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A CHARACTERISTIC p ANALOG OF MULTIPLIER IDEALS
AND ITS APPLICATIONS
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Mathematical Institute, Tohoku University

The notion of test ideals plays a very important role in the theory of tight closure
introduced by Hochster and Huneke [HH1]. The test ideal 7(R) of a commutative
ring R of characteristic p > 0 is the ideal generated by all test elements of R and
equal to the annihilator ideal of all tight closure relations in R. Recently, K. Yoshida
and I [HY] introduced a generalization of tight closure, which we call a’-tight closure
associated to given any ideal a C R and any rational number ¢ > 0, and defined the
ideal 7(a®) to be the annihilator ideal of all a’-tight closure relations in R.

Our work [HY] is motivated by the correspondence of test ideals and multiplier
ideals. Multiplier ideals have recently arisen as objects with highly interesting ap-
plications, and can be defined in various settings via resolution of singularities in
characteristic zero ([E], [La]). Among them is the multiplier ideal J(a?) associated
to an ideal a and a rational number ¢t > 0. Precisely speaking, the multiplier ideal
that corresponds to the test ideal 7(R) is the one associated to the unit ideal a = R.
In most applications, however, the usefulness of multiplier ideals is performed by
considering multiplier ideals associated to various ideals, and this is the reason why
we introduced the ideal 7(a®).

It turns out that the multiplier ideal J(a*) in a normal Q-Gorenstein ring of
characteristic zero coincides, after reduction to characteristic p > 0, with the ideal
7(a*). Also in fixed characteristic p > 0, the ideals 7(a*) have several nice properties
similar to those of multiplier ideals [ (a*); e.g., an analog of Skoda’s theorem ([HT),
cf. [Li]) and the subadditivity theorem in regular local rings ([HY], cf. [DEL]). It is
notable that the above properties of the ideals 7(a') are proved quite algebraically
via characteristic p methods.

The purpose of this note is to give a brief overview of the theory of at-tight closure
and the ideal 7(a*) developed in [HY] (see also [HT]), and give some applications
arising from the relationship with multiplier ideals [H]. Namely, we give new proofs
to Smith’s result [S] on global generation of adjoint bundles in characteristic p > 0
and results on uniform behavior of symbolic powers of an ideal in a regular local
ring obtained in [ELS] and [HH2].

1. DEFINITIONS AND BASIC NOTIONS ON a-TIGHT CLOSURE

We review a generalization of tight closure from [HY]. The reader is referred to
Hochster and Huneke [HH1] and Huneke [Hu] for the original notion of tight closure.

Throughout this section, R will denote a Noetherian ring of prime characteristic
p > 0. We denote by R° the set of elements of R not in any minimal prime of R,
and by F': R — R the Frobenius map sending z € R to 2z € R. We always use
the letter g for a power p°® of p. The ring R viewed as an R-module via the e-times
iterated Frobenius map F¢: R — R is denoted by °R. If R is reduced, F¢: R — R
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is identified with the natural inclusion map R — R'/9. We say that R is F-finite if
IR (or R'?) is a finitely generated R-module.

Let M be an R-module. For each e € N, we denote F*(M) := “R®g M and regard
it as an R-module by the action of R = °R from the left. Then we have the induced
e-times iterated Frobenius map F°: M — F¢(M). The image of z € M via this
map is denoted by 27 := F*(z) € F¢(M). For an R-submodule N of M, we denote
by N}&] the image of the induced map Fé(N) — F¢(M). If [ is an ideal of R, then

I .= I,[g] is the ideal generated by the gth powers of elements of I.

Definition 1.1. Let a be an ideal of a Noetherian ring R of characteristic p > 0
such that anN R° # 0 and let N C M be R-modules. Given a rational number t > 0,
the at-tight closure of N in M, denoted by N;}“, is defined to be the submodule of
M consisting of all elements z € M for which there exists ¢ € R° such that

for all large g = p®, where [tq] is the least integer which is greater than or equal to
tq. The a’-tight closure of an ideal I C R is just defined by /*** = I3

Remark 1.2. The rational exponent ¢ for a‘-tight closure is just a formal notation,
but it is compatible with “actual” powers of the ideal. Namely, if b = a™ for n € N,
then a'-tight closure is the same as b*/"-tight closure. So there occurs no confusion
if we call “a’-tight closure for £ = 1” just “a-tight closure.” We have the following
specialization and generalization of the concept.

(1) In the case where a = R is the unit ideal, the a-tight closure N3¢ = NiF is
nothing but the (usual) tight closure N;, as defined in [HH1]. However, unlike the
usual tight closure, it may happen that (V37)37 is strictly larger than N;f. In this
sense a-tight closure is not an “honest” closure operation in general.

(2) Given ideals ay, ... ,a, C R with ;N R° # 0 and nonnegative rational numbers
t1,.. sty ift; =tn;fort € Qand n; € Nwithi=1,...,r, we can define a}’ - - - a¥-
tight closure to be (a7* - - - a?r)*-tight closure.

We collect some basic properties of at-tight closure in the following

Proposition 1.3. ([HY, Proposition 1.3 and Corollary 2.3]) Let a, b C R denote
ideals not contained in any minimal prime ideal, t > 0 a rational number, and let
N C M be R-modules.
1. N C N3 and N3 /N 2035 .
2. N C (N3 : b)m. Moreover, if b is a principal ideal, then the equality
N3'® = (N3#" : b)p holds.
3. Ifb C a, then Nif C N;i¥. Moreover, if a and b have the same integral
closure,! then the equality N3¥' = N32' holds.

Theorem-Definition 1.4 ([HY]). Let R be an ezcellent reduced ring of character-
isticp > 0, a C R an ideal such that aNR° # @, and let t > 0 be & rational number.
Let E = @,, Er(R/m) be the direct sum, taken over all marimal ideals m of R, of
the injective envelopes of the residue field R/m. Then the following ideals are equal
to each other and we denote it by 7(a*).

1The integral closure § of an ideal @ C R is defined by @ = H%(X,a0x) € R, where X — Spec R
is a proper birational morphism from a normal scheme X such that aQx is invertible.



A CHARACTERISTIC p ANALOG OF MULTIPLIER IDEALS AND ITS APPLICATIONS

1. n AnnR(Oj‘&'), where M runs through all finitely generated R-modules.
M

2. n AnnR(Oj‘&'), where M runs through all finitely generated submodules of E.
MCE
3. n (I: I**), where I runs through all ideals of R.
ICR
Moreover, if R is normal and Q-Gorenstein, then

7(a*) = Anng(0F).
The following basic properties of the ideal 7(a) follow from Proposition 1.3.

Proposition 1.5. Let R be a Noetherian ring R of characteristicp >0, a,b C R
ideals not contained in any minimal prime ideal, and let t > 0 be a rational number.
1. 7(a*)b C 7(atb). Moreover, if b is a principal ideal of a complete local ring,
then 7(a*)b = 7(a'b).
2. If b C a, then 7(b*) C 7(a*). Moreover, if b is a reduction of a, then the
equality 7(b*) = 7(at) holds.
3. If R is weakly F-regular,® then a C 7(a). Moreover, if a is an ideal of pure
height one, then a = 7(a).

One of the major open questions in the theory of (a!-)tight closure is whether
(a*-)tight closure commutes with localization. Ken-ichi Yoshida shows that this is
affirmative in regular local rings [Y]. The following result is a partial answer to this
question in a different direction.

Proposition 1.6 ([HT]). Let (R, m) be an F-finite, normal Q-Gorenstein local ring
of characteristicp > 0, a C R an ideal such that aN R° # 0@ and lett > 0 be a
rational number. Then for any multiplicatively closed subset W of R,

T((aRw)!) = 7(a*) Rw.

2. COMPARISON OF THE IDEAL 7(a') AND THE MULTIPLIER IDEAL J(af)

In this section, we first see the correspondence of the ideal 7(a*) and the multiplier
ideal J(a*) in a Q-Gorenstein ring reduced from characteristic zero to characteristic
p > 0. Then we show that the ideal 7(a*) in any fixed characteristic p > 0 has some
properties analogous to those of the multiplier ideals J(a®) in characteristic zero.

Let us begin with the definition of the multiplier ideal 7 (a®).

Definition 2.1. Let Y be a normal Q-Gorenstein variety over a field of characteris-
tic zero and let a C Oy be a nonzero ideal sheaf. Let f: X — Y be a log resolution
of the ideal a, that is, a resolution of singularities of Y such that the ideal sheaf
aOx is invertible, say, aOx = Ox(—Z) for an effective divisor Z on X, and that
the union Exc(f) U Supp(Z) of the f-exceptional locus and the support of Z is a
simple normal crossing divisor. Given a rational number t > 0, the multiplier ideal
J (at) associated to a and t is defined to be the ideal sheaf

J(a") = f.Ox([Kx/y — tZ})

?We say that R is weakly F-regular if every ideal I of R is tightly closed, that is, I* = I. It is
known that regular rings of characteristic p > 0 are weakly F-regular.
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in Oy, where the Q-divisor Kx/y = Kx — f*Ky is the discrepancy of f. This
definition is independent of the choice of a log resolution f: X — Y of a.

The following result ensures the correspondence of the ideal 7(a!) and the multi-
plier ideal J(a*) in Q-Gorenstein rings.

Theorem 2.2. Lett > 0 be a fized rational number, R a normal Q-Gorenstein local
ring essentially of finite type over a field and let a be a nonzero ideal. Assume that
a C R is reduced from characteristic zero to characteristic p > 0, together with a
log resolution of singularities f: X — Y = Spec R such that aOx = Ox(—2Z) is
invertible. Then "

'r(a’) = HO(X, Ox([Kx/y — tZ]))

For the proof of the above theorem, see [HY, Section 3]. The hard part of the
proof is to show the containment 7(a*) 2 H(X,Ox([Kx/y —tZ])), which may fail
in small characteristic p, whereas the containment 7(a*) C H*(X, Ox([Kx/y —tZ]))
holds in arbitrary characteristic p > 0 as long as the right-hand side is defined.

Next we will show that some useful properties of multiplier ideals also holds true
for the ideal 7(a) in fixed characteristic p > 0. In view of the above theorem,
we see that the results for 7(a*) recover those for J(a') via standard technique of
reduction modulo p, but the results for 7 (a*) do not imply those for 7(a?), because
they might disagree in small characteristic p. The following results are motivated
by the corresponding statements for multiplier ideals proved in [DELJ, [La], [Li].

Theorem 2.3 (Restriction theorem [HY], cf. [La]). Let (R,m) be a Q-Gorenstein
normal complete local ring of characteristic p > 0 and let x € m be a non-zero-
divisor of R. Let S = R/zR and assume that S is normal. Then for any ideal
a C R such that anN R° # 0 and any rational number t > 0,

7((aS)*) C 7(a)S.

Theorem 2.4 (Subadditivity [HY], cf. [DEL]). Let (R, m) be a complete regular lo-
cal ring of characteristic p > 0. Then for any ideals a,b C R not contained in any
minimal prime ideal and any rational numbers t,t' > 0,

7(atb") C 7(a®)r(b").

Theorem 2.5 (Skoda’s theorem [HT), cf. [La), [Li]). Let (R,m) be a local ring of
characteristic p > 0 and assume that R is complete, or F-finite, normal and Q-
Gorenstein. Let a C R be an ideal of positive height generated by r elements, b C R
an ideal such that bN R° % O and let t > O be a rational number. Then

7(a"b%) = 7(a""'b%)a.

We shall sketch the proof of Theorem 2.5. To simplify the situation, we only
consider the case where b = R and R is normal, Q-Gorenstein and complete. (The
proof for the general case is more or less similar.) In this case, we have that 0’;5"_1 =
Anng(r(a™')) in E = Eg(R/m) by Theorem-Definition 1.4 and the Matlis duality,
so that Anng(r(a™!)a) = 0% : ain E. Then the theorem follows because

r(a’) = ADDR(O?’.) = ADDR(O;;:-{‘I : a) = ADDR(ADDE(T(GT_I)O)) = T(ar'.l)a

from the proposition below,
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Proposition 2.6. Let R be a Noetherian ring of characteristic p > 0 and M an
R-module. Let a C R be an ideal of positive height generated by r elements. Then

r r—1 .
M =03 :a inM.

Proof. We already know that 035" C 033" : a by Proposition 1.3 (2), so it suffices
to show the reverse inclusion 038" D 03¢ :a. Let z € 03 : a,i.e, az C 03 .
Then there exists ¢ € R° such that ca¥(a"!)929 = 0 in F¢(M) for all ¢ = p¢ > 0.
Since a is generated by r elements, one has

a? = gldl aq(r—l),

so that cz9%a% = 0 for all g = p® >> 0, that is, z € 035 . Thus we have 035" = 033 : q,
as claimed. 0

Corollary 2.7 ([HT]). Let (R, m) be a d-dimensional local ring of characteristic
p > 0 with infinite residue field R/m, and assume either that (R, m) is complete, or
F-finite, normal and Q-Gorenstein. Then for any ideal a C R of positive height and
any n > d, one has

T(a") — T(ad—l)an+1——d.

3. APPLICATIONS

In this section, we define a few variants of the ideal 7(a*) and give some ap-
plications. Although our method just gives alternative proofs to results obtained
previously, I hope that it provides a new insight into characteristic p approach to
problems in commutative algebra and algebraic geometry.

Asymptotic 7 and uniform behavior of symbolic powers. The notion of
multiplier ideals is defined not only for an ideal a but also for a filtration of ideals a,
(or “graded family of ideals” in the terminology of [ELS]). This variant of multiplier
ideals is called an asymptotic multiplier ideal and denoted by J(||a.l|); see e.g.
[ELS], {La]. An advantage of asymptotic multiplier ideals is that some information
on infinitely many ideals in a family a, is packaged in the single ideal J(]|a.||), even
in the case where the Rees algebra @, a.t" is not Noetherian. This idea is used
successfully by Ein, Lazarsfeld and Smith [ELS] to prove the uniform behavior of
symbolic powers in a regular rings of characteristic zero. Soon after that, Hochster
and Huneke [HHZ2] established a characteristic p version of the result.

Here, we define a variant of the ideal 7(a) corresponding to asymptotic multiplier
ideals, and apply it to give an alternative proof to the result of {ELS] and [HH2].
Although we work in characteristic p > 0 as in [HH2), our strategy is essentially the
same as the characteristic zero method in [ELS]. Given a filtration of ideals a, in a
ring of characteristic p > 0, we define the “asymptotic 7,” which plays exactly the
same role as asymptotic multiplier ideals in the proof. This answers the question
raised in [ELS, Remark 3.1], which asks for a purely algebraic construction of ideals
satisfying the “axiomatized” properties of asymptotic multiplier ideals.

In the following, a filtration of ideals on a Noethrian ring R will mean a collection
a, = {a, | n € N} of ideals of R such that a; N R° # @ and

Um O C Gpiq for all myn > 1.

Given an ideal a C R such that aNR°® # @, it is clear that ordinary powers a™ of a
form a filtration. The integral closures a® of ordinary powers also form a filtration.
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Actually, given an ideal a C R and a rational number ¢t > 0, we have a filtration
a, defined by a, = a/®! or a, = alt*l. Another example of a filtration is given by
symbolic powers: Recall that the nth symbolic power of an ideal a C R is defined to
be a™ := [, a"R, N R, where the intersection ranges over all minimal prime ideals

p of a. For an integer k > 0, this gives a filtration of ideals a**) = {a®*™ | n € N}
on R.

Definition 3.1. Let a, be a filtration of ideals on a Noetherian commutative ring
R of characterisitc p > 0 and let N C M be R-modules. The ||a,}|-tight closure of
N in M, denoted by N;P“'", is defined to be the submodule of M consisting of all
elements z € M for which there exists ¢ € R° such that
cagz? C N, ,[:}]

for all large ¢ = p°.

Remark 3.2 (cf. [La]). Let a, be a filtration of ideals on a Noetherian ring R of
characterisitic p > 0. Then by the ascending chain condition of ideals in R, the set

of ideals {7((ax)"/*) | k € N} has a maximal element with respect to inclusion, which
is easily seen to be unique. Indeed, for any integers k,! > 0 and any R-module M,

we have 0;}“"’)1/*‘ c 0;((,“")1/*, because (ax)/?/¥! C (a)[9*" for every q = p®, so that
7((ax)/*) C 7((a) ).

Hence, if 7((ax)"/*) and 7((a;)!/!) are both maximal, then they must coincide with

((om)/*).

Proposition-Definition 3.3. Let a, be a filtration of ideals on an excellent local
ring (R, m) of characterisitc p > 0 and let E = Eg(R/m) be the injective envelope
of the R-module R/m. We define

r(lladfl) = [ Anng(0j"),

MCE

where the intersection on the right is taken over all finitely generated R-submodules
M of E. Then 7(||a.]]) is equal to the unique mazimal element of the set of ideals
{r((ax)*) | k € N} with respect to inclusion.

Proposition 3.4 (Subadditivity). Let (R, m) be a complete regular local ring of
characteristic p > 0 and let a, be a filtration of ideals R. Then for alln > 0,

7(llansll) € (llae}l)™.

Proof. We can choose sufficiently large k > 0 so that 7(||aqe]|) = 7((ank)'/*) and
7(/|as]]) = 7((aax)¥™*). On the other hand, by the subaddtivity (Theorem 2.4), we

have
7((0ne)"*) = 7(((nk) /™)) C (@)™
Therefore 7(||an.]|) € 7(||a.]|)™ as required. O

Theorem 3.5 ([ELS], [HH2|). Let (R, m) be a complete regular local ring of char-
acteristic p > 0 and let a be an unmized ideal of R of height h. Then

a(hn) g a®

for all integers n > 0.
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Proof. By the weak F-regularity of R and Proposition 3.4,
hne °
) C 7(|ja®|}) C 7(|la®)".

Hence it is sufficient to show that 7(||a*)||) C a. Let p be any minimal prime ideal
of a. Then a®*™ R, = (aR,)"" is an pR,-primary ideal for all n > 0, so that

7(||la®)) € 7(|la® Ryl|) = 7((aRy)*) C aR,.
by Theorem 2.5 and Proposition 1.3 (3). Thus 7(||a®®||) C a(V) = a, asrequired. O

The second application is related to a Skoda-type theorem like Corollary 2.7.

Global generation of adjoint line bundles in characteristic p. We give an
alternative proof to the following result due to Karen Smith [S].

Theorem 3.6 (K. E. Smith [S]). Let X be a projective variety over an algebraically
closed field k of characteristic p > 0 such that the local ring Ox . is F-rational® for
every z € X and let £ be an ample invertible sheaf on X which is generated by global
sections. Then wx @ L29mX+1 {5 generated by global sections.

This is a spacial case of Fujita’s freeness conjecture [F], which turns out to be
much easier to prove under the extra assumption that £ itself is globally generated.
Actually, if we assume that L is globally generated in characteristic zero, then the
global generation of wy ® £®4mX+1 ig easily deduced from the Kodaira vanishing
theorem. Smith succeeded in bypassing the use of vanishing theorems that fail
in characteristic p, by translating the problem into the language of commutative
algebra and applying the theory of tight closure, especially, the “colon-capturing”
property of tight closure [HH1].

3.7. Proof of Theorem 3.6 via a-tight closure. We will briefly overview an alternative
proof of Theorem 3.6 given in [H]. Let

R=R(X,L) = H(X, Lo T"

n>0

be the graded ring associated to (X, £) and put d =dim R =dim X + 1 > 2. Then
R is F-rational off the irrelevant maximal ideal m = R, if X has only F-rational
singularities. Also, for any n > 0, the integral closure m®™ of m" is equal to the
graded part R>, of R of degree > n if £ is generated by global sections.

Now the top local cohomology module H3(R) of R with the support, at m is k-dual
to the graded canonical module wp = @, cz[wr]~ of R with the graded pieces

[wR]n = HO(X’ wx ® £®n)'

It is easy to see that wx ® £®¢ is globally generated if and only if [wg], = Rn—4[wrla
for all n > 0. We will reduce this equality to a Skoda-type theorem in wg.
For an integer n > 0, we define

T(m™,wg) = Annwn(O;;'é‘(R)) C wpg,
3A local ring (R, m) of characteristic p > 0 is said to be F-rational if every ideal generated by a

system of parameters of R is tightly closed. The F-rationality assumption on singularities of X is
relaxed to the F-injectivity as we will see in 3.8.
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the annihilator of 0;,“"%"( gy i Wr With respect to the duality pairing wr x Hp(R) — k.
Then it follows from Proposition 2.6, together with Proposition 1.3 (3), that

(M4 wp) =m™ - 7(m? !, wg)

for all n > 0. On the other hand, the F-rationality of Spec R \ {m} implies that
7(m™, wr) = [wr]>n for all n >> 0 ([H, Lemma 2.6]). Thus we have the inclusions

d—1

»=1 wg) = Ryp_q-T(m

Ryn—dlwrl>a-1 € [wr)>n-1 = 7(m ,wr) € R>n-dlwr]>a-1,

so that (wWg)sn-1 = Ryn—alwr]>4-1. Comparing the graded pieces of the least degree
of the both sides, we obtain the required equality (wg)n = Rn-a - [wg]a for n > 0. D

3.8. Geometric reinterpretation. Recently, the author found a geometric simplifica-
tion (or even a trivialization!) of the above proof. To begin with, let us recall

Lemma 3.9 (Mumford [M]). Let £ be a globally generated ample line bundle on an

projective variety X and F a coherent sheaf on X satisfying the vanishing
H(X,F®L® %) =0 fori>0.

Then F is generated by global sections.

In characteristic zero, the assertion of Theorem 3.6 immediately follows from the
Kodaira vanishing theorem applied to Mumford’s lemma for F = wy ® £®dimX+1
In characteristic p > 0, we can use the Serre vanishing theorem instead by virtue of
the following

Lemma 3.10. Let X be a projective variety of characteristic p > 0 with the Frobe-
nius endomorphism F: X — X, and let £ be an invertible sheaf on X. Assume that
X has only F-injective singularities.* If the Ox-module L ® Ftwx = F&(wx ® L¥)
is generated by global sections for some e € N, then so is wxy ® L.

The above lemma follows because the F-injectivity guarantees the surjectivity of
the dual Frobenius map £ ® Ffwx = Homx(FfOx,wx ® L) » wx ® L.

Now, let £ be a globally generated ample line bundle on a projective variety X
with only F-injective singularities, and put F = £24mX+1 g Feyy for e > 0. Then
H(X,F ® L%) = HY{(X,wx @ LI WmX+1~)) — g for ; > 0 by the vanishing
theorems of Serre and Grothendieck. Thus we see that wy ® £®4™X+1 j5 globally
generated by Lemmas 3.9 and 3.10.

The author does not know the answer to the following question unless dim X = 1.

Question. Let X be a smooth projective variety of characteristic p >0and let £
be an ample line bundle on X. Is the rank p*4™X vector bundle £L24™mX+1 g Fewy
generated by global sections for some e € N?
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