
RES[11'RJCTEDVOLUMESANDTHEAUGMENTEDBASEuocus

MIRCEA MUSTATA

    This is the coRtent of my talk at the Kinesaki meeSing iR Oeteber, 20e3. All Rew
results are basad on the joint work iELMNPI] with L. Ein, R. Lazarsfeld, M. Popa and

M. Nakamaye.

1. BASIC DEFIN!TIONS

    We work in the followng set-up. Let X be a smooth complex projective variety. We
denete by Ni(X) the greup of line bundles en X modulo numerieal equivalence (denoted
=-), and by Ni(.X)Q and Ni(X)R the corresponding vector spacas obtained by tensoring
with Q end R, respectively. Recall that Ni(X) is a gnitely gekerated ftee abeliasi greup.

Ni(X)R is a finite dimensional vector space, on which we consider the euclidean topology.

    If L E Pic(X), then it$ asymptotic base lecus is

                    B(L) : : ABs(LM),ed = B$(Lg),ed,

                           m
if g is divisible enough. As it is clear that B(LM) = B(L), we may define the asymptotic
base locus of a ({ilFdivisor in the obvious way.

    ORe problem about this definitioR is that k is Ret kumestcally invasiaRt: take oR a
curve of genus g ) 1 a non-torsion line bundle L E PicO(X). By definition L =- Ox, but

it is e!ear that B(L) ww X and B(Ox) ur Åë. See Ebcamp!e 1.2 in [ELMNP2} for two big
numericaliy equivaient line bundies with different asymptotic base loci.

    ARother preblem with the above definitioR is that iS works oniy for (Cli-divisors. The
foUowing notion introduced by Nakarnaye in [Nal] remedies both these problems.

Definition 1.1. ff D is aR R-divisor, then

                        B+(D) : = nB(D - A),

                                 A
where the intersection is over all ample divisoms A such that D - A is a Q-divisor.

Rjemark 1.2. rhe follewiRg preperkies are easy te preve ftom dekiitiea:

   (1) There is a neighbourhood UD of the origin in Ni(X)R such that if A is amp!e,
      with class in UD imd with P - A is a Qdivisor, then

                          BÅÄ(PÅr =: B(P - A).

   (2) ffDiE, then B+(D) =B+(E).
   (3) IF D is a QI-divisor, theR B(D) C-. BÅÄ(P).

   (4) B+(D) pt X if and only if D is big.
   (5) B"(D) me Åë if and ouly if D is ample.
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    Understanding the augmented base locus is important for many applications. For
example, here is a question of Vojta motivated by hyperbolieity problems.

Question 1.3. ( [Voj]) Let E be a vector bundle on X, and let T : P(E) . X be the
corresponding projective bundle. If E is big (i.e. if O(1) is big on P(E)) and Bogomolov
semistable, then T(B+(O(1))) lpk X.

    We wiR be ceRcemed with giviRg a Rumestca3 desedptioR ef BÅÄ(P) for a diviser D.
Suppose dst Shat P is keÅí Nete that if V is a subvasiety ef X s=ck thag PIv is Ret big,
then V g B+(D). indeed, otherwise there ig a decompeskion

                              D=A+E,
with A ample and with E effective and such that V g Supp(E). We deduce that DIv :
Alv + Elv, and Elv is effective. Therefore Dlv is big, a contradiction.

    The main result of [Nal] says that this phenomenon accounts for al1 the irreducible
components of B+(D). More precisely, we have

Theorem 1.4. ( [Nal}) Let D be a nef Q-divisor on X. Then

                           B.(p)= U y.
                                   Divfbig

    Our main goal is to generaline the above theorem to the case of an arbitrary divisor
(allowing also R-coeMcients).

    Note first that if D is nef, then Dlv is big if and only if (DlttM V) År O. Suppose now

that D is general (we may assume D big, because otherwise B+(D) = X). Assume for
the moment that D is a (Q!-divisor which has a Zariski decomposition on X with rational
coeMcients. We mean that we can write D = P+N, where .l' and N are Qdivisors, with
P nef, N effective, and such that if m is divisib}e enough, then the induced map

                     HO(x, o(mp)) g He(x, o(mD))

is an isemorpkism. In tkis case it is easy -to see tkat

                       B+(D) = Supp(N) U B+(D).

By the above theorem of Nakunaye, it follows that we need an invariant associated to
every subvariety V [ X and to each divisor D, such that if we have a decomposition as
above, then the invariant is equal to (Pldvim V).

2. RESTRICTED vOLuMEs AND B+(D)

    We progeed Row te deboe the inmat used to describe BÅÄ(P). The case whea
V == X is well-kacwR. Werecall the de{}i}itieR aRd tke basic pTeperkies, fer which we refer
te {Laz].

Definition 2.1. If L is a lme bundle on X, and if dim X ww n, then its volume is defined
by
                     vol(X, L) := li.m-.s.u.p "!'hO./Sf' LM).
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            RESTRJCTED VOLUMES AND THE AUGMENTED BASE LOCUS

    The volume has the fellowing properties:

    e vol(X, L) År O if and only if L is big.

    . vel(X,LM) : mn • vel(X,L). Therefere the de{ii}iticR can be extended in the
obvious way to (Q-divisors.

    e If L is nef, then vol(X,L) == (L").

    e IÅí D and E are numerica31y equimient {{iR-divisers, then vcl(X, D) = voi(X, E).

    . vol(X, -) can be extended as a continuous imction to Ni(X)R.

    . If D = P + N is a Zariski deccmpositicR as abeve, theR vel(X, P) = vol(X, }') :
(Pn).

    Probably the most important property of volumes is given by the following theorem
due to Fkjita, and wkk a differeRt proof, tg DeiRailiy, giR and Lazar$feld. Is says tkat the
voiume can be approximated by intersection numbers of ample divisors. More precisely,
we have
Theorem 2.2. (IIFXij],{DEL]) IfD is a big divtsor en X, then

                        vol(X,D)= sup (A"),
                                  T.D itA+E
where the supremum ts over all proper bimtional morphdsms T : X' - X, with X'
sfneeth, and eyer ali eiE!}ressiens D =: AÅÄE, where A ts ampie ond E is etiective.

    We define now a similar notion relative to a subvariety V g X, inspired by ideas of
Tsuji.

Definition 2.3. Let V g X be a subvariety with dim V : r. If L is a line bundle on X,
then the restricted volume of L along V is

                                     r!•he.(y, Lm)
                    velx(V, L) :mu li.M-.S,.UP mr '

where h}(V,LM) is the dimension of the image of the natural map HO(X,LM) .
HO(Y, LMIv).

    A few properties follow easily from the deimition:

    . volx(V, LM) = mr • volx(V,L), so the definition extends in the obvious way to
{{ li-divisors.

     . If L is ample, then volx(V, L) ww (Li'v).

     e If Y g B-e(PÅr, then we can write D = A + E, with A amp}e and E effect}ve, such
that V g Supp(E). It fellows that

                     volx(V, D) tr volx(V, A) = (Alrv),

    Tke philesopky is that prcperties ef the usual velwne imctien Åí6r big divisors
generalize to properties of the restricted volumes for divisors D such that V K B+(D),
Ail these properties follow from the following extension of F'ujita's theorem. The proof is
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based on the approach to Fujita's theorem from [DEL], using the Subadditivity Theorem
for asymptotic multiplier ideals,

Theorem 2.4. Let D be a Q-dutsor, and let V be an r-dimensional subvariety ofX. if
V Z B+(D), then
                       volx (V, D) = ...s=u.p..(24I'v' ),

where the supscemecm is ever ail p7vper biratienal merphtsms rr : X' - X (with X'
smeeth) whiek Gre tss?nerphtsms at the generic paint ofV, and ever all ewressigns K'D •--
AÅÄE, where A ts afnple, E ts effective, and i7 Z Supp(E) (V is the proper transferm of

v?.

     One can use the above theorem to deduce other properties of the restricted volumas:

     e lf D and E are numerically equivalent Q)-divisors, and if V Z B+(D), then
volx(V, D) = volx(V, E),

     e volx(V, -) can be extended as a continuous function to

                       {P E Big(X)RIY Z B+ (D)}.

    . If D is Ref, aRd if Y K B+(D), thek

                           volx(V, D) = (Dl'v).

     e If D = P+N is a Zauriski decomposition as before, and if V 1 B+(D), then
volx(V, D) = volx(V, P) me (Plrv).

    The following is our main result. It shows that restricted volumes describe the
irreducible components of the augrnented base locus. Moreover, it gives also a continuity
statement. The proof is basad on ideas of Nakamaye from [Na2}.

Theorem 2.5. ijD ts a big R-divisor en X, and ofV is an irreducibie cey}penent of
B"(P), then
                          Dl,i-m,Dvolx(V,D')=e,

where the limit is overQ-divisors D' whose classes go the the class ofD.
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