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1. Introduction

   The most direct approach to the construction of a moduli space or a compact-
ified moduli space of algebraic vatrieties is via Geometric Invariant Theory (G.I.T.

fgy sherg). It is one of the mgst useful metheds to comstyuct a moduli space or a
compactMed modu}i space of a}gebraic varieties if one kfiows the effective criteria for

stability and semi--stability.

   The group SL(n) acts on Vd,. xxme Symd(V), which is the vector space of homo-

geneous polynomials of degree d in C[xi,...,x.]. By Hilbert-Mumford criterion,
Mumford il5] pfevides a simple way to decide the stability and the semi-stability of
f E Vd,. by 'the position gf nekzero coeficiekts Gf f in a (n - i)-dimeiisioRal pclytope.

For a higher codimension case, the notion of stability is defined by Chow form. Let X
be a subvariety of dimension r - 1 and of degree d in IPM-i. Comsider the set Z(X) of

al1 the (n - r - 1)-dimensional projective subspaces L in IP"i-i that intersects X. This

is a subvariety in tke GrassmamiEut G(n - r, n) parameterizing all the (n - r --- l)-
dimeRsioRal prejective sgb$paces in limp-i. The $"bvariety Z(X) is a hypersurface ef

degree d in G(n - r, n). Let B = didoo-ewo Bd be the coordinate ring of G(n - r, n) in the

Plifker embedding. Then Z(X) is defined by the vanishing of somoe element Rx E Bd
which is unique up to a constant factor. This element is called the Chow form of
X. A variety X is called Chew $emi-stable (re$p. Chow stable) if ks Chow form
is semi-stable (resp. stable) fer the xxatural SL(n)-actieR. Mumford [l5] provides a

way to decide Chow stability or Chow semi-stability by giving the weighted fiag in
HO(X, Ox(1)). Contrary to hypersurfaces in IPMpmi, there is no simple way to decide

Chow stability.
   There is ai} expectatioR of the restrictiofi of sikgularities by the RotioR oÅí stability.

A Ratured questieR arises, te give a criterieR for stabllity in terms ef the Rature ef
the singuiarities. There are vaJrious ways to measure how singularities of a variety
are. Let Y be a nonsingular variety and D an effective (CP-Cartier divisor of Y, The
invariant of the singularities of the pair (Y, D), called the log canonical threshold of

Y aleng P, is an impoirtant topic to study the classificatiolt of higher dimemsioRal
algebraic varieties. It received a lot ef &tgeRtieR receRtly [21, Ilel, [l3], I171, [i81.

   The aim of this paper is to provide a criterion for Chow stability of X in IEpm-i

including log canonical threshold of the Chow form Z(X) in the Grassmannian G ==
G(n -- r, n). We prove the following :

   Theerem. LetX be G nendegenerate variety in IFM-i. Assume that tke dimensien
ofX is r-1 and the degree ofX is d. Let (C,Z(X)) be a pair as abeve. Then we
have the following criterion for Chow stability of X :
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   (1? if lct(G,Z(X)) 2 S then X is Chow semi-stable.
   (2) ij lct(G,Z(X)) År 2 then X is Chew stable.

  This result is a generalization of its in [9], and the author was informed that
Hacking got the same resu!t independent}y. The idea that, in great generality, some
kind gf stabMty should be equivalent to a type ef }og canoRical property is not new.
The main point im that the criterion for stability, and the determination of the log
canonical threshold, involve the Newton polyhedron in the same way. On the stability
side the criterioR is due to Hilbert. OR the side cf the leg cai}exieal thresheld, the
required statement is made at least in the paper [19]. But our main statement is not

in the literature and our rnain contribution is the interpretation of the stability via

the }eg cEmoatcal thresho!d of the Chow form.

   Our theorem has an important application. The problem how to censtruet a good
compactification of a moduli space of surface of general type with fixed numerical in-

variants was approached by Ko!!ar and Shepherd-Barron [121 via the minimal model
pregraix} izi bigher dimensio=al geemetry. It was theoretiea31y claxraed by Alexeev [i]

with the proof of the bounds conjecture in dimension two. The compactified moduli
space should include (possibly reducible) surfaces with some mild singularities. These

surfaces are eailed smegthable stgble $utfaÅíes. Tl}is llotiog ef smoothabie stable $ur-

face can be generalized to smoothabie stable log surfaces $imilar as the generalization

of stable curve to stable pointed curve. For the experiment of the construction of a
compatified moduli space consisted of smoothable stable log surfaces, Hassett i7} [8}

censidered a cempactdication P} of the Åíatnily ef smoeth plane Åëurves ef degree d

(d 2 4) by using the stable iog surfaces and the Q-Ggrenstein deformation theory of
stable log surfaces. Then he succeeded to prove that Pa is isomorphic to the Deliginew

Mumford ccmpacdicatiok of mcduli spece cf curves of geki2$ 3. Ig his ceastructioR,
he considered all possible plane curve singularities appearing on the boundary of the

Deligine-Mumford compactification, and then he construeted corresponding stable log
surfaÅíes by usiRg local stable reductie" theerem. Bgt this is akeady tog complicated
to mamage if d ) 5. Hacking i6] comsidered instead the fatnily of eompactthcations
given by moduli space Pda of log surfaces (Y, D) where Ky + aD has semi log canon-
ical singularities and it is ample, where g-Åq a S 1. The eompactMcation is simpler

fer }ower a. He gave a compactdicatien :Pd eÅí plane curves ef degree d by allowable
family of stable pairs of degree d. In their geometric compactMcations, a natural
question arises, to compare Geometric compactificatioms via mmimal model progran
with G.I.T. cgmpactife&tioms. By geReralizatioR ef }}is iteSigR ef stab}e pairs ef de-

gree d to stable pairs of type (r,n,d) via using Grassmannian and Chow form, our
theorem implies the following :

   Theerem. LetX 5e a yariety of dime?;sieR r- 1 and of degree d in IP"-!. If
(G(n -- r,n),Z(X)) be a stable pair of type (r,n,d) then X ts Chow stable in IF";-i.

   Let X be a variety of dimension r - 1 and Qf degree d in IEP"-i. If X is not Chow
stable in IFM-i, theR (G(n - r, n), D) is ggt a $table pair ef type (r, n, d), therefere, it

is not an object corresponding to a point in the compactification of stable pairs.

   We work throughout over the complex number field Åë. The notation here follows

Hartshorne's Algebraic Geometry
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                          2. Chow stability

   Let rw(V*) = IFMww'. The group SL(n) acts on Vd,. = Symd(V), wh

space of homogeneous polynomials of degree d in C[xi,.•,,xn]•
   The group actien SL(n) on Vd,. as following :

ich is the vector

                A•f: ww foA for AE SL(n) and fE Vd,.•

Recall G.I.T. [l4], [15]. Let f E Vd,.. TheR f is

   e semi-stable if O Åë OSL(n)(f),

   e unstab!e if e e OSL(n)(f),

   e stable if the orbit OSL(")(f) is closed and the stabilizer StabSL(")(f) is finite.

EaÅíh point f E Vd,n defines a hypersurface of degree d in IEop-i. There is a simple
way to decide the $tabMty of f by using the Hiibert-Mumferd criterien {l4], {15]. We
illustrate the case n = 3. The technique for determining stability is essentially same

for any n. Represent f as below by a triangle of coeMcients, T.

     zg,:-1

gd- Zdi2

T :,

;""  ld •.,.,.

x zdmu"..y

zd-2xy 2gtL2y2

(xyz)dl3

L

xg,/" x d-l y '""'"•
  Fig 1. TMiangle

xyd-i :",yd

   We can coordinate this triangle by 3 coordinates i.,iy,i. (the exponents of x, y
and z respectively) with i. + iy + i. me d. The condition that a lime L with equation
aix+bly+cii = O, (a, b, c) X (O, e, O), should pass through the center is just a+b+c = O;

if L also passes threugh a point with iktegral ceordinates then a, b and c ean be
chosen integral. Let A be a one pai ameter subgroup of SL(3). Then A can always be
diagonalized in a suitable basis:

                        A(t)=[`o," t,Ob ,OO,],
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where a+b+c = O. I"et f = E i.+i.+i...dai.i.i.x`xytyztm in these coordinates. Then

A(t)f ww 2 evi.i.i.taiÅë+bi"+cizurixyiyxit.

      ixÅÄiu+it==d

Hence, by Hilbert-Mumford criterion, we have the following :

  Proposition 2.1. Let f E Vd,3. Then
(fl f ts uzzstgble if a#d e#Sy if, in sgme cegrdiRates, agg nex-zere ceefiicients off gie

to one side of some L,
(2? f is stable(re$p. semi-$table] if aR enly if, for ggl ceerdinGtes and alg L, f has

non-zero coordinates on both sides ofL (resp. f has non-zero coordinates on both
sides ef L er has Ron-iere ceej[7icients en L].

   Let X be a subvariety of dimension r -- 1 and of degree d in IPM-i. Consider the set

Z(X) gf a31 (n - r - 1)-dimensional projeetive sub$paces L in lpti-i that intersects X.

This is a subvariety in the Grassmannian C(n-r, n) parameterizing all the (n-r- 1)-
dimemsional projective subspaÅíes in lpa-i. The subvariety Z(X) is a hypersurface of

degree d in C(n - r, n). Let B = $dco=o Bd be the coordinate ring of G(n - r, n) in the

Plgker embeÅqlding. The subvaxiety Z(X) is defued by the vanishing ef some element
Rx G Bd which is uni'que up to a constant factor. This element is called the Chow
ferm of X.
   If u =em (2tij) E (IP'"-i)' write H. for the hyperplane Z)kiuiXi = O where Xi,
i= 1,...,n are coerdimates efi lpa-i. Theg

           tx R llEi) fi . . . R llErÅr 7tE el -# År t Rx (xS. 'År, . . . , uS. ")) =: el.

The cogydinate riRg ee:l-Ze Bd = subriRg ef Åëi. . . , CfS'), . . .l gegerated by the Plgcker

coordinates Pi,,...,i. = determinant of r Å~ r mancimal minors of (Ui9')), ii Åq . . . Åq i..

   A vayiety X is caded Chew semi-stable (resp. Ckow sSabie) if its Chew ferm is
semi-stable (resp. stable) for the natural SL(n)-action. Contrary to hypersurfaces in
P"'i, there is ko simple way te decide Chew stability.

   Choose one pararneter subgroup (1-PS for short)

A(t) ==

trl

g

tr2

.
.

o

trn

•
t-k

k chogen so that thi$ is a 1-PS ef SL(n), i.e. k = 2ilE. Defike aii ideal sheaS

TF ( Ox xAi by XF [Ox (1) Q OAi] = subshe af generat ed by {tri Xi }, i = 1, . . . , n. The

sllbscheme Z = Ox."/ZF i$ concentrated over e E Ai and the suppert of XE lies
over the section Xn me O in X.
   CoRsider the weighted fiag ;

Vi : (X2 =...= X. = g) c V2 = (X3 = ...= X. = e) c ...c V.-i = (X. me e)
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where Vi has the weight ri.

  Denote by eF the multiplicity eo...,(i)(ZF) = eo.(i)xo..,(TF). Then Chow sta-
bMty is determined by the multiplicity eF :

  Theorem 2.2. [15] LetX be a variety of dimen$ion r-1 and of degree d in
IP"t-wi. Fix a weighted flag "F" : {(Vi,ri)} in HO(X,Ox(1)), Then the following are

eguivalent :

(V X is Chew semi-stable (resp. Chew stable] in IFM-i utth respect te F.
(iij eF s{ {td ZI.., r{ (resp. eF Åq 2itd 2)#•=, r".

3. Chow stability criterion including log canonical thresholds

   Let Y be a nonsingular vauriety and D an effective QCartier divisor of Y. The
invariant of the singularities of the pair (Y, D), called the log canonical threshold of

Y along D, is an important topic to study the classification of higher dimensional
algebraic varieties.

  The notion ef discrepancy is the fundamental measure ef the singularities of (Y, P) .
'Irhe usual definitigms in the theory of siRgularities ef pairs, for which we yefer Sg Pei

er Illl•

  Definitien. Let (Y, D) be a pair as above, Z c Y a clesed subscheme. The log
canonical threshold of (Y, D) along Z is defined by

letz(Y, D) := sup {c E Q" (Y, cD) is log canonicaJ in an open neighborhood of Z},
When Z = Y, we write it as lct(Y, D) by deleting Z from the notion.

  The log canonical threshold of the pair can be computed by using a log resolution
of the pair or by assigning the weights to the variables. Let (Y, D) be a pair as above.

TheR lct(Y, D) == inf{lct,(Y, D) l y E Y}.

  Let p : W . Y be a proper biratioRal merphism. Wrige

               Kw :p"KyÅÄ2)aiEi, aiid p'PmmE biEi•

Then
                    lctz(Y, D) s ,(.m).i .fÅë {"t b+, i} •

  Equality holds if ]Z) Ei is a divisor with normal crossing only. In particular,
lctx(Y, D) E Q•

  in general, it is hard te construct a log resolution explicitly. An eMcient way of
computaticB gf lgg cakonical threshold is in the weighted case :

  Theerem 3.1. ilO] Let f be a holomerphic function near e E Åë" and D = (f me
O). Assign positive integer weights w(xi) to the variables xi, and tet w(f) be the
weighted multiplicity off (the lowest weight of the monomial occurring in f), Then

                    icto(cn,D) s min {i, Åí.ve9t)} •
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And the eguality helds if the weighted homogeneous leading term f. of f has an
tselated critical point at the erigin er if f.(xWÅqXi), . . . ,x:(Åë"År) = e c li""-i is sfT}ecth,

or f is quasi-homogeneous,

  Example 3.2. Let f me y2 - x` and let D me (f = O) in C2.
(1) By b}6wikg up twg times, we have a leg re$o}utiok p : W - C2 as}d

           Kw = p" Kc2 + Ei + 2E2, p"D = p'-iD + 2Ei + 4E2.

HeBce we have lcte(C2,D) ww min{SetFi,} i, "2 i} ,. 2.

(2) Assign weights w(x) me 1 and w(y) = 2, then w(f) = 4. Hence we have
lcte(C2, D) = W X."'f'W) = X.

  Let D be a hypersurface in IFM-i. The stabiiity of D in IP';-i can be determined
by the singJilarities of the pair (IP"-i, D).

  Theerem 3.3. Let D be a hyper$urfgce of degree d in lfpt;'i. Then we have the
foitoun'ng criterion for stabitity of D :

   (1? Ulct(P'i-i,D) ) 2 then D is semi-stable.
   (2? if lct(IPM-i, D) År g then D is stable.

   Proof. The detaiied proof of the case of the pair (P2,D) is given in [9]. Since
our proof goes basically same way, we give a sketch of proof. Note that lctp(IEP"-i, D)

is lower semi-continuous. Let P rm (f = O). Choose a point p E D such that
lct,(IIiM"-i, D) = lct(lps-i, D).

  Assume that D is not semi-stable. By a linear change of coordinates xi,...,xn
and by Hilbert-Mumford criterion, we may assume that x.(p) me 1, xi(p) = O for
i= l,...,n-1 akd we have ghe foilowiRg:
(1) every monomial x:' .,.xk":lx:" in f satisfies ii + ... + i.-i S kx'Sid, i.e, i. ) g,

(2) there are non-negative integers ki,,,.,k.-i and a negative integer.k. such that
ki ÅÄ•,. -l- kA == e and kiii +...+ k#in År e fer every meRemial xli ...sk" lxkn ix f.

  Therefore we have

                                               d
                kii! + ••• + kn-iin-i År (rw-kn)in 2 ("--kn)-•
                                               n
Let f(xi,•••,xn-i) = f(xi,,••,xn-i,1). Assign the weights the the variables xi,
w(xi) me ici fori=: 1,...,n - 1, it implies that

              lct,(p"-i,D) s ki "6(f-+) k"wwi Åq (--"thwwkk.")g = Z•

It preves (1). The pregf ef (2) is the $ame as abeve. U

  Remark 3.4. The condition lct(IP"-i,D) År S carx be expressed in other way.

Note that
               lct(An, ccke(D)) = min {Z , lct(pnwwi, D)} .

Therefore the foUowing are equivariant :
   ") lct(Ipn-i,p) År s•
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   (2) The pair (A",CeRe(D)) has the werst si"giilerky at e, i.e. if we defi"e t =
lct(A",Cone(D)) then the non iog terminal locus of the pair (A",tCone(D)) nm {e}.

   Remark 3.5. The converse of Theorem 3,3 is also true in most of cases. Let
D == (f = O) be asemi-stable (resp. stable) hypersurface of degree d in IP"-i. Choose
a point p se that ictp(IEpt`-i, D) = lct(IP"-i, P). Then by a linear change of cogrdinates

xi, . . , xn aRd by Hilberg-Mwafcrd crkerieR, we may assgme gkat x.(p) = 1, xi(p) = g

forime 1,...,n - 1, and there is a monomial xi, ,,.xt." of f such that
(1) il + ••• + in-i ) !zai'i!' d,

(2) ki +•••+kn = O,
(3) klii + •••+ knin S O (reSP• kiii +•••+ knin Åq O)•

   Let f(xi,...,xnwwD = f(xi,...,xn.i,l). A$sigu the weights w(x" = ki. TheR
the weight w(f) S ltiii + ... + k.wwii.-i S (-k.)i.. Assume that the weighted
homogeneous leading term f. of f in IP"Z-2 has an isolated critical point at the origin
or if f- .(xW(X'),,..,x SXi"-i)) =Oc IPM-2 is smooth. Then we have

 lct,(lfpt-',D) ) ki + ts(f-+) jkk'i ) ki {Å}'jtl ;i.jk"wwi ) Z (resp. Ictp(P"-i,D) År Z)•

   Example 3.6. Let D be a 3 time$ nonsingular conic plane curve C = (xz+y2), i.e.
D = 3C. Then (P2,D) is semi-stable but lct(P2,D) = g. Let fme(x,y) = f(x,y, 1) =
x+y2 and assign the weights w(x) == 2,w(y) me 1. Then i'. == (x2 +y2)3 == e in Pi

dees mot give distinct peikbs.

   Theorem 3.3 can be generalized to the pair of Grassmannian variety and Chow
form. Let X be a variety of dimension r - 1 in IFptZ-i. Assume that the degree of X

is d and X is noBdegenerate. Chow form Rx determines a hypersurfece Z(X) in the
Grassmannign variety G = G(n - r, n) parameterining all the (n - r - l)-dimemsiokal
projective subspaces in IPM-i.

                       Z(X) c G = G(n - r, n).

  Theerem 3.7. Let X ge a nendegenerate yar;'ety in lpawwi. Assgme tkat the
dimension ofX ts r -- 1 and the degree ofX is d. Let (G, Z(X)) be a pair as above.
Then wc have the following criterion for Chow stability of X :

   (i? Jf lct(C, Z(X)) ) 3 then X ts Chow semi-stable.
   (2? Iflct(C,Z(X)) År Z then X is Chow stable.

   Proef. Cegsider the preduct JSI =: X Å~ IFr-! as a sgbvariety of P(Åë" x (Åër)") via

the Segre embedding, Identify Åë" X (Cr)* with the space Mat(r, n) of r Å~ n-matrices

and consider the projection

                  Mat(r, n) ) S(r, n) 22År a ww G(n - r, n)

where S(r,R) is ghe sul}set gf Mat(r,n) with fÅíal rix}k. By this ideEtificatiek, the
equation of dual variety XV in IF"'r-i is the same as the equation Rx 1rked by Rx.

This identification implies that

            .jlV =: projectivization of the closure of p-i(Z(X)) [5].
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  Assume that Z(X) is not Chow semi-stable in C. By the functorial properties [16],
p--i(Z(X)) is not semi-stable in S(r,n). And it implies that XV is not semi-stable in

IIpmr-i. By the proof of Theorem 3.3,

where

egS lct,(lpptr-i, xv) . nr

U be the projectivization of S(r, n) in

;ptu lcty(p#r-2 , .rk

deg rkv

IPnzr-l. And

n
d

V) =lct(S(r,n),p-i(Z(X))) : }ct(G, Z(X))

because S(r,n) is a GL(r)-bundle over G. It proves (1). The proof of (2) is the same

as above. O

  Example 3.8. Let X me pi U...Upd be d points in IPM-i. Then X is Chow
semi-stable (resp. Chow stable), i.e. the Chow form Z(X) is semi-stable (resp. Chow
stable) in G(n - 1, n) = (IEP"-i)", if and only if for every proper linear subspace W of
gen-i (cÅí [4])

                             d                {SE{ilpi ff W} S -(dimW+ i) (resp. Åq).
                             n
By the fegewing easy lemma, this is the same cgndition as

1,t((IE pt--i)*,Z(X)) ) Z (resp. År).

  Lemma 3.9. Let Y be a nonsingular variety of dimemsion m. Let D be a union of
nonsingular divisors Di,.,.,Dd of Y. Assume that the scheme theoretic intersection
Z of Di,...,Dd is a nomsingular variety of dimension k, and that Di,...,Dd meet
trai}sversa3!y at Z. Then let(Y, D) = Md-k.

  Proof. The precf i$ obtaiked by blewigg gp gf Z in Y, ll

  Example 3.le. Let X xe 6U. . .Ued be d }ii}es in IP3. Then X is Chew semi-stable
if and only if it satisfies the fonowing (cf. {4]):

(1) no more than g lines intersects at one point,

(2) no more than g lines coincides and no more than m - 2t 1ines intersects a line

which is repeated t times,
(3) no more than g lines are coplanar.

  If lct(G(2,4), Z(X)) k S then X is Chow semi-stable. But the conditions (1), (2),
(3) do Rot imply }ct(C(2,4),Z(X)) 2 3. If we trax}$late the coRditions (1) Emd (3)

inte the cgnditigRs iR Chow foerrc, theR we haye the fellewillg ;
(1) nc mcre than g hyperp}anes meetg at qgadric $erface indgeed by the iRteysectiek

of G with twe hyperplanes (the set ef lines through at one point in IP3),
(3) no more than g hyperpianes meets at P2 (the set of lines in the coplane).

These imply that lct(C(2,4),Z(X)) ) t!];2 = -2- by Lemma 3.9. But the second
                                 2condition gives lct(C(2,4), Z(X)) ) 3•
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4. Log canonical thresholds of Chow forms

   Let X be a nonsingular variety of dimension r - 1 in Pn-i. Assume that the de
gree of X is d and X is nondegenerate. Furthermore, we assume that the dual variety
XV of X in (IP"-i)' is a hypersurface. Let (G,Z(X)) be a pair of Grassmannian
variety and Chow form as before. Let X = X Å~ IPrc-i in IPM'-i via the Segre embed-

ding (cf. the proof of Theorem 3.7). By the construction, we have the inequality
lct((Ipn-i)",XV) s lct((IEP"'-i)",XV). And by the proof of Theorem 3.7, we have the

inequality lct((IP";'-i)',XV) S lct(G,Z(X)). Therefore we have the following:

   Proposition 4.1. Let X,X,C,Z(X) be varieties as above. Then tve have the
following inequality : lct((IEua-')',XV) S lct(G,Z(X)).

   Example 4.2. Let X be a rational normal curve of degree d in IP"i. Then the dual
variety XV in (IEDd)" is the classical discriminant (cf. [5]). Let f(x) == 2g•=,aixd-`.

The classical discriminant A(f) = R(f, f') vanishes when f(x) has multiple root, i.e.
f(x) has a multiple root if and only if (ao, . . . , ad) E XV c (IPri)'.

   By the definition of A(f), it has at worst singularity when f(x) has a d-multiple
root. Let p = (1, O, . . . , O). The discriminant A(f) == A(ao, . . . , ad) is a homogeneous

polynomial in the ai of degree 2d - 2. In addition, it satisfies the quasi-homogeneity

condition :
              A(AOao,Aiai,,.,,Adad) = Ad(d-i)A(ao,ai,...,ad).

Assign the weights w(ai) = i. Then

lct((IP"i)',XV) = lct,((IPXi)',xV) =. 1+".+d ld+1
d(d-1) 2d-1'

   Example 4.3. Let X be a rational normal curve of degree d in IEbd. Consider the
product X = X Å~ Pi as a subvariety of P2d+i via the Segre embedding. Then the dual
variety (.jl)V in (P2d'i)' is the classical resultaint (cf. [5]). Let f(x) = Åí,d•=,aixd-`,

g(x) = Z)g.=obixd-i. The classical resultant R(f,g) vanishes when f and g has a

d-multiple common root.
   By the definition of R(f,g) it has at worst singularity when f and g has a d-
multiple common root. Letp = (1, O,...,O, 1, O,...,O). The classical resultant R(f, g)

is homogeneous of degree d in the ai and in the bi. In addition, it satisfies the following

quasi-homogeneity :

         R(AOao,..., Adad, AObo,...,Adbd) = Ad2 R(ao,...,ad, bo,...,bd)•

Assign the weights w(ai) = i, w(bi) = i. Then

lct((P2d+i)*,xv) =

= rmn
   .= rmn

lct,((Pea+i)*,xv)

 • 1+...+dli,

1,g$D
1".+d }

So lct((p2d+i)*,xV) = 1.
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  Let X be a nonsingular variety of dimension r- 1 in IEb"-i. Assume that the degree

ef X is d and X ts koRdegeRerate. Let (C,Z(X)) be a pak as befere. Censider the
incidence variety W = {(x, L) G X Å~ G1x e L} in IEpm-i Å~ G.

                      W c gpn-1xc ww" gva"
                       iJ
                   LEZ(X) C C
Incidence variety W is nonsingular, therefore the singttlarities of Z(X) at L are related

to the points of XAL in L ww IP"-rwwi. In particular, the rnultiplicity of Z(.X) is

determined I3]:
                  multL(Z(X)) xe ]Z) mult(X n L, xi) .

  Let m = maxLEz(x) multL(Z(X)). Consider a subscheme

                  Y = {L E Z(X)l multL(Z(X)) == m}.

By upper semi-continuity of rnultL(Z(X)), Y is a finite mion of subvarieties Yi of
Z(X). Let e = max{dim(Y{)}. ']7hek it is easily cbtaiRed th&t

                                  dimG-e                      lct(G, Z(X)) S •
                                      m
   Choo$e a 1inear plane A = IP'i-'-2 with .X n A me Åë. Consider a linear projection

7A efX by A:
                          X C BIAIEiM-i
                                 S rrA
                          x c ffer.
   The pair (IP", X) can be realized as a subset of the pair (G, Z(X)) by the following :

The projective space erc parameterizes a!l lineas sEbspa{}es L = ff'"ww'-i contaiRiRg A

and X= {L EalLnX 7E O, Ac L}.
   By the above argument, mukL(X) = 2 mult.,ExfiL(XAL) where L E X. Assume
that multL(X) me m and that ict(ff"',X) ) c. Then m S i. So we have the foliowing:

   Proposition 4.4. Let (IP",X) be the pair and rrA be the map as above. Let Xk
be the closed set of points S g X such that the scheme-theoretic length of the fiber
rAwwi (t) ts at least k. Assume that lct(IF"',.jl) ww 1. Then

(" XrÅÄi is empty.

(ii? Xk has dimension at most r -- k.

   Example 4.5. Let X be a curve represeRted by the diviser c}ass (d - 1, 1), d ) 5
in a nonsinguiar quadric surface Q in IPB.

   There is a one-dimensional family of d-1 secant lines L in X, and there is no
k (3 Åq. k S d- 2) secemt line in X. Since the climeasigfi ef G is four akd there is a
one-dimensional farnily of d -- i secant lines, lct(G, Z(X)) S il.i.

   By the adjuxxction formula, the genus of X is zero. So X is }inearly semi-stable,
and it is Chow semi-stable i15]. And by a generic projection of X from a point,
lct(P2, .jilr) = 1.
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5. CempactMcatieks ef the fatnily ef Chew forms

  For the experiment of the construction of a compatified moduli space consisted of
smoothable stable log surfaces, Hassett [7] [8] considered a compactification Pdi of the

family of smooth plane curves of degree d (d ) 4). Then he succeeded to prove that
Pl is isomofphic eo the Deligii}e-Mumferd compactracatigR eÅí meduli space ef curve$

cf genus 3. IR his censtructioR, he censidered all pessible plEme eurve siRgularities

appearing on the boundary of the DeliginGMumford compactification, and then he
comstructed corresponding stable log surfaces by using local stable reduction theorem.
But this is akeady too complicated to manage if d 2 5. Hacking [61 considered imstead

the famlly ef cempaÅítificagici}s given by meduli space IPg ef log suffaÅíes (Y, D) where
.Ky + orD has semi log em]LoRical singulasities and k is atRple, where 2 Åq a S 1.

The compactification is simpler for lower a. He gave a compactification Pd of plane
curves of degree d by allowable fatnily of stable pairs of degree d. In their geometric

compactifications, a natural question arises, to compare Geometric compactifications
yia minimal mgdel program with G.I.T. cempactdieatieas.

   Definition. A log variety (Y, D) has semi log canonical singularities if

1. Y satisfies Serre's condition S2,

2. Y has normal crossing singularities in codimension one,
3. Ky + D is Q}-Cartier, Emd for any birational morphism g : Z -- Y from a normal
QGeremstein veciety Y we have

Kz i q"(Ky + D) +2aiEi

where all ai ) -1.

  A stable leg varieSy is gbe pair (Y, D) where

1. Y is a cormected projective variety and D a reduced Weil divisor on Y,
2. (condition on singrilarities) the pair (Y, D) has semi log canonical singularities,

3. (numerical condition) Ky + D is ample.

  A log variety (Y, P) is ca31ed a $table pair gf type (r, n, d) if Y is a pyeper ceimected

veriety and D an effective Weg diviser with the foMovwtg pToperties :
1. There is an c År O such that Ky + (# + E)D has semi log canonical singularities
and it is arnple.
2. dKy + nD rv O (SKy +D tv O if nld).

3. There is a Ql-Gereusteiu smoothing to a pai}r of Grassmaanian and Chow ferm
(i.e. there is a deformatieR Y ef Y ever a discrete valuatiell ring T with smoeth
general fiber such that Ky/T, D/T are Ql-Cartier, and whose general fiber is (C(n -

r, n),Z(X)) where Z(X) is the Chow form of a variety X of dimension r- 1 and of
degree d in Pn'i).

   A futy ef st&ble pair cf type (2,3,d) was st:died by Hacking [61. Let Pd(S) =
{(Y, P)IS I allowable family of stable pairs of type (2,3,d)}. (Y, D)/S is cailed an al-
lowable fatnily if wS']/s, Oy(D)[i] commute with base change for al1 i. He proved that

Pd is a separated proper DeligneMumford staKik and Pd is smooth if 3 I d.
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  Let D = Z(X) be a Chgw form of a variety X ef dimei}sioft r - 1 aRd ef degree d
in IP"ww"k, and let (G(n - r, n), D) be a stable pair of type (r, n, d), By the definition of

stable pair of (r, n, d), KG(.-.,.)+(S+E)D is log canonical, i.e. Ict(G(n--r, n), D) År 2.

Then Theorem 3,7 imaplies that D is the Chow form of a Chow stable variety X in
IFm-1.

  Theerem 5.1. LetX be a vastety of dimension r-1 and of degree d in ge"wwi. If
(G(n - r, n),Z(X)) be a stable pair of type (r, n, d) then X is Chow stable in IPM'i.
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