
AUTOMORPHISMS OF K3 SURFACES IN POSITIVE
                CHARACTERIS'['IC

jeNGXAE KEgM (jOINT wtTH IGOR bDLgACKEV)

  The main topic of this talk comsists of extending the known results about auto-
morpkisms cf cemplex algebraie K3 sgrfgK)eg tg the csse whek the greuad 6eld is ax
algebraically closed field cf positive charecteristic. We review first what is known
in the case when the ground field is C.

1. AUTOMORPHISMS OF COMPLEX PROJECTIVE K3 SURFACES

  Recall that an algebraic K3 surface over an algebraically closed field k is a
smooth projective surface X over k such that the canonical class Kx is zero and
the first Betti number is zero. When k = C al1 K3 surfaces are diffeomorphic.
The fundamental group is trivial and the second cohomology group H2(X, Z) is a
free group of ranl: 22 equipped with an integral symmetric bilinear form defined
by tke cup preduct. Tke lattice H2(X,Z) is even, imimcdulex and gf $igrtature
(3,19), hence isomerphic to U ee U$U$ Es(---1) $ Es(-1), where Es(-1) is the
lattiee defined by the negative of Cartan matrix of simple root system of type Es
and U the standard hyperbolic plane. The subgroup Sx of El2(X,Z) generated
by algebraic 2-cycles is isomorphic to the Picard group Pic(X) of line bundles on
X. As a sublattice of H2(X, Z) it is an eyeR, Rot necessarily uaimodular lattice of

signature (l,r - l). It is called the Picasd lattice, er Nerok •-SeverHattice oÅí X.

The Picard lattice is an important invariant of a K3 surface. The deficiency from
the unimodularity is measured by the discriminant group D(Sx) which is a finite
abelian group equipped with a quadratic form with values in Q/2Z. It is more or
less known which lattices can occur as the Picard lattice of a K3 surface.
  het Agt(X) be the group ef regular autemorpkisms ef X (or, equivalekS}y, kol{År-
morphic automorphisms, er birational automorphisms). The main tool in deserits
ing the structure of Aut(X) is the celebrated Global Torelli Theorem due to I.
Piatetsky-Shapiro axxd I, Shafarevich [PS]. According to this theorem, an isometry
a : ,El2(X,Z) --- H2(X',Z) between the cohomology lattices of two K3 surfeces X
and X' is induced by aR isomorphism f : X' ---} X, iÅí. a = f', if aRd cnly ifo
sends ax ample divi$er gÅí X te au ample diviser ef X' aRd the linear ecctension of 6
over C sends the 1-dimensional space of holomorphic Zforms st2(X) c H2(X,C)
on X to st2(X') on X',
  The group Aut(X) has a natural representation in the orthogonal groups O(H2(X, Z))
and O(Sx). The cohomology class {Cl of a smoeth rational curve C on X is a vector
ilt Sx ef Rgrm ((Cl, IC}) == -2. This fellews ftom ghe adjunctioxx fermula because
Kx =: e. This implies that IC] is a (-2)-root. Let Wx be the subgroup oÅí O(Sx)
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generated by reflections in the classes of smooth rational curves (or, equivalently,
al1 (-2)-roots). It is called (--2)-refection subgroup of O(Sx).

Theorem 1.1. Letp : Aut(X) - O(Sx), f . f', be the reparesentation ofAut(X)
on the lattice of algebraic cycles. Let Aut(X)' be the image ofp. Then Aut(X)' n
Wx = 1 andG= Aut(X)" i Wx is offinite index in O(Sx) end ts egual to the
sefni direct preduct of Aut(X)" and Wx.

  The keme} of the representatioft p is coRtaiRed in a g!roup ef prcjective auto-
morphisms of X with respect to any projective embedding of X. k is known that
X has no holomorphic vector fields, so this group must be finite. Thus Theorem
1 gives a criterion for finiteness of Aut(X) in terms of the lattice Sx: the group
Aut(X) is finite if and only if the subgroup VVx is of finite index in O(Sx). All
abstract even lattices M of signature (1,r- 1) with the property that the subgroup
generated by reflectioms in (-2)-roots is of finite index in O(M) have been classified

by V. Nikulin and E. Vinberg. All of them can be realized as the Picard lattice
of some K3 surfece, We call them 2-reftexive lattices. This gives, in principle, a
e}assificatioR of al} K3 surfaces with finite autemorphism group.
  Let us describe more precise resglts abeut agtcmerpki$me$ of ccmplex projective
K3 surfeces. Tke automorphis=} gregp Aut(X) acts on tke 1-dimeksieRal space ef
helomorphic 2-forms st2(X) on X. Let x:Aut(X) -" C" be the corresponding
character. The image of x is a finite cyclic group.(It may be infinite if X is non--
projective,) All possible such finite cyclic groups were described by S. Kondo [Kol]
and S. Vorontsov [V)•

Theorem 1.2. The possibte order ofx(Aut(X)) is a divisor of one of the numbers
  66, 44, 42, 36, 28, or 12, or a power of prime pk S 66, where p S 19 and k S 4,

  An automorphism g is cal}ed symp}ectic if x(g) me 1. The name is explained by
the fact that a RoR-zero helomorphic 2-foriy} eR X defilles a symplectic structure ok

X, se a syrap}ecSic automerphism preserves a symplectic structere. The pessible
erder n ef a symplectic autemorphism aiid the number f ef lts {ixed peints is givexx
by V. Nikulin {N].

Theorem 1.3. The possible pairs (n,f) are as follows,

             (n, f) me (2, 8), (3, 6), (4, 4), (5, 4), (6, 2), (7, 3), (8, 2).

  More generally, a $ubgroup G c Aut(X) is called symplectic if G c Ker(x),
The classification of abelian groups of symplectic automorphisms was first given by
Niku}in. It was later extended to not necessarily abe}ian groups by S. Mukai [M],

Theerem 1.4. Let G be a sy?npieetie seclyremp of Aut(X) which ts net centained
in gny ether symp{ectic s#bgreup. Then C ts tse?nerphic te ene of the ll groups

          PSL(2, F7), A6, Ss, M2e, F3s4 , A4,4} Tig2, N'm, N72, Mg, T4si

Each case is supported by an example.

  It is an amazing discovery of S. Mukai that each of the 11 groups can be realined
as a subgroup of a sporadic simple group, the Mathieu group M23. Among all
subgroups of M23 these subgroups can be characterized by the property that they
have ) 5 orbits in the natural action of M23 on the projective line Pi(F23). Recall
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that M23 is reaiized as a $tabilizer of a point in the Mathieu group M24 which is
defined as a certain group acting quintuply tramsitively on the set Pi(F23),

  Later on, another proof of Theorem 1.4 was given by S, Kondo who found another
remarkable cennectie;}s wkh rgkk 24 =Rimed=lar Regative defikite lattices called
Niemeier lattices [Ko2].

     2. AUTOMORPHISMS OF K3 SURFACES IN POSITIVE CHARACTERISTIC

  Now let X be a K3 surface over an algebraically closed field h of characteristic
p År O. The Picard lattice Sx (== Neron -Severi lattice) of X is defined to be the

group of all divisers medu}o Rumerical equivalence, which with the iRtersectioR
pairing becemes a lattice. The main diMculty in extending the previous results
to the case of positive characteristic is the absence of the Global Torelli Theorem.

However, Theorem 1.1 admits a generalization to the case of supersingular K3
$grfaees (A. egus (O}). Rftcall Shat in the complex case, Hodge tkeory gives thgt
r =rankPicÅqX)S hi,!(X) = 2e. The absence of the Nodge decomposition gives
only r S 22. In the extreme case r me 22 the surface X is called supersingular. Also

note that r = 21 does not occur.
  IR axy {il}aracteristic, it is kRowft tkat ALut(X)' fi Wx = 1 bgt it is Rgt kRcwk
that the semi direct product Aut(X)'•VVx is of finite index in O(Sx). Still we

have

Theerem 2.1. ifSx : Pic(X) is 2-refiatve, i.e. Wx ts efSnite indes in O(Sx),
then Aut(X) is finite.

  The automorphism group Aut(X) acts on the 1-dimensional space of regular
2-ferms st2(X) oR X. LÅít x : Aut(X) - k' be the cgrrespeRdiRg ckaraeter. Little

is known about the image of x.
  An automorphism g is called symplectic ifx(g) = 1. Next we consider symplectic
automorphism$ of X of finite order. If the order n is coprime to the characteristic
p, then we kave the same resEk as in tke cemplex case.

Theorem 2.2. Letg be a symplectic automomphism offinite ordern. If (n,p) = 1,
then g has only finitely many fixed points and the possible pairs (n, f) are the same

as in Theerem 1.3, tkat is,

            (n, f) = (2, 8), (3, 6), (4, 4), (5, 4), (6, 2), (7, 3), (8, 2),

Proof At a fixed point of g, g is linearizable because (n,p) = 1. This imaplies
tkat the quotieRt surÅíace Y = Xlg has at werst A.-siftgularities and its mmimal
resolution is a K3 surface, So, Nikulin's argument [N] for the compiex K3 surfaces

works except the following 2 cases.
  Case 1: n =: 11 and Xlg has 2 Aie-singularities.
  Case 2: n == 15 aiid Xlg has 3 singularitie$ of type Ai4, A4 and A2.

(When the ground field is C, both cases are ruled out easily by the fact that the
Picard number of K3 surfaces cannot exceed 20.)
  IR betk ca$e$, let P be tke minimal yesolutiok of Y = Xlg. Tkek V is a
supersingular K3 surface, The Picard lattice Sv contains the sublattice of rank 20
coming from the resolution of singularities, Aio O Aio in Case 1 and Ai4 $ A4 $ A2
in Case 2. The discriminant group of the sublattice of rank 2e is an abelian group
Gf length 2, kon-p-elementaxy. Cft the ether hEmd, the discriminant greup eÅí Sg
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is u p-elementary group of length 2o, where ct is the Artin invariant of 9. This

implies that a : 1 and hence Sv is a p-elementary even lattice of rank 22, signature
(1, 21) and length 2. Now some calculation shows that such a lattice cannot contain

Aie ee Aie unlessp =11, imd A24$A4SA2 unlessp=3orpme 5. =

  The situation is completely different in the case when the order n = pk. In this

case, g is automatically symplectic, and is called wild. We have the following result
(I. Dolgachev and J.Keum [DK]).

Theorem 2.3. Letg be an automerphtsm ef orderp and let Xg be the set offined
points efg. Tken ene of the feileutng cases eccur:
(1) Xg is finite and consists of O, 1 or 2 points.

(2? Xg ts a divisor such that the Kodaira dimension of the pair (X,X9) is equal to

O. In this case X9 is a nodal cycle, i.e. the union of smooth rational curves.
(S) Xg is a divisor such that the Kodaira dimension of the pair (X,Xg) is equal to

t. In thts casep S ll and there {utsts g dius' or D 2gith suppart en Xg such that
the linear system IPI defines an eiliptic er guasi-eliiptic fibration ip : X . Pi.

(4) Xg ts a divisor such that the Kodaira dimension of the pair (X,Xg) is eaual to

2, In thts case Xg is equal to the support ofsome nef and big divisor D. Tttke D
minirnal with this property. Let d =: dim HO(X, Ox(D - Xg)) and N = SD2 + 1.

Then p(N - d- l) S 2N - 2.

  In the complex case, the quotient ef the surface by a fiRite group of symplectic
automorphisms has only rational double points and is birationally isomorphic to a
K3 surface. This is no longer true in positive chatracteristic [DK].

Theorem 2.4. Let g be as in Theerem 2.3. If IX"l = 2, X!(g) ts birationally a
K3 surfgce. ij IXgl = l, X!(g) ts 5iratioRally either a K3 surface er a ratienal
stirface. The K3 case can occur oniy ifpS 5. lfDimXg År O, the quotient Xl(g)
ts always a rationat surfaoe.

  The following is the main result of this talk, which says that there is no wild
pcyclic actien on a K3 surface ifp År 11.

Theorem 2.5. ifX admits an autgmerphtsm g of erder p, thenp S 11.

Proof. We give a sketch of prooÅí According to Theorem 2.3-2.4 and some detailed
analysis in [Dolgachev-Keuml, we are reduced to prove the bound in the following

two cases :
  Case l ; IXgl me 1 akd Xl(g) is a ratieRal gurface wkh an elliptic Gcrenstein
$ingularitiy.

  Case 2 : Xg is a nodal cycle and X'1(g) is a rational surface with an elliptic
Gorenstein singularitiy, where X' is the orbifold K3 surface obtained by contracting

X9 to a rational double point.

  We claim that in both cases X admits a g-gtable el}iptic fibration such that Xg
i$ contaiRed in a fibre.

  For simplicity, let's consider the first case. The second case can be handled
sirnilarly.

  Note that the quotient surface Y = Xl(g) has trivial canonical divisor. Let

                            a: Y- -Y
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be the minimal resolution. Then

                            Kv =-A,

where a(2)L is an effective divisor whose reduced divisor is the exceptional set of a.

There is a biratieRal merpkism
                            ip :9-z
onto a rational surface Z with KE = O. More precisely, ip is a blow up of points on

simple compoReRts eÅí a membef F ef the anti-eimcRical system l - Kzl. Tkexx

                        Åë'F=A+ÅíaiE{

for some positive integers ai, where UEi is the exceptional set of Åë. Note that the

intersection number

                           (e'F)Ai = g
for every eomponent Ai of A. Denote by za• the image in Y of Ei, and consider
the effective Weii divisor D := Åíai E• on Y. Caiculating Mumford's intersection

number on a normal surface, we have

                           a'D = ip'F,

and hence D2 := (a'D)2 = F2 er= O. Since Y is Q-factorial, the pull back T"D,
wkere rr : X ----+ Y = X!g is the q=etieRt morphism, is ak effective integral divisgr
of self intersection O. Let A be an effective integral divisor of self intersection O,
proportieRal to g'P and Ret diyisible iR Pic(X). Tkeft A is tke sum ef a ftbre C of
an elliptic fibration and possibly, sections, Si, S2, ..,, St, Here we assumep År 11. Let

A ma P + N be the Zatriski decompesitioR, i.e., P is nwnerica31y effeetive, PNi = e
for each component of N, and the intersection matrix (NiNe•) is negative definite.
Since g"(T'D) = r"D (equal as divisors), g"A x A as divisors. The uniqueness of
the Zariski decomposition imp!ies that g'P = P as divisors. Note that in our ease
P me C+ Åri SV2. So g"C ww C, i.e., the eiiiptie pencii iCi is g-stabie. Now it is

easy to see that the fibre C contains Xg. This proves the claim.
  A similar argument as in [Section 5, DK] shows that X admit$ an automorphism
g of order p, the characteristic, and a g-stab}e elliptic fibraticR only if p S 11. This

contradicts to the assurnptionpÅr 11. 0

  The maiR ebservatioll ef Mukai in preving Tkeorem l.4 is that the Rumber of
fixed points of a symplectic automorphism of order n is equal to

                      e(n) = 24(n illil.(1 + }))-i•

A Mathieu representation of a group G is a 24-dimemsional !epreseptation wXh
character x(g) = ff(ord(g)). The natural action of a finite group G of symplectic
gutemerphisms of a cemplex K3 surface on H'(X,Q) rv Q24 i$ a Matbieu repr"
sentation, From this Mukai deduces that G is isomorphic to a'subgroup of M23
witk at least 5 orbits. Iit poskive ckaracteristic the ferm:la for the Rumber ef
fixed points is no longer true and the representation of G on the l-adic cohomology
H.'t(X,Qi) or Q?4 ls Rot Mathieg iR gekeral fer aiiy i # p. For p År 11, Åírom

Theorem 2.2 and 2.5, we have the following :
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Theorem 2.6. LetG be afinite yroup ofsymplcctic automorphisms ofaK3 surface
in characteristicp År 11. Then the natural representation ofG on H."t(X, Qt) tw Q74

is Mathieu for l pt p.

  Even ik the case ef charecteristic p År il, ene cEmkeS expect tke same elas-
sifuation ef finite symplectic groups G as in Mukai's list. The prcblem is the
existence of supersingular K3 surfaces. For such $urfaces, the G-invariant subspace
of H."t(X, Qi) gts Q?4 has dimemsion 2 3. Nevertheless, we hope to have a complete

classification of finite symplectic groups in positive characteristic.
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