
AN EXAMPLE OF STABLE HIGGS BUNDLES WHICH
DO NOT SATISFY THE BOGOMOLOV INEQUALITY

YorcHI MIyAoKA

School ef Mathematics, University of Tokyo

INtrRoDucTION

  The Bogomolov inequality for semistable vector bundles on smooth complex
projective n-folds reads

c2(S)An-2 ) r-l
2r

ci(Åí)2An-2,

where A is aR ample divisoy aAd S is aR A-semistab}e vector buRdle ef raRk r. in case
8 is A-$table with vanishing ci(8), the lowey bound of this inequality e2(8)An-2 2 e

is attaimed if and only if S is a flat hermitian bundle associated with an irreducible
unitary representation of the fundamental group 7ri(X), thereby establishing the
eRe-teoRe Kebayashi-thtehin ceyespendeRce betweeR the stable buRd}es with vaR-
ishing Chern classes and the irreducible unitary representations of Ti (X) [2]. The

inequality is natural enough to have proofs by several different approaches (geG
metrie invariaRt theory [l]; characteri$tic p method i3]; the theory of effective coRes

eR ruled surfaces I8]; differential geometry i2]) and generalizes to bigger classes of

semistable bundles, including orbibundles and parabolic bundles.
  Another important class of generalised vector bundles is that of Higgs bundles
(see [91), 3xd it is a Ratraral qgestioR te ask if tke Begemc}ov ineqgality exteRds

also to this class, The inequality is indeed true for standard types of Higgs bundles

listed irm Section 1 as Examples O, 1, 2, and for bundles of small ranks 2,3 as well
[7]. Unfortui}ately, however, this i$ net the case for Higgs bundles of higher raRk.

in thls note, we construct stable Kiggs 4-b"xxdles en surfaces of geRerakype for
which the inequality breaks down (Propositiorm 4 in Section 3). Starting from this

examaple, we also find a nontrivially deforming families of stable Higgs 4-bundles
wieh tAvial Ckem clgsses or, eqtivaleRtly, koR-trived deformatiems ef irfedgcible
SL(4)-representatioms of the fundamentai group (Section 4).

Acknowledgement. This note grew out from a conversation in Heiderabad, India,
with M.S. NarasimhaR, whom I experess my siRcere gratitude.

         1. HI(l;GS BUNDllES: DEFINITION AND STANDARD EXAMPLES

  Let S 5e a vecter bwndle ek a complex maRifo}d X exid e: S - stk X8 aR
Ox-linear mapping. The pair (S,e) is said to be a Higgs bundle if the natural
composite map e A e: S ---- stk Åq2) 8 identically vanishes. Alternatively, 8 is a Higgs
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bundle if an Ox-linear action of the sheaf of the local vectour fields ex en 8 is
given in sgch a way that &(g2(e)) xe C2(&(e)), Vet E ex,Ve E S. IR etl}er words, a

Higgs bundles is a vector bundle equipped with a Sym 0x-modu]e structure, where
Symex == elnmo Symi ex is the symmetric tensor algebra generated by 0x.

  Higgs subskeaves ftre, by defukion, SymSx-submodw}es. Åq];iveR aR ample divi-
sor A on X, the netion of A-(semi)stability of Higgs bundles is naturaliy defined.

  Historically, Higgs structures were introduced as the moduli of flat conrmections
[51. Let 8 be a vector bundle with an integrable connection Vo : S ---År S)} cibS, Given

aRcther ktegrable ccRRectioR X7, ghe differeRce e = K7 -Ve : S -År st}&8 ebviously

gives a Higgs bundle structure and this correspondence translates the moduli of the
flat connections on 8 into the moduli of Higgs bundle structures.
  We give be}ow severa} stan(}ard examples of Higgs buRd}es.

Example O. An ordinary vector bundle is viewed as a Higgs bundle with trivial
(zero)action of Ox.

Example 1. Let X be a Åëomp}ex m&Rifgld. TheR

                               l
                        Ek :esymiex
                              i=o
is a Higgs bundle, where the action of Symj 0 is defined by the standard multipli-
catiorm
          symJ exsymz ex --, { grmt+0 ex, igi 9+iz År+ s. -Åq l

Given m NÅq l, the shea[f

       l
Ekm xe O symi ex

      z=m
is a Higgs subbundle of Ek, and the quotient Ek/Eix'M is isomorphic to Eve. (Ac-

tual}y a inore natural definition of Ek is the quotient Exoo/Eyw'i.)

  If KxA År g a#d ex is A-semistab}e as an erdinary vector bttkdle iresp. If
KxA X O and Ox is A-semistable], then Ek is an A-stable [resp. A-semistable]
Higgs bundle. If Kx is ample and A == Kx, then the Yau inequality [10]

                                     dimX-1             (-1)nc2(X)cl(X)n-2 ) (-i)n                                             cl (X)n
                                      2dimX
yields the Bogomolov inequality fer the Higgs bundle Ek.

Example 2. Giveg a Roxx-negative integer l, we defike the Higgs bund}e Fk by

                              i
                        FN rm ({E) symi st},

                             2=M
where the action of SymO O is given by the contraction homomorphism

             Sym3 ex symt stk -. { gYMt' st}, igr, l ; :..

If m S l, then FxM c Fk is naturally a Higgs subbundle. Fk is an A-stable [resp.
A-semistable] Higgs bundle if KxA År O and Symi st} is A-stable as ar} ordinary

vecte: buRdle Iuresp. if KxAL 2 e assd st} is 24L-semistab}e]. Whefi, in additieR,
A = Kx is ample, the Bogomolov imequality is satisfied by FN.
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Example 3. Let g: X - Y be a morphism between complex manifolds and S a
Higgs bundle on Y. The natural homomorphism ex -År g"0y defines a canonical
Higgs bundle structure on g"8.

Example 4. Given two Higgs bundles 8i,i= 1,2, the tensor bundle 8i X 82 is a
Higgs bundle by defining e(ei op e2) = e(ei) X e2 + ei Xe(e2), e E ex, ei E Ei.
(the tensor Higgs bund}e). The dual bundle 8V is a Higgs bundle (the dual Higgs
b"nd!e) by Åqele(eV)År = -Åqe(e)leVÅr. Here e E ex, e E S, eV G SV, while Åq•ltÅr sÅíallds

for the cgÅícnical biliRear pairing. Fk is the dgal Higgs buitdle of E;x, if we give a

kondegeRerate pairing between SymM9x aRd SymMstk by

Åqei X••-Xemltui X•••w,nÅr ==
(-1)m

m!
     m2 llwi(e.(,)).

crES,n inm1

2. HIRzEBRuon's KuMMER covERs X(n) ATTAcHED To
THE COMPLETE QUADRILATERAL LINE CONFIGURATION

  We briefiy review Hirzebruch's construction of Kummer covers of projective plane
branching aloRg a complete quadrilateral i4i.
  Take geReral fogr peints ,F}i,...,P4 oR prejective p}aue pt, akd let Lij• = L3•i

denote the liRe conRecting ji}i and Pj (i iE j). The redttced divisoy P = ULi3• is
the so-called complete quadri}ateral consisting of six lines, axxd the Pi are the trip}e

points of D. The complete quadrilateral D has extra three double points of the
fOrM Lii,i2 nLJ'i,j2, where {ii,i2,o'i,2'2} = {1,2,3, 4}. Exactly three singular points

of D lies on each Lij•, two of which are triple points aand one a double point. Thus
the Euler number of the nomsingular locus of D is 6 Å~ (2 - 3) = -6, while that of
D is -6 +4+ 3 = 1. Therefore the Euler number of the complement of D is given

by e(XXD) =3-1=2.
  Let p: X -- P2 be the blowing up at the four triple points Pi,...,P4 of D
&nd Ei c X the exceptiexxal curve ever ,Pg. X is a Del Pezzo suyface Df degree
5, wkk very ample aRticaxxonical divi$or -Kx N 3ll - XEi, wkere H dexetes
the pul}back of the hyperp}ame of P2. The effective divisor pa"D is supported by a

redttced effective divisor

b rv pa" 2Lij -22Ei rv 6p'H-2ÅíEi tw -2Kx

with only simple normal crossings. Each Ei contains three singular points of D so
that b has exactly 4 Å~ 3+3 : 15 double points. If LiJ- c X denotes the strict

tramsform of Lij , we have

#Li3' fi Sing(bÅr = 3 = #Ei fi sing(b).

  GiveR a positive integer n, there exists a Kummer covering x("År: XÅqn) - X
of degree n5 branching a}ong b (see Hirzebruch[4]). The function field of X("År

is simply obtained by adjoining the n-th roots " tie•/lkt (i,o',k,l E {1,2,3,4}) to
C(P2), where liJ• is a linear defining equation of the 1ime LiJ•. X(") is a smooth

projective surface and the local description of X. is quite simple: if D is locally
defined by the equation x nm O or xy = O, then Tn : Ox -• Ox. is given by (x,y) H
(t",y) or (x,y) H (t",u"), where (x,y) and (t,u) are local coordinates of X and
X(n).

73

3



74

  In particulaur, the inverse image (7r("))-i(p) c X(") of a closed point p E X
ccRsists of n5 [resp. n4, n31 poiRts w}ieR p E XXb Iresp. p E bX SiAg(b),
pa E Sing(D)]. The topological Euler rmmber e(X(")) of X(") is thus given by

  n-5e(X(")) = e(x X b) + n-ie(b X Sing(b)) + n-2e((Sing(b))

            = 2+ n-' Å~ (6 + 4) Å~ (2 - 3) + n-2 Å~ 15 ex 2- 10n-i + 15n-2.

On the other hand, we calculate Kx(n) as

      Kx(n) rv r(")'(Kx + (1 - n'i)b) N (1 - 2n-i)rr(n)'(-Kx),

aRd hekce
               cl(X("))2 = ci(st}(.))2 = 5n5(1 - 2n-1)2.

The surfaÅíe Xn kas ample caneRical divisor if n ) 3.
  When n= 5, we have e?(Xs) = 54 Å~9, c2(Xs) me e(Xs) =54 Å~3, meaning that
Xs is a surface of general type which attains the upper bound of the Miyaoka-Yall
inequality K2 S 3c2.

  The Del Pezzo surface X carries five 1imear pencils 12H - ÅíEil, lll - Eil,
... , IH - E41, definixxg five surjeetive merphisms frgm X oRtg ewi. Each ef tkese

morphisms ha$ exactly three fibres contained in the branch locus D. For instance,
for the morphism associated with l2H- Z) Etl, the three curves Li2+L34, Li3+L24

and Li4 + L23 are such fibres, aRd so are Lii + Ei, i = 2, 3, 4 for IH - E"
  upstairs on x("), there are thus five morphisms f6"),...,fE") onto the curve

C("), at} n2-skeeted Kwnmer ccver of Pi b:acchixxg at tkree poipts, g, 1 akd oe,
say. The pullback line bundle LS") -- fj(•n)'wo(.År is an invertible subsheaf of S)N(.),

We easily check that L;") is saturated iR S}3cÅq.) and that

              L8n) N (1 - 3n'i)7r(n)'(2N - Åí E",

              L5. ") tv (1 - 3n-i)rr (")' (H --- Ei ), i = 1, . . . , n.

Ishida i6] determined the irregularity of X(") by showing that the natural map
OJ fJ'• HO(C(n), stb(.)) e HO(X(")9}(.)) is an isomorphism (for instance, q(X(5)) =

sg(C(5År) = 3e).

  In view ofthe definitions of X(") and C(n), the family (X("),C("), fi(")) form a

partial}y crdered tewer: there are katura} Kummer cevers 7E.M)"År : X(mnÅr - x(n)

of degree m5 and p[.M)"):C(M") -" C(") such that the diagram

commutes.

        rÅqMn)
 x(mn) -:!2'i-) x(n)

f;-n}i f5"'i
         (mn) c(mnÅr -ekti}wwLÅrn) cÅqnÅr
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           3. CONSTRUCTION OF A STABLE HIGGS 4-BUNDLE 7-t

  Let the notation be as in the previous section,
  We construct a Higgs 4-bundle 7t on X(i5) as a subsheaf of rfsi)5)"Fk(,) (see

Section 1, Examples 2 and 3).
  Let C8),FÅí") c X(") (1 SiÅq o' Åq- 4, 1SkS 4) be the inverse images of

Lij , Ek c X with reduced scheme structures. Each of them is a union of n3 copies
ofacurve isomorphic to C("). Cf•j"•)is contained in n3 fibres of fi("),fj(.") and f6n),

whereas it is union of sections of fi(") forlE {1,2,3,4}X{i,1'}. Similarly, .Fi(") is a

union of sections of fi("), f6") and contained in fibres of the other three projections

to C(n).
  Let n = 3. Then C(3) is an elliptic curve. Fix a basis n of HO(C(3), stb(,)) ft C,

and put n, = f,(• 3)'n E HO(X(3), st}(,)).

Proposition 1. The 1-forms opo andw = no -ni - n2 - n3 - op4 are non-zero and
sit in the subsheaves
                        Ker(st}(3) ' (i.[), stbsg•')

and
                                    4
                       Ker(st}(3) . e9},(3)),

                                   tL1
respectively.

Proof This immediately follows from the following two facts.

   (1) fo maps each Lio to a single point on Pi or, equivalently, f63) maps each

      Cf•23• ) to finitely many points of C(3);

   (2) fi : Ej - Pi is either an isomorphism (i = O or i = o') or a constant map
      (o' l i = 1,2,3,4) or, equivalently, fi(3) : Fj(•3) - C(3) restricted to each

      irreducible component is either an isomorphism or a constant map.
Indeed, viewed as 1-forms on C5•i) fy C(3), no = nt = nj = O, nt = n, l l 0,i,o', so

that nolcsg.) =O, wlcsg.) = -2n 7! O• On Fi(3), we have no == nt = n, nj = O, 3' l o,i,

so that nyolFs3) =n 7E O, cvlF,(3) = O•

Corollary 2. In the same notation as above,

                T[ 33gy)'no E st}(3.) (- (n - 1) 2 cf. ,3, ") ),

                                       ISiÅqJ' "Åq4
                                        4
                 7rE33Y)'cv E S)Sc(3.) (-(n - 1) 2 Iz,(3")).

                                       i=1

Proof. Let (Åë,y) be a local coordinate at a general point of Ci•j3•) such that CS.j3.) is

defined by x == O. TE33Y) is then given by (t,u) H (x,y) = (t",u). Proposition 1

asserts that no is of the form ctdx + xPdy, cM,P E O, so that rE33)n)'no is of the form

ntn-iadt + t"fidu. The second statement for w is similarly proved.
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  stl(3.) contains rrE.3Åé)'st}(.) as well as rE33Y)'st}(3). At a general point p of each

compokent gÅí tke ramificatigR }ocus, the former subsheaf is geRerated by t2dt, du,
while the latter by t"-idt, du. In particular, when n År 3,

                7rE33Ii)'S-)}c(3) c 7rf.311)*st}c(n) C st3c(3n)•

  The following assertion follows from the above locai description of TE3.ÅéÅr*S)}(.)

together with the proof of Corollary 2.

Corollary 3. Fixn)4. Then

            T[33i')'7]o ff (7rE.311'År"st}c(.))(-(n-3) Åí ci,p3,"År),

                                     ISiÅq3' -Åq4
                                      4
            7rE,3Y)'cv ff (7rf.3Y)*st},(.,)(-(n - 3) 2 ,} 7,(3")).

                                     i=1
ffence

                                               4
     7rE,3 År")' no cv E 7rE.3?)"Sym2 S)}Åq.) (- (n - 3) ( Z) C,(,3n) + 2 F,( 3")))

                                  IKiÅq j' -Åq4 i=1
             = (xE.3?)'sym2s}},Åq.År)(-2(n3.- 3) ffÅq3")'(3H -- 2 E")

             = 7[#Åé)'Syg}2st}(Åq-)(p::li I! 32] KxÅqnÅr)•

  Pnt n == 5. r{]heR we get tke fe}}ewiRg

Proposition 4. (1) 7rEsi)5)'Sym2S)}Åq,) ) L xe O(g7rfsiÅr5)*Kx(s)).

  (2) 7t = L (l) 7rEsi?)*S)}((,) o O is a lliggs subsheof of

           7r[g?)*F3((,) = 7rEs')5År*(Sym2st}c(s) (I) S)}c(s) G Ox(s))•

  (3) ,,(7-t) = llt,TE,2)5År'Kx,,,, c,(7t) xe Ti,i?År'(c,(st},,,)+gKft,,,)2 = grig?)"Kft,,,,

so that
                   e?(1}iC) = l69 = ft . 1fit99 . ft,

                   c2 (7't) 63 3                                  168                                       3
  (4) The Higgs 4-bundle 7't is 7risi)5)'Kx(s)-stable,

Proof. Corel}axy 3 is rephrased inte (1), which ik turn yields (2). (3) fol}ows frem
direct computation. In order to show (4), we check that the avarage degree ofasat-
urated ffiggs subsheaf gf 7t i$ strictly $ma}ler thaxx (l3/36)TEsi)5År'Kk(sÅr, the average

degree of ?t. At a general point q of Cl33), the product now is of the form adxdy,

where a E OX and (x,y) is a local coordinate. Hence Ox(3)Onocv me S")}(3) around
g. Then it is obvious that, at a geReral point p E X(i5), ex{isÅr,p = (rrEsi)5)'0xÅqs))p =

(r(i5)*ex)p, Ox(is)Lp = 7r[si)5)'S")S((,),p. This shows that a proper Higgs subsheaf

of 7iC mu$t be colltained in 7rEsi5))"F}((,) == 7rEsi?År"(Slt}((,) (D Ox(s)), and the assertion

fol!ews from the semistability oÅí F3c(,År of average degTee (1/3)TEsi)5)"Kil ÅqsÅr.
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      4. STABLE HIaGS 4-BUNDLES WITH VANISHINa CHERN CLASSES

  Starting from the 4-bundle 7t described in the previous section, we can construct
many stable Higgs 4-bundles with trivial Chern classes.
  Recall that 7-t is the direct sum L (D TEsi)5)'S)}(,) G) O. Take line bundles Li,Åí2

such that Li c L, L2 ) O. Then 7t' = Li OTEsi?)'stN(,) OL2 is naturally a Higgs

bund}e. ?t' is stab}e if

   ") e,(Åí"ggiÅr5)'KxÅqs) År g(7rfg)5År"KxÅqsÅr ÅÄ ci(Åí2))7rEsi?)"Kx(s), aRd

   (2) ci(L2)xEsL5)"KxÅqsÅr Åq g(xEsi)5)*KxÅqs))2.

  Choose ,Ci to be of the form O(tiTEsi?)'Kx(s)), where ti E Q, ti Åq 4/9,t2 År O.

Such Li's make sense if we replace X(i5) by a suitable ramified cover Y == X(i5i),

where l is a sufficiently divisible positive integer. Thus we consider the vector
bundle 7t' = Li oT(Ys;S)k(,) G) L2 on Y, where TIs) : Y - X(5) is the projection.

  The Chern classes of the vector bundle 7t' are:

ci ("') xe (ti + t2 + l)7r lsS Kx (s) ,

c2(7t') nm (tlt2 ÅÄt, +t2 ÅÄ g) (,,Xs;KxÅq,År)2

Thus the condition
                         3c?(H') = 8c2(7'tl')

is given by the quadratic equation

                 3t? - 2tit2 + 3t: - 2ti - 2t2 +g xe O,

a solutioR of wkich is (ti,t2) = (g,g). HeRce there are ii}{}Ritely mai}y ratieRa}

selgtieRs gf the quadratic eqxatieB, aRd the stabillty coxdkioR is a iigit-empty
open conditieB oR those soiutions (the ratioRal point (1/3,e) lies en the beuRd[ary

of the region given by the stability condition (1) and in the interior of the one given

by (2)). For instance,

                      (t,,t,) = (3251g, 3, 2lg)

is a solution with

        (ci(?-t'), c2(7-s')) xe (g i ?5?rX,sKx,,), 3g',8. 'i3gl2 (r(y,sKx,,,)2) .

  We thus ceBclttde that there are 4-bundles 7i' sttch that the normalized bundle$
9 = 7t'(-ici(7-t')) arre stable Higgs 4-bundles with trivial Chern classes. By a
theorem of Simpson [9], 9 is a flat vector bundle induced by an irreducible repre-
sentation Ti(Y) - SL(4).
  On Y = X(i5i), the (integral) divisor (g -ti)(TXsSKx(s)) is linerly equivalent to a

sum of the fibres f,I 'picr, where f,I : Y . C(i5i) is the projection and pi. E C(i5i)

(indeed, -2Kx ev Åíe•.,o fi"Opi(1) on the Del Pezzo surface X, and the divisor in
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question is a rational multiple of the pullbaÅëk
aBgtker peiBt gin rv pi. -i- n., T{. (ii Picg(CÅqi5iÅr),

Oy(Åí f,Y'gta) ty

    i'or

Oy((g -- ti)rXs;Kx(sÅr +

of -2Kx). If we replace pi. by
we get aR effective iRvertible skeaf

Åíf'i'

i,a

7in)) - jc xcri(2 f,1 "T,.)•

This isomorphism induces an injection

Åí1(-T) : Ci(-Åí f,1 *Tia) g

     i,a

Åí c 7Xs; sym2 ftkÅq,År ,

wke:e r = z fiy*Ti.

"; ww

Roktrivially moves iR Mc

L,(-r) (D 7rEg9"s")}c(,) O Åí2,

O(Y). P"ttiRg

9. == ";(-ic,(IH;)),

we obtain a deforming family of stable Higg$ bundles 9. with ci = O G Pic(Y)
and c2 = O E H4(Y, Z). By Simpson's theorem [9], it gives rise to a deformation

of irreducible representations xi(Y) - SL(4) paramenized by a product of several
cGpies ef C(i50.
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