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AUTOMORPHISMS OF K3 SURFACES IN POSITIVE
CHARACTERISTIC

JONGHAE KEUM (JOINT WITH IGOR DOLGACHEV)

The main topic of this talk consists of extending the known results about auto-
morphisms of complex algebraic K3 surfaces to the case when the ground field is an
algebraically closed field of positive characteristic. We review first what is known
in the case when the ground field is C.

1. AUTOMORPHISMS OF COMPLEX PROJECTIVE K3 SURFACES

Recall that an algebraic K3 surface over an algebraically closed field &k is a
smooth projective surface X over k such that the canonical class Kx is zero and
the first Betti number is zero. When k£ = C all K3 surfaces are diffeomorphic.
The fundamental group is trivial and the second cohomology group H?(X,Z) is a
free group of rank 22 equipped with an integral symmetric bilinear form defined
by the cup product. The lattice H3(X,Z) is even, unimodular and of signature
(3,19), hence isomorphic to U @ U & U & Eg(—1) @ Eg(—1), where Eg(—1) is the
lattice defined by the negative of Cartan matrix of simple root system of type Eg
and U the standard hyperbolic plane. The subgroup Sx of H2(X,Z) generated
by algebraic 2-cycles is isomorphic to the Picard group Pic(X) of line bundles on
X. As a sublattice of H?(X, Z) it is an even, not necessarily unimodular lattice of
signature (1,7 — 1). It is called the Picard lattice, or Neron -Severi lattice of X.
The Picard lattice is an important invariant of a K3 surface. The deficiency from
the unimodularity is measured by the discriminant group D(Sx) which is a finite
abelian group equipped with a quadratic form with values in Q/2Z. It is more or
less known which lattices can occur as the Picard lattice of a K3 surface.

Let Aut{X) be the group of regular automorphisms of X (or, equivalently, holo-
morphic automorphisms, or birational automorphisms). The main tool in describ-
ing the structure of Aut(X) is the celebrated Global Torelli Theorem due to I.
Piatetsky-Shapiro and 1. Shafarevich [PS]. According to this theorem, an isometry
o: H*(X,Z) — H*(X',Z) between the cohomology lattices of two K3 surfaces X
and X'’ is induced by an isomorphism f : X' — X, i.e. ¢ = f*, if and only if &
sends an ample divisor of X to an ample divisor of X’ and the linear extension of o
over C sends the 1-dimensional space of holomorphic 2-forms Q?(X) c H?(X,C)
on X to Q%(X’) on X'.

The group Aut(X) has a natural representation in the orthogonal groups O( H2(X, Z))
and O(Sx). The cohomology class [C] of a smooth rational curve C on X is a vector
in Sx of norm ([C],[C]) = —2. This follows from the adjunction formula because
Kx = 0. This implies that [C] is a (—2)-root. Let Wx be the subgroup of O(Sx)
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generated by reflections in the classes of smooth rational curves (or, equivalently,
all (—2)-roots). It is called (—2)-refection subgroup of O(Sx).

Theorem 1.1. Let p: Aut(X) — O(Sx), f — f*, be the representation of Aut(X)
on the lattice of algebraic cycles. Let Aut(X)* be the image of p. Then Aut(X)* N
Wx =1 and G = Aut(X)* - Wx is of finite indez in O(Sx) and is equal to the
semi direct product of Aut(X)* and Wx.

The kernel of the representation p is contained in a group of projective auto-
morphisms of X with respect to any projective embedding of X. It is known that
X has no holomorphic vector fields, so this group must be finite. Thus Theorem
1 gives a criterion for finiteness of Aut(X) in terms of the lattice Sx: the group
Aut(X) is finite if and only if the subgroup Wx is of finite index in O(Sx). All
abstract even lattices M of signature (1, — 1) with the property that the subgroup
generated by reflections in (—~2)-roots is of finite index in O(M) have been classified
by V. Nikulin and E. Vinberg. All of them can be realized as the Picard lattice
of some K3 surface. We call them 2-reflexive lattices. This gives, in principle, a
classification of all K3 surfaces with finite automorphism group.

Let us describe more precise results about automorphisms of complex projective
K3 surfaces. The automorphism group Aut(X) acts on the 1-dimensional space of
holomorphic 2-forms 9%(X) on X. Let x : Aut(X) — C* be the corresponding
character. The image of x is a finite cyclic group.(It may be infinite if X is non-
projective.) All possible such finite cyclic groups were described by S. Kondo [Kol]
and S. Vorontsov [V].

Theorem 1.2. The possible order of x(Aut(X)) is a divisor of one of the numbers
66,44, 42, 36,28, or 12, or a power of prime p* < 66, where p <19 and k < 4.

An automorphism g is called symplectic if x(g) = 1. The name is explained by
the fact that a non-zero holomorphic 2-form on X defines a symplectic structure on
X, so a symplectic automorphism preserves a symplectic structure. The possible
order n of a symplectic automorphism and the number f of its fixed points is given
by V. Nikulin [N].

Theorem 1.3. The possible pairs (n, f) are as follows.
(n, f) = (2,8),(3,6),(4,4),(5,4),(6,2),(7,3), (8,2).

More generally, a subgroup G C Aut(X) is called symplectic if G C Ker(x).
The classification of abelian groups of symplectic automorphisms was first given by
Nikulin. It was later extended to not necessarily abelian groups by S. Mukai [M].

Theorem 1.4. Let G be a symplectic subgroup of Aut(X) which is not contained
in any other symplectic subgroup. Then G is isomorphic to one of the 11 groups
PSL(2,F7), Ag, S5, Mao, F3s4, A4 e, Thg2, Hiez, N72, M, Tys.

Each case is supported by an example.

It is an amazing discovery of S. Mukai that each of the 11 groups can be realized
as a subgroup of a sporadic simple group, the Mathieu group M,3. Among all
subgroups of Mj3 these subgroups can be characterized by the property that they
have > 5 orbits in the natural action of M3 on the projective line P! (Fg3). Recall
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that Mazj3 is realized as a stabilizer of a point in the Mathieu group M4 which is
defined as a certain group acting quintuply transitively on the set P*(Fy3).

Later on, another proof of Theorem 1.4 was given by S. Kondo who found another
remarkable connections with rank 24 unimodular negative definite lattices called
Niemeier lattices [Ko2].

2. AUTOMORPHISMS OF K3 SURFACES IN POSITIVE CHARACTERISTIC

Now let X be a K3 surface over an algebraically closed field k of characteristic
p > 0. The Picard lattice Sx (= Neron -Severi lattice) of X is defined to be the
group of all divisors modulo numerical equivalence, which with the intersection
pairing becomes a lattice. The main difficulty in extending the previous results
to the case of positive characteristic is the absence of the Global Torelli Theorem.
However, Theorem 1.1 admits a generalization to the case of supersingular K3
surfaces (A. Ogus [O]). Recall that in the complex case, Hodge theory gives that
r =rankPic(X)< h¥}(X) = 20. The absence of the Hodge decomposition gives
only r < 22. In the extreme case r = 22 the surface X is called supersingular. Also
note that r = 21 does not occur.

In any characteristic, it is known that Aut(X)* N Wx = 1 but it is not known
that the semi direct product Aut(X)* - Wy is of finite index in O(Sx). Still we
have

Theorem 2.1. If Sx = Pic(X) is 2-reflexive, i.e. Wx is of finite indezr in O(Sx),
then Aut(X) is finite.

The automorphism group Aut(X) acts on the 1-dimensional space of regular
2-forms Q2(X) on X. Let x : Aut(X) — k* be the corresponding character. Little
is known about the image of x.

An automorphism g is called symplectic if x(¢) = 1. Next we consider symplectic
automorphisms of X of finite order. If the order n is coprime to the characteristic
p, then we have the same result as in the complex case.

Theorem 2.2. Let g be a symplectic automorphism of finite order n. If (n,p) =1,
then g has only finitely many fired points and the possible pairs (n, f) are the same
as in Theorem 1.3, that is,

(n, f) = (2,8),(3,6),(4,4),(5,4),(6,2),(7,3), (8,2).

Proof. At a fixed point of g, g is linearizable because (n,p) = 1. This implies
that the quotient surface Y = X/g has at worst A,,-singularities and its minimal
resolution is a K3 surface. So, Nikulin’s argument [N] for the complex K3 surfaces
works except the following 2 cases.

Case 1: n =11 and X/g has 2 Ao-singularities.

Case 2: n = 15 and X/g has 3 singularities of type A4, A4 and Aj.

(When the ground field is C, both cases are ruled out easily by the fact that the
Picard number of K3 surfaces cannot exceed 20.)

In both cases, let ¥ be the minimal resolution of Y = X/g. Then Y is a
supersingular K3 surface. The Picard lattice Sy contains the sublattice of rank 20
coming from the resolution of singularities, A1p® Ajp in Case 1 and A14 B As B Az
in Case 2. The discriminant group of the sublattice of rank 20 is an abelian group
of length 2, non-p-elementary. On the other hand, the discriminant group of Sy
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is a p-elementary group of length 20, where & is the Artin invariant of ¥. This
implies that o = 1 and hence Sy is a p-elementary even lattice of rank 22, signature
(1,21) and length 2. Now some calculation shows that such a lattice cannot contain
A1g® Ajg unless p =11, and A1, 6 A3 & Ay unlessp=3 or p=15. O

The situation is completely different in the case when the order n = p*. In this
case, g is automatically symplectic, and is called wild. We have the following result
(I. Dolgachev and J.Keum [DK]).

Theorem 2.3. Let ¢ be an autornorphism of order p and let X9 be the set of fired
points of g. Then one of the following cases occur :

(1) X9 is finite and consists of 0, 1 or 2 points.

(2) X9 is a divisor such that the Kodaira dimension of the pair (X, X9) is equal to
0. In this case X9 is a nodal cycle, i.e. the union of smooth rational curves.

(8) X9 is a divisor such that the Kodaira dimension of the pair (X, X9) is equal to
1. In this case p < 11 and there ezxists a divisor D with support on X9 such that
the linear system |D| defines an elliptic or quasi-elliptic fibration ¢ : X — P!,

(4) X9 is a divisor such that the Kodaira dimension of the pair (X, X9) is equal to
2. In this case X9 is equal to the support of some nef and big divisor D. Take D
minimal with this property. Let d = dim H(X,0x(D — X9)) and N = 1D? + 1.
Then p(N —d—-1) < 2N - 2.

In the complex case, the quotient of the surface by a finite group of symplectic
automorphisms has only rational double points and is birationally isomorphic to a
K3 surface. This is no longer true in positive characteristic [DK].

Theorem 2.4. Let g be as in Theorem 2.3. If | X9 = 2, X/(g) is birationally a
K3 surface. If | X9 = 1, X/(g) is birationally either a K3 surface or a rational
surface. The K3 case can occur only if p < 5. If DimX9 > 0, the quotient X/(g)
is always a rational surface.

The following is the main result of this talk, which says that there is no wild
p-cyclic action on a K3 surface if p > 11.

Theorem 2.5. If X admits an automorphism g of order p, then p < 11.

Proof. We give a sketch of proof. According to Theorem 2.3-2.4 and some detailed
analysis in [Dolgachev-Keum]|, we are reduced to prove the bound in the following
two cases :

Case 1 : | X9 = 1 and X/(g) is a rational surface with an elliptic Gorenstein
singularitiy.

Case 2 : X9 is a nodal cycle and X’/(g) is a rational surface with an elliptic
Gorenstein singularitiy, where X’ is the orbifold K3 surface obtained by contracting
X9 to a rational double point.

We claim that in both cases X admits a g-stable elliptic fibration such that X9
is contained in a fibre.

For simplicity, let’s consider the first case. The second case can be handled
similarly.
Note that the quotient surface Y = X/(g) has trivial canonical divisor. Let

a:Y oY
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be the minimal resolution. Then
Ky = -A,

where A is an effective divisor whose reduced divisor is the exceptional set of o.
There is a birational morphism

$:Y -2

onto a rational surface Z with K% = 0. More precisely, ¢ is a blow up of points on
simple components of a member F of the anti-canonical system | — Kz|. Then

*F=A+ Za,-Ei

for some positive integers a;, where UE; is the exceptional set of ¢. Note that the
intersection number

(¢*F)A;=0

for every component A; of A. Denote by E; the image in Y of E;, and consider
the effective Weil divisor D := }_a;E; on Y. Calculating Mumford’s intersection
number on a normal surface, we have

o*'D = ¢*F,

and hence D? := (0*D)? = F? = 0. Since Y is Q-factorial, the pull back 7*D,
where 7 : X — Y = X/g is the quotient morphism, is an effective integral divisor
of self intersection 0. Let A be an effective integral divisor of self intersection 0,
proportional to 7*D and not divisible in Pic(X). Then A is the sum of a fibre C of
an elliptic fibration and possibly, sections, Sy, S, ..., S;. Here we assume p > 11. Let
A = P + N be the Zariski decomposition, i.e., P is numerically effective, PN; =0
for each component of NV, and the intersection matrix (N;N;) is negative definite.
Since g*(7*D) = n*D (equal as divisors), g*A = A as divisors. The uniqueness of
the Zariski decomposition implies that g* P = P as divisors. Note that in our case
P=C+385:/2. So g*C = C, i.e., the elliptic pencil |C| is g-stable. Now it is
easy to see that the fibre C contains X9. This proves the claim.

A similar argument as in [Section 5, DK] shows that X admits an automorphism
g of order p, the characteristic, and a g-stable elliptic fibration only if p < 11. This
contradicts to the assumption p > 11. 0

The main observation of Mukai in proving Theorem 1.4 is that the number of
fixed points of a symplectic automorphism of order n is equal to

e(n) =24(n ]+ %))-1.

pin

A Mathieu representation of a group G is a 24-dimensional representation with
character x(g) = e(ord(g)). The natural action of a finite group G of symplectic
automorphisms of a complex K3 surface on H*(X,Q) = Q2* is a Mathieu repre-
sentation. From this Mukai deduces that G is isomorphic to a*subgroup of My
with at least 5 orbits. In positive characteristic the formula for the number of
fixed points is no longer true and the representation of G on the l-adic cohomology
H:(X,Qi) = Q¥ is not Mathieu in general for any ! # p. For p > 11, from
Theorem 2.2 and 2.5, we have the following :
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Theorem 2.6. Let G be a finite group of symplectic automorphisms of a K3 surface
in characteristic p > 11. Then the natural representation of G on Hy (X, Qi) = Q¥
is Mathieu for | # p.

Even in the case of characteristic p > 11, one cannot expect the same clas-
sification of finite symplectic groups G as in Mukai’s list. The problem is the
existence of supersingular K3 surfaces. For such surfaces, the G-invariant subspace
of H2,(X, Q) = Q?* has dimension > 3. Nevertheless, we hope to have a complete
classification of finite symplectic groups in positive characteristic.

[DK]
(Ko1]
[Ko2)
(M)
(N]
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