U V,ay,--- 1ap-1) — ((-Fl(as w,U, V)aah T 1aﬂ-1)' This map plays impor-
tant roles in describing the deformation of the singularity. Consider a sheaf Q% /T
of germs of relative holomorphic p forms for ¥ - T. We may consider the following
sheaves on S,

HO = 0,0% /1 /dF Ad(p.0% /), HOY = 0.0% 7/(dF A Q% /805 7)) -

A primitive form ( is an element in H(S, H(%)) satisfying certain conditions (see
[Sa] for details). In stead of {, hereafter, we consider its image Up in H(S, H(~1))
under an isomorphisms #(®) = H(-1), which we may write explicitly as
dW AdU A dV
Uo(a) = Res(our—a) (ao + F(a, W, T, V))

In this from, the primitive form is called also as Gel’fand-Leray form in the study
of oscillating integrals (, see e.g. [AGV]). We note that a similarity of Uy(a) to
our ‘period integral’ (3.1), although, in (3.1), we do not set a,4+1 = 1,8, = 0 but
consider torus actions (C*)? in stead.

K.Saito’s system is defined as a set of differential equations satisfied by the

primitive form Up(a) = Up(ao, -+ ,84-1);
5? o
Pytdo(a) ={""“aa,.aa-‘Vfaaj'('ga;*waa}”o(“)ﬂ
Q@) = {wlp) e~ N (o) + 5 o N ha(e) =0 ,

see [Sa] for detailed definitions. This system is deﬁned for general setting of the
deformation theory of singularity and also known that it is a holonomic system.
The following proposition is shown in Appendix by Ambai in [Oda], not only for
our A, case but also for other D-FE type singularities:
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Proposition 4.1. Let By(a),--- ,Bu(a) be the roots of Yo(W) :=ao + a1 W +-- -+
ay-1W¥# + WrH! which in satisfy Bo(a) + - -+ + Bu(a) = 0. Then the space of the
solutions of K.Saito’s system is generated by

(4.1) 1, Bo(a) = Bi(a) , -, Bu-1(a) — Bu(a) -
The system has a regular singularity at the discriminant locus
dis(a) = M<; j<u(Bi(a) - B;(a))* =0,

and the monodromy group about the discriminant coincides with the symmetric
group S, acting as the permutations among the roots f;(a).

As we have noted in (3-1), u vanishing cycles appears in the deformation. Now
it is easy to deduce that the above solutions a; := fB;(a) — Bi-1(a) represent the
integrals fw Uo(a) over the corresponding vanishing cycles. In fact, it is known
that there is a residue pairing I(a;, a;) among the solutions which reproduce the
intersection pairing #L; N L; among the vanishing cycles.

(4-2) GKZ system for U(a). As it is briefly sketched above, the primitive form
Uo(a) is parametrized by (ag, - ,a,-1) € S and provides a way to describe the
deformation of singularity near the origin. As remarked there, we may consider a
natural torus actions (C*)? in stead of setting a, = 0,a,41 =1 as in Up(a). With
this slight change of the parameter setting (‘gauge’), we may connect K.Saito’s
system to a GKZ system. Let us define a period integral of the primitive form

dW AdU AdV
42) I(e):= /fl(a) = [yRest(w)_,_Uz_sz:o (f):(a, W)+ UZ+ Vz) )

where « is a two cycle of fg(a, W) +U%2+V? =0 C C? and fx(a, W) := ao +
aiW + -+ + au 1 WHH2. The period integral above has a similar form to that in
(3.1), and thus satisfies a GKZ system which is similar to (3.3). The only difference
appears in the scaling properties expressed by the linear operators 2;.

Proposition 4.2. 1) The period integral (4.2) satisfies
(4.3) Ol (a)=0(el), 2 (a)=03=12),

¥

where the operators O; and the lattice L are the same as in (3.8), and Z/ (i = 1,2)

are given by

Z\ _ Go+61+ - +0u1

Zi] T \61+202---+(p+1)0u41 -1
2) The system (4.3) above is reducible of rank p+1 with its irreducible part of rank
p. The p independent solutions of the irreducible part are given by

,Bl (a‘) - .BO(a)a Tt aﬂp(a‘) - ﬂp—l (a) N
where Bi(a)’s are roots of Y(W) =ag+ a1 W +--- + a, 1 WHH2 = 0.

Derivation of 1) above is straightforward, but it should be noted that K.Saito’s
system is replaced by a different but a simple GKZ system. The numbers of indepen-
dent solutions of a GKZ system is given by the volume of a relevant polytope[GKZ),
which in our case Vol(X) = u + 1. It is straightforward to verify that the system
is reducible observing a factorization of a differential operator in our GKZ system
when expressing 0; operators in an affine coordinate of Mg..(x). (It is known that
the GKZ systems in mirror symmetry are often reducible in this way, see [HKTY).)

10



MONODROMY PROPERTY OF HYPERGEOMETRIC SERIES

The solutions for the irreducible part may be determined by using the following

property(, see Appendix by Ambai in [Oda)):

Proposition 4.3. The root 8(a) (= Bo(a),-- , Bu(a)) of Y(W) = 0 satisfies

wo BB B8 1 (s
' da; Y(B) °  Baida; Y'(B)dz \ ¥'(z)
Using the relations (4.4) again and also the property in Proposition 3.1, 1), we

can obtain the solutions of the GKZ system (3.3), precisely w(z) = agIl,(a):

=3 )

Proposition 4.4. 1) The independent solutions of the GKZ system (8.3), with
maultiplied by ag, i.e. w(z) = aelly(a), are given by

1 logpi(a) —logBo(a) , -+~ , logBu(a) —logBu-1(a) .
2) Up to a suitable analytic continuation, these solutions are related to the expansion
w(z, -2-'7’;;) =1+ Y %_, we(a)Ji near the large complez structure by

2miwg(z) = —log Bi(a) +log Be-1(a) (k=1,---,p).

The above form of the solutions may be connected to the piecewise linear func-
tions on the fan X[Ba2]. Since we have established a relation of the GKZ sys-
tem (3.3) of C§7Z\,,+1 to K.Saito’s system for primitive form, for which integral
monodromy property is known in Proposition 4.1, it is clear that we have the uni-
formization property of the mirror map stated in Proposition 3.2.

5. Central charge formula and G-HilbC?

In the last two sections, we have looked the local mirror symmetry of C§7Z\M+1
paying our attentions to the monodromy property of the associated GKZ system.
Here we come back to our claim for the central charge formula (2.4) in this case.

Let us first recall that the non-compact Calabi-Yau manifold X = C?/Z,,, is
given as the Hilbert scheme of points on C2, G-Hilb C2. Here G-Hilb C" is defined
for a finite subgroup G C SL(n,C) and consists of zero dimensional subschemes
Z in C™ of length equal |G| such that G acts on Z and H%(Ogz) is the regular
representation of G. The following results for n = 2 are due to Gonzalez-Sprinberg
and Verdier[GV] and their generalizations to n = 3 are known in [Na}[IN][BKR].
We summarize the relevant results for our case G = Z,41:

1) The K-group K(X) of algebraic vector bundles are generated by the so-called

tautological bundles Fo, F, - - - , F, where the subscripts refer to the one-dimensional

representations of Z, ;. From this we have
H®*™(X,Z) = Zea(Fo) + Zar (Fr) + -+ - + Zer(F) -

2) Let K°¢(X) be the K-group of the complexes of algebraic vector bundles which
are exact off 7~1(0) where 7 : X = C2. Then there exist a complete pairing
K¢(X) x K(X) = Z, and the dual basis Sy, S1,-- -, S, of K°(X) satisfying

(5.1) (ch(S:), ch(F;)) = / ch(Si)ch(F;)Toddx = 6i; .
X

3) The dual bases Si(k # 0) are given by S, = O¢, (—1) with C, = P! being the
exceptional curves. And they satisfy

62 x(5u8) = [ ch(S!)ch(S;)Toddx = Cyy (1015 < p),
X
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where C;; is the Cartan matrix of the root system A,,;.

Now with these properties about the geometry of X, let us recall that our Con-
jecture 2.2;

S
2m

W1, Try oy

J, g
*)= Q(Y2) X7 ch(E;) .

T L ce, 200 X9 (B

One should note that this is a conjecture for X a compact Calabi-Yau manifold. It
is rather clear how to modify this relation for our non-compact X if we notice that
the expression 3_, x*/ch(E;) satisfy [, ch(EY) ¥, x*ch(E;) = &, i.e., provides a
dual to ch(Ey). From this, we claim the central charge formula for X non-compact
cases as

(5.3) W@y, e T ) - Z/ Q(Y.) ch(Fe)

mir(Sa)
where the holomorphic two form Q(Y;) should be understood as a holomorphic
two-form associated to the integrand of (3.1) which is similar to the primitive form
in (4.2). Now, since we verify ¢1(F) = Ji (k > 1) by an explicit evaluation, we

have w(z, 5%;) = 1+ 3, wx(z)Ji. Through these relations, we have the central
charge of the sheaf S = O¢,(~1) by

G Zs==[ 004 = -ukie) = 5 (1oBBu-s(o) = log fu(e)

In this form, we may refine the mirror symmetry described in (3-1) to the claim
that the mirror image mir(Sy) of the sheaf Sy = O¢,(—1) is the vanishing cycle
whose ‘period’ is given by Z;(Si) above.

Finally, we note that the sheaves Sy are spherical and thus define self-equivalences
of D®(Coh(X)), the Seidel-Thomas twists summarized in section 2. In [ST, Propo-
sition 3.19], it is shown that these spherical objects, which form the so-called (A4, )-
configuration, generate a weak braid group action on D!(Coh(X)). This braid
group action should be mirrored to the corresponding Dhen twists (Picard- Lef-
schetz transformations) in the symplectic side. In our (5.4), we see this mirror
correspondence in the linear transformations on the central charges.

6. Conclusion and discussions

We have given an interpretation for a cohomology-valued hypergeometnc series,
which was reported in [Hos|. Giving an interpretation for w(z, 52 b 5==) (Conjecture
thm:conj) as the central charge formula which naturally appears in homological
mirror symmetry, we have provided sup;ﬁr_glg evidences for the conjecture in the
case of local mirror symmetry of X = C2/Z,,,.

As a byproduct, we have found that K.Saito’s differential equations satisfied by
the primitive forms may be replaced by a suitable (resonant) GKZ system whose
solutions are easy to be setup(HKTY][HLY)].

As addressed after Conjecture 2.2, our cohomology-valued hypergeometric se-
ries (or the central charge formula) connects two different ‘monodromy’ properties,
Fourier-Mukai transforms and the monodromy transforms of hypergeometric series
(Dhen twists in symplectic mapping class group). We see that the latter monodromy

12
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property arises associated with the discriminant locus in Mg..(x). As shown in sec-

tion 3for X = C%;.h the discriminant splits into several irreducible components
in the g-coordinate and the monodromy transform around each irreducible compo-
nent is identified with a suitable twist functors. From these facts, it is conceivable
that the group of self-equivalences of D?(Coh(X)), i.e. Auteq D*(X), is generated
by these ‘monodromy’ transformations up to the shift functors,

Auteq(C?/Zy41)/{ K]k €Z } = (Ry, -+ , Ry, To—cy)s s To(=c)) »

where Rj represents the functor tensoring the tautological line bundle F, and
To(-c,) is the Seidel-Thomas twist.

Although in this note we have restricted our attention to two dimensional cases,
the claimed relation (5.3), for example, generalizes to three dimensional G-Hilb
C3[IN)[BKR][C]] with G abelian. It is actually our motivation to see the homo-
logical mirror symmetry in such a special kind of non-compact (toric) Calabi-Yau
threefolds. From the hypergeometric series side, the monodromy calculations be-
come suddenly tedious for multi-valuable series. We can perform, however, some
explicit calculations for lower number of parameters providing consistency check for
the conjecture (5.3), which will be reported in the forthcoming publication. From
the holomorphic side, we have many possibilities other than G-Hilb C3 for the
Calabi-Yau resolution of the singularity C3/G, and it is known that we have a vari-
ety of Fourier-Mukai transforms on D?(X) for these different resolutions[BKR][CI].
Making a (homological) mirror picture for these is strongly desired.

Finally, as for the compact Calabi-Yau (hypersurfaces), several supporting ev-
idences for our Conjecture 2.2 are presented in [Hos], especially for dimensions
one and two. However, for example, the observation (1.4) made in three dimen-
sion is still need clarification. Namely it is not clear that the specific form of the
‘charges’ 1,J — c—‘Lf(i‘-M - 171, -ng-, 15-3- come from an integral, symplectic basis of the
K-group K(X;). From the SYZ construction we expect that K(X5) is generated
by the structure sheaf O, the skyscraper sheaf O,, and additional sheaves £ and
F which, respectively, have their support on a divisor and a curve (i.e. D4 and D2
branes).
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