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Log canonical threshold of the pair: the
Grassmannian variety and the Chow form

Yongnam Lee !

1. Introduction

The most direct approach to the construction of a moduli space or a compact-
ified moduli space of algebraic varieties is via Geometric Invariant Theory (G.I.T.
for short). It is one of the most useful methods to construct a moduli space or a
compactified moduli space of algebraic varieties if one knows the effective criteria for
stability and semi-stability.

The group SL(n) acts on V;, = Sym?(V), which is the vector space of homo-
geneous polynomials of degree d in C[z),...,z,]. By Hilbert-Mumford criterion,
Mumford [15] provides a simple way to decide the stability and the semi-stability of
f € Va, by the position of nonzero coefficients of f in a (n — 1)-dimensional polytope.
For a higher codimension case, the notion of stability is defined by Chow form. Let X
be a subvariety of dimension r — 1 and of degree d in P*~!. Consider the set Z(X) of
all the (n — r — 1)-dimensional projective subspaces L in P"~! that intersects X. This
is a subvariety in the Grassmannian G(n — r,n) parameterizing all the (n — r — 1)-
dimensional projective subspaces in P*~!. The subvariety Z(X) is a hypersurface of
degree d in G(n —r,n). Let B = &3, Bq be the coordinate ring of G(n —r,n) in the
Pliiker embedding. Then Z(X) is defined by the vanishing of some element Rx € By
which is unique up to a constant factor. This element is called the Chow form of
X. A variety X is called Chow semi-stable (resp. Chow stable) if its Chow form
is semi-stable (resp. stable) for the natural SL(n)-action. Mumford [15] provides a
way to decide Chow stability or Chow semi-stability by giving the weighted flag in
H°(X,0x(1)). Contrary to hypersurfaces in P*~!, there is no simple way to decide
Chow stability.

There is an expectation of the restriction of singularities by the notion of stability.
A natural question arises, to give a criterion for stability in terms of the nature of
the singularities. There are various ways to measure how singularities of a variety
are. Let Y be a nonsingular variety and D an effective Q-Cartier divisor of Y. The
invariant of the singularities of the pair (Y, D), called the log canonical threshold of
Y along D, is an important topic to study the classification of higher dimensional
algebraic varieties. It received a lot of attention recently [2], [10], [13], [17], [18].

The aim of this paper is to provide a criterion for Chow stability of X in P"~!
including log canonical threshold of the Chow form Z(X) in the Grassmannian G =
G(n — r,n). We prove the following :

Theorem. Let X be a nondegenerate variety in P*~!. Assume that the dimension
of X is r — 1 and the degree of X is d. Let (G,Z(X)) be a pair as above. Then we
have the following criterion for Chow stability of X :
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(1) If 1ct(G, Z(X)) > & then X is Chow semi-stable.
(2) If 1ct(G, Z(X)) > & then X is Chow stable.

This result is a generalization of its in [9], and the author was informed that
Hacking got the same result independently. The idea that, in great generality, some
kind of stability should be equivalent to a type of log canonical property is not new.
The main point is that the criterion for stability, and the determination of the log
canonical threshold, involve the Newton polyhedron in the same way. On the stability
side the criterion is due to Hilbert. On the side of the log canonical threshold, the
required statement is made at least in the paper [19]. But our main statement is not
in the literature and our main contribution is the interpretation of the stability via
the log canonical threshold of the Chow form.

Our theorem has an important application. The problem how to construct a good
compactification of a moduli space of surface of general type with fixed numerical in-
variants was approached by Kolldr and Shepherd-Barron [12] via the minimal model
program in higher dimensional geometry. It was theoretically clarified by Alexeev [1]
with the proof of the bounds conjecture in dimension two. The compactified moduli
space should include (possibly reducible) surfaces with some mild singularities. These
surfaces are called smoothable stable surfaces. This notion of smoothable stable sur-
face can be generalized to smoothable stable log surfaces similar as the generalization
of stable curve to stable pointed curve. For the experiment of the construction of a
compatified moduli space consisted of smoothable stable log surfaces, Hassett [7] [8]
considered a compactification P} of the family of smooth plane curves of degree d
(d > 4) by using the stable log surfaces and the Q-Gorenstein deformation theory of
stable log surfaces. Then he succeeded to prove that P} is isomorphic to the Deligine-
Mumford compactification of moduli space of curves of genus 3. In his construction,
he considered all possible plane curve singularities appearing on the boundary of the
Deligine-Mumford compactification, and then he constructed corresponding stable log
surfaces by using local stable reduction theorem. But this is already too complicated
to manage if d > 5. Hacking [6] considered instead the family of compactifications
given by moduli space P¢ of log surfaces (Y, D) where Ky + aD has semi log canon-
ical singularities and it is ample, where %_< a < 1. The compactification is simpler
for lower a. He gave a compactification Py of plane curves of degree d by allowable
family of stable pairs of degree d. In their geometric compactifications, a natural
question arises, to compare Geometric compactifications via minimal model program
with G.I.T. compactifications. By generalization of his notion of stable pairs of de-
gree d to stable pairs of type (r,n,d) via using Grassmannian and Chow form, our
theorem implies the following :

Theorem. Let X he a variety of dimension r — 1 and of degree d in P*~}, If
(G(n - r,n),Z(X)) be a stable pair of type (r,n,d) then X is Chow stable in P*~1,

Let X be a variety of dimension r — 1 and of degree d in P*~1. If X is not Chow
stable in P*~!, then (G(n —r,n), D) is not a stable pair of type (r,n, d), therefore, it
is not an object corresponding to a point in the compactification of stable pairs.

We work throughout over the complex number field C. The notation here follows
Hartshorne’s Algebraic Geometry



2. Chow stability

Let P(V*) = P™!. The group SL(n) acts on Vy,, = Sym*(V), which is the vector
space of homogeneous polynomials of degree d in C|zy,...,z,].
The group action SL(n) on V;,, as following:

A-f: =foAfor A€ SL(n) and f € Vy,.
Recall G.LT. [14], [15]. Let f € Vy,.. Then f is

et o

e semi-stable if 0 ¢ OSL((f),
e unstable if 0 € OSL((f),
e stable if the orbit OSE™(f) is closed and the stabilizer Stab¥ ™ (f) is finite.

Each point f € V;, defines a hypersurface of degree d in P*~!. There is a simple
way to decide the stability of f by using the Hilbert-Mumford criterion [14], [15]. We
illustrate the case n = 3. The technique for determining stability is essentially same
for any n. Represent f as below by a triangle of coefficients, T'.

Fig 1. Triangle

We can coordinate this triangle by 3 coordinates i, 1,,%, (the exponents of z, y
and z respectively) with i, + i, +%; = d. The condition that a line L with equation
aig+biy+ci; = 0,(a,b,c) # (0,0,0), should pass through the center is just a+b+c = 0;
if L also passes through a point with integral coordinates then a, b and c can be
chosen integral. Let A be a one parameter subgroup of SL(3). Then ) can always be
diagonalized in a suitable basis:

= 0 0
At)= [0 ¢ 0],
0 0

87



88

where a+b+c=0. Let f =3, ., .; _;,i,i,2*y72" in these coordinates. Then

A(t) f peed Z al.= ‘iv‘ig ta‘: +b‘v+c‘lzm‘l: y‘ly z’r: .
iz iy +iz=d

Hence, by Hilbert-Mumford criterion, we have the following :

Proposition 2.1. Let f € Vy3. Then
(1) f is unstable if and only if, in some coordinates, all non-zero coefficients of f lie
to one side of some L.
(2) f is stable(resp. semi-stable) if an only if, for all coordinates and all L, f has
non-zero coordinates on both sides of L (resp. f has non-zero coordinates on both
sides of L or has non-zero coefficients on L).

Let X be a subvariety of dimension r — 1 and of degree d in P*~!. Consider the set
Z(X) of all (n—r — 1)-dimensional projective subspaces L in P"~! that intersects X.
This is a subvariety in the Grassmannian G(n—r,n) parameterizing all the (n—r—1)-
dimensional projective subspaces in P"~. The subvariety Z(X) is a hypersurface of
degree d in G(n —r,n). Let B = @2, B, be the coordinate ring of G(n — r,n) in the
Plitker embedding. The subvariety Z(X) is defined by the vanishing of some element
Rx € By which is unique up to a constant factor. This element is called the Chow
form of X.

If u = (uy) € (P*)* write H, for the hyperplane ) I, u;X; = 0 where X;,
i=1,...,n are coordinates on P*!. Then

(XNHPN...nHY £0] & [Rx@d,...,u{") =0].

The coordinate ring &3, By = subring of C|.. ., U,»(j ). .| generated by the Pliicker
coordinates P;, . ;, = determinant of 7 x r maximal minors of (Ui(f)), <. <ip
A variety X is called Chow semi-stable (resp. Chow stable) if its Chow form is
semi-stable (resp. stable) for the natural SL(n)-action. Contrary to hypersurfaces in
P*~1, there is no simple way to decide Chow stability.
Choose one parameter subgroup (1-PS for short)

n 0
tr

At) = , -tk
0 £

k chosen so that this is a 1-PS of SL(n), ie. k = an Define an ideal sheaf
Ir C Oxxat by Zr [Ox (1) ® Op1]| = subsheaf generated by {t"X;},i=1,...,n. The
subscheme Z = Oxya1/Ir is concentrated over 0 € A! and the support of Zr lies
over the section X, = 0 in X.

Consider the weighted flag:

Vi=(Xe=...=X,=0)CVoa=(Xzg=...=X,=0)C...C Vo1 =(Xn=0)



where V; has the weight r;.
Denote by er the multiplicity eo,, ,,1)(Zr) = eox)x0,,,,(Zr). Then Chow sta-
bility is determined by the multiplicity ep :

Theorem 2.2. [15] Let X be a variety of dimension r — 1 and of degree d in
P!, Fiz a weighted flag F = {(Vi,r:)} in HY(X,Ox(1)). Then the following are
equivalent :

(i) X is Chow semi-stable (resp. Chow stable) in P*~! with respect to F.

(ii) ep < ";d Yooy ri (resp. ep < % Yrri)

3. Chow stability criterion including log canonical thresholds

Let Y be a nonsingular variety and D an effective Q-Cartier divisor of Y. The
invariant of the singularities of the pair (Y, D), called the log canonical threshold of
Y along D, is an important topic to study the classification of higher dimensional
algebraic varieties.

The notion of discrepancy is the fundamental measure of the singularities of (Y, D).
The usual definitions in the theory of singularities of pairs, for which we refer to [10]
or [11].

Definition. Let (Y, D) be a pair as above, Z C Y a closed subscheme. The log
canonical threshold of (Y, D) along Z is defined by
letz(Y, D) :=sup {c € Q4 | (Y,cD) is log canonical in an open neighborhood of Z}.
When Z =Y, we write it as lct(Y, D) by deleting Z from the notion.

The log canonical threshold of the pair can be computed by using a log resolution
of the pair or by assigning the weights to the variables. Let (Y, D) be a pair as above.
Then let(Y, D) = inf{lct, (Y,D) |y € Y}

Let p: W — Y be a proper birational morphism. Write

Kw=p'Ky+) aFE;, and p'D=)Y bE:.

Then

a;+1
letz(Y,D) < i .
ctz(t) )_p(EI-'I)lrl"%#@{ b; }

Equality holds if ) E; is a divisor with normal crossing only. In particular,
letz(Y, D)eQ.

In general, it is hard to construct a log resolution explicitly. An efficient way of
computation of log canonical threshold is in the weighted case:

Theorem 3.1. [10] Let f be a holomorphic function near 0 € C* and D = (f =
0). Assign positive integer weights w(z;) to the variables z;, and let w(f) be the
weighted multiplicity of f (the lowest weight of the monomial occurring in f). Then

leto(C™, D) < min {1, %@(.%i)} .

89
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And the equality holds if the weighted homogeneous leading term f, of f has an
isolated critical point at the origin or if fw(a:'" =) 2%y = 0 ¢ P is smooth,
or f is quasi-homogeneous.

Example 3.2. Let f = y* — z* and let D = (f = 0) in C2.
(1) By blowing up two times, we have a log resolution p : W — C? and

Kw =p'Ke2 + E1+ 2By, p*D =p*~'D + 2E; + 4E;.

Hence we have lcto(C?, D) = min{%}, 141 241} = 3

(2) Assign weights w(z) = 1 and w(y) = 2, then w(f) = 4. Hence we have

leto(C?, D) = #50 = ¢,

Let D be a hypersurface in P"~!. The stability of D in P*~! can be determined
by the singularities of the pair (P!, D).

Theorem 3.3. Let D be a hypersurface of degree d in P*~!. Then we have the
following criterion for stability of D :

(1) If 1ct(P*~1, D) > & then D is semi-stable.

(2) Iflet(P™', D) > & then D is stable.

Proof. The detailed proof of the case of the pair (P?, D) is given in [9]. Since
our proof goes basically same way, we give a sketch of proof. Note that lct,(P*~!, D)
is lower semi-continuous. Let D = (f = 0). Choose a point p € D such that
let,(P*1, D) = let(P"~?, D).

Assume that D is not semi-stable. By a linear change of coordinates z,,...,z,

and by Hilbert-Mumford criterion, we may assume that z,(p) = 1, z;(p) = 0 for
i=1,...,n—1 and we have the following:
(1) every monomial z¥! ... zi* "}zl in f satisfies iy + ... + 4,1 < 252d, ie. 4 > &,
(2) there are non-negative integers ki, ..., k-1 and a negatlve 1nteger k, such that
ki+...+kn=0and kyi1 + ... + knin > 0 for every monomial z7' .. z izt in f.

Therefore we have

ki1 + ... + kn_1tn—1 > (""kn)in > (-—kn)%

Let f(z1,...,Zn-1) = f(Z1,...,Tn-1,1). Assign the weights the the variables z;,
w(z;) = k; for i = 1,...,n — 1, it implies that

- ki+ ...+ kn1 ~kn
let,(P™!, D) < = < =
B D) S TR < e

It proves (1). The proof of (2) is the same as above. O

8l

Remark 3.4. The condition lct(P*~!, D) > Z can be expressed in other way.
Note that n
lct(A", Cone(D)) = min {2 let(P™1, D)} .

Therefore the following are equivariant :
(1) let(P™-1, D) > Z.



(2) The pair (A", Cone(D)) has the worst singularity at 0, i.e. if we define t =
lct(A™, Cone(D)) then the non log terminal locus of the pair (A", t Cone(D)) = {0}.

Remark 3.5. The converse of Theorem 3.3 is also true in most of cases. Let
= (f = 0) be a semi-stable (resp. stable) hypersurface of degree d in P*~!. Choose
a point p so that let,(P*~!, D) = lct(P*~!, D). Then by a linear change of coordinates
Zy,...Zn and by Hilbert-Mumford criterion, we may assume that z,(p) = 1, zi(p) =0
fori=1,...,n—1, and there is a monomial z;, ...z of f such that
(1) i1+ ... +ing > 2244,
(2) k1+...+kn=0,
(3) kiin+...+kntn, <0 (resp. kiti+...+ knip < 0)

Let f(z1,...,Zn-1) = f(T1,...,Tn-1,1). Assign the weights w(z;) = ki. Then
the weight w(f) < kyiy + ... + kn__lzn_l < (—kn)i,. Assume that the weighted
homogeneous leading term fw of f in P*2 has an isolated critical point at the origin
or if f,(z¥@), ... ¥~y = 0 c P*? is smooth. Then we have

k1+'“j'kn—1 > ki+...+ kna
w(f) T (kn)in

Example 3.6. Let D be a 3 times nonsingular conic pla.ne curve C = (z2+4°), i.e

D= 3C’ Then (P2, D) is semi-stable but lct(P?, D) = 1. Let f(z,y) = f(z,y,1) =

T + y? and assign the weights w(z) = 2,w(y) = 1. Then fo=(2*+4*)2=0in P
does not give distinct points.

> % (resp. lct,(P*"!, D) > %)

let,(P™!, D) >

Theorem 3.3 can be generalized to the pair of Grassmannian variety and Chow
form. Let X be a variety of dimension r — 1 in P*~!. Assume that the degree of X
is d and X is nondegenerate. Chow form Rx determines a hypersurface Z(X) in the
Grassmannian variety G = G(n — r,n) parameterizing all the (n — r — 1)-dimensional
projective subspaces in P~

Z(X)cG=G(n—rn).

Theorem 3.7. Let X be a nondegenerate variety in P*~!. Assume that the
dimension of X is r — 1 and the degree of X is d. Let (G,Z(X)) be a pair as above.
Then we have the following criterion for Chow stability of X :

(1) If 1et(G, Z(X)) > & then X is Chow semi-stable.

(2) If 1ct(G, Z(X)) > & then X is Chow stable.

Proof. Consider the product X = X x P™! as a subvariety of P(C" ® (C")*) via
the Segre embedding. Identify C" ® (C")* with the space Mat(r,n) of r X n-matrices
and consider the projection

Mat(r,n) > S(r,n) & G =G(n—r,n)

where S(r,n) is the subset of Mat(r, n) with full rank. By this identification, the
equation of dual variety XV in P""~! is the same as the equation Ry lifted by Ryx.
This identification implies that

XV = projectivization of the closure of p~*(Z(X)) [5].
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Assume that Z(X) is not Chow semi-stable in G. By the functorial properties [16],

p~}(Z(X)) is not semi-stable in S(r,n). And it implies that X" is not semi-stable in

P 1. By the proof of Theorem 3.3,

: r—1 Vv nr T_Z_
égcf/lCt”(]pn ,XV) < G X’ d

where U be the projectivization of S(r,n) in P*~!. And

1r€11fjlct (P!, XV) = let(S(r, n), p~ Y (Z(X))) = let(G, Z(X))

v

because S(r,n) is a GL(r)-bundle over G. It proves (1). The proof of (2) is the same
as above. O

Example 3.8. Let X = p, U...U pg be d points in P*~!. Then X is Chow
semi-stable (resp. Chow stable), i.e. the Chow form Z(X) is semi-stable (resp. Chow
stable) in G(n — 1,n) = (P*1)*, if and only if for every proper linear subspace W of
Pt (cf. [4])

#{ilpp e W} < %(dimW—f- 1) (resp. <).

By the following easy lemma, this is the same condition as

let((P*1)*, Z(X)) > = (resp. >).

E
Lemma 3.9. Let Y be a nonsingular variety of dimension m. Let D be a union of
nonsingular divisors Dy, ..., D4 of Y. Assume that the scheme theoretic intersection

Z of Dy,...,Dq is a nonsingular variety of dimension k, and that Dy,..., D; meet
transversally at Z. Then let(Y, D) = ===

Proof. The proof is obtained by blowingupof ZinY. O

Example 3.10. Let X = ¢;U...U{; be d lines in P2. Then X is Chow semi-stable

if and only if it satisfies the following (cf. [4]):

(1) no more than £ lines intersects at one point,

(2) no more than ¢ lines coincides and no more than m — 2t lines intersects a line
which is repeated t times,

(3) no more than £ ¢ lines are coplanar.

If Ict(G(2,4), Z(X)) > 4§ then X is Chow semi-stable. But the conditions (1), (2),
(3) do not imply let(G(2, 4) Z(X)) > =. If we translate the conditions (1) and (3)
into the conditions in Chow form, then we have the following:

(1) no more than % hyperplanes meets at quadric surface induced by the intersection
of G with two hyperplanes (the set of lines through at one point in P?),

(3) no more than § hyperplanes meets at P? (the set of lines in the coplane).

These imply that lct(G(2 4),Z(X)) > %2 = 4 by Lemma 3.9. But the second

condition gives lct(G(2,4), Z(X)) > 2

2



4. Log canonical thresholds of Chow forms

Let X be a nonsingular variety of dimension r — 1 in P!, Assume that the de-
gree of X is d and X is nondegenerate. Furthermore, we assume that the dual variety
XV of X in (P*1)* is a hypersurface. Let (G,Z(X)) be a pair of Grassmannian
variety and Chow form as before. Let X = X x P! in P* ! via the Segre embed-
ding (cf. the proof of Theorem 3.7). By the construction, we have the inequality
let((P™1)*, XV) < Ict((P*~1)*, XV). And by the proof of Theorem 3.7, we have the
inequality let((P™~1)*, XV) < lct(G, Z(X)). Therefore we have the following :

Proposition 4.1. Let X,X,G,Z(X) be varieties as above. Then we have the
following inequality : let((P*~1)*, XV) < let(G, Z(X)).

Example 4.2. Let X be a rational normal curve of degree d in P¢. Then the dual
variety XV in (P)* is the classical discriminant (cf. [5]). Let f(z) = 3% a;z?.
The classical discriminant A(f) = R(f, f') vanishes when f(z) has multiple root, i.e.
f(z) has a multiple root if and only if (ay, ...,as) € XV C (P?)".

By the definition of A(f), it has at worst singularity when f(z) has a d-multiple
root. Let p = (1,0,...,0). The discriminant A(f) = A(ay, .. .,aq) is a homogeneous
polynomial in the a; of degree 2d — 2. In addition, it satisfies the quasi-homogeneity
condition:

A(Xag, May, ..., Nag) = XD A(ag,a,. .., aq).

Assign the weights w(a;) = i. Then

...+d d
lCt((IPd)‘,XV) = ICtp((Pd)"XV) = 1(;£d-—-:) = %di i

Example 4.3. Let X be a rational normal curve of degree d in P4. Consider the
product X = X xP! as a subvariety of P24+! via the Segre embedding. Then the dual
variety (X)V in (P23+1)* is the classical resultant (cf. [5]). Let f(z) = S0, a2,
g(z) = Z:Lo b;z?t. The classical resultant R(f,g) vanishes when f and g has a
d-multiple common root.

By the definition of R(f,g) it has at worst singularity when f and g has a d-
multiple common root. Let p = (1,0,...,0,1,0,...,0). The classical resultant R(f, g)
is homogeneous of degree d in the a; and in the b;. In addition, it satisfies the following
quasi-homogeneity :

R(Xay, ..., A%q, A%y, ..., A%b,) = A¥ R(ao, . . ., aa, bo, . . ., ba).
Assign the weights w(a;) = 1, w(b;) = i. Then

lct((]pzdﬂ):’XV) — lctp((PMH)‘,XV)
— min 21, Lt..+d 1...+d}

1 44

= min

So let((P24+1)*, XV) = 1.
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Let X be a nonsingular variety of dimension r—1 in P*~!. Assume that the degree
of X is d and X is nondegenerate. Let (G, Z(X)) be a pair as before. Consider the
incidence variety W = {(z,L) € X x G|z € L} in P 1 x G.

w c PlxG — P!

! l
LeZ(X) c G

Incidence variety W is nonsingular, therefore the singularities of Z(X) at L are related
to the points of X N L in L = P*""1. In particular, the multiplicity of Z(X) is
determined [3)]:

mult,(Z(X)) = > mult(X NL,z).

Let m = maxez(x) mult; (Z(X)). Consider a subscheme
Y ={L e Z(X)| mult (Z(X)) =m}.

By upper semi-continuity of mult;(Z(X)), Y is a finite union of subvarieties Y; of
Z(X). Let £ = max{dim(Y;)}. Then it is easily obtained that
1et(G, 2(X)) < ImE £
m

Choose a linear plane A = P*~"2? with X N A = @. Consider a linear projection
ma of X by A:

X C BlP*!
~ 1L ma
X c P.

The pair (P", X) can be realized as a subset of the pair (G, Z(X)) by the following :
The projective space P" parameterizes all linear subspaces L = P*~"~! containing A
and X ={LeG|LNX#0,AC L}

By the above argument, mult; (X) = 3 multy,exnr (X NL) where L € X. Assume
that mult;(X) = m and that lct(P", X) > c. Then m < . So we have the following:

Proposition 4.4. Let (P",X) be the pair and 7 be the map as above. Let X;
be the closed set of points T € X such that the scheme-theoretic length of the fiber
7y (Z) is at least k. Assume that 1ct(P", X) = 1. Then
(i) Xo1 is empty.

(#) X has dimension at most r — k.

Example 4.5. Let X be a curve represented by the divisor class (d—1,1),d > 5
in a nonsingular quadric surface Q in P3.

There is a one-dimensional family of d — 1 secant lines L in X, and there is no
k (3 < k < d—2) secant line in X. Since the dimension of G is four and there is a
one-dimensional family of d — 1 secant lines, lct(G, Z(X)) < .

By the adjunction formula, the genus of X is zero. So X is linearly semi-stable,
and it is Chow semi-stable [15]. And by a generic projection of X from a point,
let(P2, X) = 1.

10



5. Compactifications of the family of Chow forms

For the experiment of the construction of a compatified moduli space consisted of
smoothable stable log surfaces, Hassett [7] [8] considered a compactification P} of the
family of smooth plane curves of degree d (d > 4). Then he succeeded to prove that
P} is isomorphic to the Deligine-Mumford compactification of moduli space of curves
of genus 3. In his construction, he considered all possible plane curve singularities
appearing on the boundary of the Deligine-Mumford compactification, and then he
constructed corresponding stable log surfaces by using local stable reduction theorem.
But this is already too complicated to manage if d > 5. Hacking [6] considered instead
the family of compactifications given by moduli space P5 of log surfaces (Y, D) where
Ky + aD has semi log canonical singularities and it is ample, where 3 < a < 1.
The compactification is simpler for lower a. He gave a compactification P, of plane
curves of degree d by allowable family of stable pairs of degree d. In their geometric
compactifications, a natural question arises, to compare Geometric compactifications
via minimal model program with G.I.T. compactifications.

Definition. A log variety (Y, D) has semi log canonical singularities if
1. Y satisfies Serre’s condition S,,
2. Y has normal crossing singularities in codimension one,
3. Ky + D is Q-Cartier, and for any birational morphism ¢ : Z — Y from a normal
Q-Gorenstein variety Y we have

KZ = QD‘(KY + D) + Za,E,-

where all a; > —1.

A stable log variety is the pair (Y, D) where
1. Y is a connected projective variety and D a reduced Weil divisor on Y,
2. (condition on singularities) the pair (Y, D) has semi log canonical singularities,
3. (numerical condition) Ky + D is ample.

A log variety (Y, D) is called a stable pair of type (r,n,d) if Y is a proper connected
variety and D an effective Weil divisor with the following properties:

1. There is an € > 0 such that Ky + (5 + €)D has semi log canonical singularities
and it is ample.

2. dKy +nD ~ 0 (2Ky + D ~ 0 if n|d).

3. There is a Q-Gorenstein smoothing to a pair of Grassmannian and Chow form
(i.e. there is a deformation )Y of Y over a discrete valuation ring T' with smooth
general fiber such that Ky, D/T are Q-Cartier, and whose general fiber is (G(n —
r,n), Z(X)) where Z(X) is the Chow form of a variety X of dimension r — 1 and of
degree d in P"1).

A family of stable pair of type (2, 3,d) was studied by Hacking [6]. Let P;(S) =
{(¥, D)/S | allowable family of stable pairs of type (2,3,d)}. (Y, D)/S is called an al-
lowable family if wg',]/ g Oy(D) commute with base change for all i. He proved that
P, is a separated proper Deligne-Mumford stack and P, is smooth if 3 { d.
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Let D = Z(X) be a Chow form of a variety X of dimension r — 1 and of degree d
in P*~!, and let (G(n —r,n), D) be a stable pair of type (r,n,d). By the definition of
stable pair of (r,n,d), Kgmn-rn)+(5+€)D is log canonical, i.e. Ict(G(n~r,n), D) > Z.
Then Theorem 3.7 implies that D is the Chow form of a Chow stable variety X in
pr-t,

Theorem 5.1. Let X be a variety of dimension r — 1 and of degree d in P!, If
(G(n~1,n),Z(X)) be a stable pair of type (r,n,d) then X is Chow stable in P"~1.
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