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  The notion of test ideals plays a very important role in the theory of tight closure
iRSrodwced hy Hodhster and HgReke iHHII. The test ideal 7(R) of a commutative
ring R of charaÅítemstic p År g is the ideal geRerated by al} test elements of R and
equal to the annihilator ideal of al1 tight closure relations in R. Recently, K. Yoshida
and I [HY] introduced a generalization of tight closure, which we call at-tight closure

associated to given any ideal a g R and any rational number t ) O, and defined the
ideal r(a') to be the annihilator ideal of all g`-tight e}osure relatioRs iR R.

  Our werk [}IYI is metivaSed by tke eerrespeadeRce gf test ideals aRd ;;}gltiplier

ideals. Multipiier ideals have recently arisen as objects with highly interesting ap
plications, and can be defined in vaJrious settings via resolution of singularities in
chaxracteristic zero ([E], [La]). Among them is the multiplier ideal .Z(at) associated

to an ideal a and a rational number t 2 O. Precisely speaking, the multiplier ideal
that correspek{is to the tesS ideal T(R) ts the eRe associated to the unit ideed " ww R.

Iit most applicatioms, hewever, the usefullless ef multiplier ideals is performed by
comsidering multiplier ideals associated to various ideals, and this is the reason why
we introduced the ideal T(a`).

  It turns out that the multiplier ideal .Z(at) in a normal QGorenstein ring of
characteristic zero coineides, after ureductioR to charaÅíteristic p ÅrÅr e, with the ideal
7(at). Aiso ifi fixed charaÅíteristic p År C, the ideais r(at) have $everal nice properties

similar to those of multiplier ideai$ J7" (at); e.g., an analog of Skoda's theorem ([HT],

cf. [Li]) and the subadditivity theorem in regulatr local rings ([HY], cf. [DEL]). It is

notable that the above propertie$ of the ideals r(at) are proved quite algebraically

via characteristic p methods.
  The purpgse ef thi$ Rote is to give a brief everview cf tke theory ef a`-tigkt closure

and the ideal 7(a`) deveioped in iMY] (see aiso iHT]), and give some applications
arising from the relationship with multiplier ideals [H]. Namely, we give new proofs
to Smith's result [S] on global generation of adjoint bundles in characteristiÅë p År O

and results on uniform behavior of symbolic powers of an ideal in a regular local
ring obtakied iR IELS] and IHH2].

        1. DEFINITIONS AND BASIC NOTIONS ON a-TIGHT CLOSURE

  We review a generaJization of tight closure from [HY]. The reader is referred to
Hocbster and Huneke [HHII and Huneke [Hu] for the original notion of tight closure.

  Threugheut thi$ secgieR, R wiil deRete & Ngetherian ring of prime Cliarecteristic
p År e. We denete by Re the set of elemeRts of R not in aRy minimal prime of R,
and by l7: R - R the Ftobenius map sending x E R to zP G R. We always use
the letter q for a power pe of p. The ring R viewed as an R-module via the e-times
iteratod IFIrobenius rnap "F'e : R ---+ R is denoted by eR. If R is reduced, Fe : R - eR
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is identified with the natural inclusion map R H Ri/q. We say that R is Pfinite if
iR (or Ri/P) is a finitely generated R-module.

  Let M be an R-module. For each e E N, we denote IRe(M) : ww eRXRM and regard
it as aR R-module by the action of R = eR from the left. TheR we have the induced
e-tiraes iterated }Fkrgbesias map Fe: M - S?(M). Tke image ef x E M via thi$
map is denoted by zg := Fe(z) di Fe(M). For an R-submodule N of M, we denote
by NMt] the image of the induced map Fe(N) - F"(M). If l is an ideal of R, then

I[a] :ur thg] is the ideal generated by the qth powers of elements of I.

DefiRitieR 1.1. bet a be an ideai ef a Neetherian ring R ef cheeractefistic p År e
sueh that afi RO pt Åë and let N K M be R-modules. Givea a rational number t ) e,
the at-tight closure of N in M, denoted by NM"t, is defined to be the submodule of

M consisting of al1 elements z e M for which there exists c G R" such that

                           c"[toliq ! NV'l

for aii large g = pe, wheye Itg] is tke least iRteger which is greater than or eq"al te
tq. The at-tight clo$ure of an ideal Ig R is just defined by l"a' = Iha`.

Remark 1.2. The rational exponemt t for at-tight closure is just a formal notation,
but it is compatible with "actual" powers of the ideal. Namely, if b = a" for n G N,
sheu at-tight clesure is She same as bti"-tigkt closure. Se there eccws ke ccnh2sien

if we call "at-tight clesure for t me 1" just "a-tight closure." We have the foilowing

specialization and generalization of the concept.
  (1) In the case where a = R is the unit ideal, the a-tight elosure NM" = NMR is
nothng but the (usual) tight closure NM as defined in [HHI]. However, unlike the
usual tight closure, it may happea that (N"")M" is stTict}y larger than Nb". in this
semse g-tight closure is Ret ai} "honest" closure operatigk iR geaerai.
  (2) Given ideais ai, . . . , a. g R with eqfiRO pt O and nonnegative rational numbers
ti, • • • , tr, if ti = tni for t E Q and ni E N with i me 1, . . . , r, we ean defi ne a:i • • • a.tt--

tight closure to be (ar'•••aP')t-tight closure.

  We eollect some basic properties of at-tight closure in the following

Prepesitien 1.3. (IHY, Propositiell 1.3 and Corollaiy 2.3]) Let a, b {! R denote
ideats not contained in any minimal prime idenl, t 2 O a rational number, and let
N C M be R-modutes.
  1, N c- NMat and NMatlN !! OM"ÅrN.

  2. N"atb g (NM"` :k)M. Moreeyer, ifk is apriRstpa"deal, then the equafity
    NMg`b = (NMg` : b)M helds.

  3. ijbg a, then NM"` g NMb". Moreover, ifa andb have the same integral
    ctosure,i then the equality NM"' == NMbt holds.

Theorem-Definition 1.4 (IHY]). Let R be an excellent reduced ring of character-
tsticpÅr g, Eg R an ideai s#ch tk6t gARe 7E S, and iett) e be a rEtifinel number.
Let E == e. ER(R/m) be the direct sum, taken over ail 7naximai ideals m of R, of
the injective envelopues of the residue field Rlm. Then the following ideaZs are opual
to ench other and we denote it by r(a`).

  iThe integral elosure ff of sn ideai a g R is defued by a : He(X, aexÅr K R, where X -- Spec R

is a pseper bkatienel inorpliism ftcm a kcmaal wheme X sllch that aex is inverglble.
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  1. nAnnR(OM't), where M runs through all finitely generated R-modules.

    M
  2. nAnnR(OM't), where M runs through allfinitely generated submodules ofE,

    MgE
 3. A(l : I""t), where l runs through all ideats ofR.

    IgR
Moreever, ifR ts normal and Q-Gorenstei#, then

                        r(a`) = AmaR(gk"`).

  The following basic properties of the ideal T(at) follow from Proposition 1.3.

Proposition 1.5. Let R be a Aroetherian ring R of characteristic p År O, a, b g R
ideats not contained in any minimal prime ideal, and let t tr O be a rational number,

  1. T(at)b g T(atb). Moreover, if b ts a principal ideal of a complete local ring,
    then 7(a`)b = T(atb),
  2. Ifbg a, then r(bt) K r(at). Moreover, ifb is a reduction of a, then the
    equal#y 7(5t) = T(a`) helds.
  3. IfR ts 2geakSy F-regxlar,2 then a g 7(a). Mereever, ifa ts gn ideai ofpure
    height ene, then a me T(ct).

  One of the major open questions in the theory of (at-)tight closure is whether
(a`--)tight closure commutes with localization. Ken-ichi Yoshida shows that this is
aSfirmative in regular local rings [Y]. The following result is a partial answer to this

question in a different direction.

Proposition 1.6 ([HTj). Let (R,m) be an F-finite, normalQ-Gorenstein local ring
of characteristicp År O, aK R an ideal such that an R" SÅë and let t ) O be a
rational number. Then for any nzuitiplicatively closed subset W ofR,

                       T((aRw)`) -- T(d)Ryv.

   2. COMPARISON OF 'TME IDEAL T(at) AND 'THE MULTIPLIER IDEAL 5(a`)

  In this section, we fimst see the correspondence of the ideal r(at) and the multiplier
ideal 5(at) in a ((iD-Gorensteim ring reduced from characteristic zero to characteristiÅë

p }År O. Then we show that the ideal T(a`) in any fixed eharacteristic p År O has some

properties analogous to those of the multiplier ideals V(at) in characteristic zero.
  Let us begin with the definition of the multiplier ideal cl(a`).

Definition 2.1. Let Y be a normal QGorenstein vauriety over a field of characteris-
tic zere and let a c ey be a nemaero ideal sheaf. Let f: X --} Y be a leg resolution
ef tke ideal a, thaS is, a rresoluticR of sikgularigies ef Y such that the ideal sheaS
gOx is invenible, say, aOx me ex(-Z) for ai} effective diviser Z eB X, aiid that
the union Exc(f) U Supp(Z) ef the f-exceptional locus and the support of Z is a
$imple normal crossing divisor. Given a rational number t ) O, the multiplier idcal
"7(at) associated to a and t is defined to be the ideal $heaf

                     y("t) = f.ox([Kxiy - tZl)

  2We say that R is weakly F-ropslar if every ideal l of R is tightly closed, that is, I' == I. It is

known that regular rings of chara( teristic p År O are weakly F-regu1ar.
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in Oy, where the Q-divisor Kxly me Kx -- f"Ky is the discrepancy of f. This
definition is independent of the choice of a log resolution f: X --, Y of a.

  The followiRg resulg easures tke cerrespckdeRce ef the ideal T(a`) aiid She mglti-
plier ideal .T(a`) in QI-Gorenstein rimgs.

Theorem 2.2. Let t 2 O be a .tived rational number, R a normal (( ?-Corenstein local
r2' ng essentiaiiy offinite type ever a field aRd iet g be a neniero ideaL .itissume that

a g R is reduced from characteristic zero to characteristic p ÅrÅr O, tQgether with a
log resolution of singulanties f: X --- Y = Spec R such that aOx = Ox(-Z) ts

                   T(at) = He(x, ox(fKxfy - tZl )).

  For the proof of the above theoram, see [HY, Section 3]. The hard pazrt of the
proof is to show the containment T(a') 2 HO(X, Ox([Kxly -tZl)), which may fail
iR small charactedstic p, whereas the ceRtainment T(a`) {l; H{'(X, Ox( fKxly -- tZl ))

holds in arbitrary characteristic p År O as long as the right-hand side is defimed.

  Next we wil1 show that some usefu1 properties of multiplier ideaits also holds true
for the ideEg 7(at) in {ixed characteristic p År g. Ik view gf the above theerem,
we see that the results for 7(a`) recover those fer ,T(at) via standard technique of
reduction modulo p, but the results for .7(at) do not imply those for 7(at), because

they might disagree in smal1 characteristic p. The following results are motivated
by the cerre$po=ding $tatemegts for multiplier ideais preved in IDELI, [Lal, ILil.

Theorem 2.3 (Restriction theorem [HY], cf. [La]). Let (R, rn) be a Q-Gorenstein
normal complete local ring of characteristic p År O and let x G m be a non-zero-
div?isor of R. Let S == RlxR gnd essume that S ts nermgl. Then for a#y ideal
a g R such that an RO # O and any rational number t tr O,

                         T((aS)t) g r(a`)S.

Theorem 2.4 (Subadditivity [HY], ÅëÅí [DEL]). Let (R, m) be a compiete regular io-
cal ring of characteristic p År O. Then for any ideats a, b g R not contained in any-
minimal prime ideal and any rational nu7nbers t,t' 2 O,

                        T(a`b`') g •rÅqa`)r(bg).

Theorem 2.5 (Skoda's theorem [HT], cf. [La], (Li]). Let (R, m) be a local ring of
charactest$tic p År e and assume that R ts complcte, er Pfinite, nermal and Q-
Gerenstein. Let a g R be an ideal ofpesitive height generated 5y r eiements, h g R
an ideal such that bn RO pt Åë and lett) O be a rational number. Then

                        T(a'bt) = 7(a'wwib`)a.

  We shall sketch the proof of Thoorem 2.5, To simplify the situation, we only
consider the case where b ww R and R is normal, Q-Goremstein and complete. (The
proof for the geueral case is more er }ess simRar.) in this case, we have shat eXa'-i =

AimE(r(ar-i)) im E = ER(Rlm) by Theorem-Definition 1.4 and the Matlis duality,
so that AnnE(T(a'-i)a) tt OX"'-i : a in E. Then the theorem follows because

   T(ar) = AimR(eXa') = /innR(gkg'wh' : a) = AnkR(AmaE(T(ar-i)a)) = T(ar-i)g

from the proposition below.
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Proposition 2.6. Let R be a Noetherian ring of characteristic p År O and M an
R--module. Let a c R be an ideal ofpositive height generated by r elements. Then

                       o*.'" = oM'r-i : a in M.

Proof We already know that O"M" g O'M"-' : a by Proposition 1.3 (2), so it suffices

to show the reverse inc}u$iexx e'M" ? e'M"-' : a. Let z G e'M"H' : a, i.e., az ! e'M.'-'.

TheR there exists c E R" $uck that cE{e](a'-i)gzg = O in IF"(M) fer ail g == pe ÅrÅr e.

SiRee a is geReraged by r elemeats, cRe kas

                          "er = a{g]agÅqr-l),

so that czqagr = O for all q nm pue ÅrÅr O, that is, z E OXI'i". Thus we have oltl" = oM""-i : a,

Corollary 2.7 ([HT]). Let (R,m) be a d-dimensional local ring of characteristic
p År O with infinite residue field R/m, and assume either that (R,m) ts complete, or
F-finite, normal and Q-aorenstein. Then for any ideal a S R ofpositive height and
any R }) d, ene has
                       T(a") = 7(ad-1)an+1-d.

                         3. ApPLICATIONS

  In this section, we define a few variants of the ideal r(at) and give some ap-
plications. Although our method just gives alternative proofs to results obtained
previously, I hope that it provides a new insight into characteristic p approach to
problems in commutative algebra and algebraic geometry.

Asymptotic T and uniform behavior of symbolic powers. The notion of
multiplier ideals is defined not only for an ideal q but also for a filtration of ideals a.

(or "graded family of idea}s" in the terininelogy of [ELS]). This variant ef multiplier

ideals is ca31ed aii asymptetic multipber ideal Emd deneted by 5(IIa.II); see e.g.
[ELS}, [La]. Ak advaRtage of asymptctic mrdtiplief ideais is that some igfoymatieft
on infinitely many ideEds in a fatnily a. is packaged in the single ideal 5(lla.il), even

in the case where the Raes algebra e..o a.t" is not Noetherian. This idea is used

successfully by Ein, Laaarsfeld and Smith [ELS] to prove the uniform behavior of
symbolic powers in a regu1ar rings of characteristic zero, Soon after that, Hochster
and Huneke [HH2] established a characteristic p version of the result.
  Here, we define a variant of the ideal T(a) corresponding to asymptotic multiplier
ideals, and apply it to give an alternative proof to the result of [ELS] and [HH2].
Although we work in characteristic p År O as in [HH2}, our strategy is essentially the

same as the characteristic nero method in IELS]. Given a filtratioR of ideais a. in a

mbg of chara{)teyisSie p År e, we defue the "asympgetic f," which play$ execSly the
$ame rcle as asymptotic multiplies ideals in the preeÅí This aaswers the qgestien
raised in [ELS, ltemark 3.1], which asks fer a purely algebraic ceiistruction of ideals

satisfying the "aJciomatizad" properties of asymptotie multiplier ideals.
  ln the following, a filtration of ideals on a Noethrian rring R will mean a collection
a. = {a. I n E N} of ideals of R such that ai n RO v6 to and

                    cxm • an g ctm+. for all m,n k 1.

  Given an ideal a g R such that anRO l Åë, it is cleaac that ordinary powers a" of a
form a filtration. The integral closures iir' of ordinary powers also form a Mtration,

53

5



54

NeBge llARA

Actually, given an ideal a C- R and a rational number t ) O, we have a filtration
a. defined by a. me crrin1 or a,, xe a[t"]. Another example of a filtration is given by

syrnbolic powers: RÅícaJl that the nth symbolic power of an ideal a g R is defined to
be a("År := fip a"Rp A R, where the intersection ranges oyer al} ramimal prime ideals

p of a. Fer an integer k lil g, this gives a fikratiell ef ideals g(k'År = {g{ha) l n G N}

on R,

Definition 3.1. Let a. be a Mtration of ideals on a Noetherian commutative ring
R of characterisitc p År O and let N g M be R-modules. The lla.ll-tight closure of
N in M, degoted by Nstl"'ll, is defued te be tke submedule gf M eeasisting ef all

elements zE M for which there exists cE RO such that

                           cagzq [ NMt]

for aan large q == pe.

Remark 3.2 (cÅí [Lal). IÅít g. be a filtratiell of ideals gk a Noetheriax riag R of
characteriskic p År e. Then by the sscekding chaixx eeRdition of ideals in R, the set
of ideals {7((ak)ilk) l k E N} has a rriaodmal element with respect to inclusion, which

is easily seen to be unique, Indeed, for any integers k,l År O and any R-module M,

we have o'M("k`)i/k'  sK o;i("k)i/k, because (ak)Fq/kl gl (aki)[qlkil for every q = pe, so that

                       7((ak)i!k) g 7((a.)i!ki).

Henee, if T((ak)ilk) and 7((ai)i/i) are both ma)ctmal, then they must coincide with
T((ak,)i/ki).

Proposition-Definition 3.3. Let a. be a filtration of ideats on an excellent local
ting (R,m) of characterisitc p År e and let E me E7R(R!m) be the injective envelepe

of the R-?ncdgle K/m. We define

                     T(lla.Il) : n AnnR(ox:i}ja•ii),

                             McE
where the intersection en the right is tajken over all finitely generated R--submoduies
M ofE. TheR T(Il".ll) is egual te the uaigue ma:21mal ejemekt of the set of ideais
{r((ak)ilk) i k E N} with respect to inciusion.

Proposition 3.4 (Subadditivity). Let (R,m) be a complete regular local ring of
characteristic p År O and let a. be a filtration of idcals R, Then for all n 2 O,

                        T(lleqx.ll) g 7(lieqIl)n.

Proof We can choose sufiiciently large k År O so that T(IIa..il) = r((a.k)'/k) and
T(lla,il) = T((ct.k)i/"k). On the other hand, by the subaddtivity (Theorem 2.4), we

have
               r((a.k)i/k) me r(((a.k)i/"k)n) g T((a,rk)ilnk)n.

TheTefere T(IIg..ll) !91 7(llc.Ii)" as reqptred. B
Theorem 3.5 ([ELS], [HH2]). Let (R,m) be a complete regular local ring of char-
actertlstic p År O and let a be an unmixed ideal of R of height h. Then

                            a(hn) c an

for all integers n ) e.
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Pmof. By the weak F-regularity of R and Proposition 3.4,

                  a(hn) {! T(1la(hn')1l) g 7(l1a(h')1l)n.

Hence it is sufficient to show that T(1Ia(h')1l) g a. Let p be any minimal prime ideal

of a. Then a(h")Rp = (aRp)h" is an pRp-primary ideal for al1 n År O, so that

              7(lla(h')li) g T(lla(h')R,11) = T((aRl,)h) g; aRlp.

by Theorem 2.5 and Proposition 1.3 (3). Thus 7(1la(h')1l) g a(i) = a, as required. O

  The second application is related to a Skoda-type theorem like Corollary 2.7.

Global generation of adjoint line bundles in characteristic p. We give an
alternative proof to the following result due to Karen Smith [S].

Theorem 3.6 (K. E. Smith [S]). LetX be aproJ'ective variety over an algebraically
closed field k of characteristic p År O such that the local ring Ox,. is F-rational3 for

every x E X and let L be an ample invertible sheof on X which is generated by global
sections. Then cvx X 1 QdiMX+i is generated by global sections.

  This is a spacial case of Fujita's freeness conjecture [F], which turns out to be
much easier to prove under the extra assumption that L ibself is globally generated.
Actually, if we assume that L is globally generated in characteristic zero, then the
globaJ generation of wx x LXdimX+i is easily deduced from the Kodaira vanishing

theorem. Smith succeeded in bypassing the use of vanishing theorems that fai1
in characteristic p, by translating the problem into the language of commutative
algebra and applying the theory of tight closure, especially, the "colon-capturing'
property of tight closure [HHI].

3.7. Proof of Theorem 3.6 via a-tight closure. We wiil briefly overview an alternative

proof of Theorem 3.6 given in [H]. Let

                  R = R(X, L) : e HO (X, L8M)Tn

                              n20
be the graded ring associated to (X, L) and put d = dim R = dim X + 1 ) 2. Then
R is F-rational off the irrelevant maximal ideal m = R+ if X has only F-rational
singularities. Also, for any n 2 O, the integral closure iiir' of m" is equal to the

graded part R2n of R of degree ) n if L is generated by global sections.
  Now the top local cohomology module Hxt(R) of R with the support at m is k-dual
to the graded canonical module cvR = e..z[cvR]. of R with the graded pieces

                     [wR]. = HO(X, wx x LX").

It is easy to see that cvx xZ Q}d is globally generated if and only if [cvR]n = Rn-d[wR]d

for all n ÅrÅr O. We will reduce this equality to a Skoda-type theorem in wR.

  For an integer n ) O, we define

                  T(mn,cvR) := Ann..(o /1,"(R)) g; wR,

  3A local ring (R, m) of characteristic p År O is said to be F-rational if every ideal generated by s
syst ern of parameters of R is tightly closed. The F-rationa lity assumption on singularities of X is

relaxed to the F-injectivity ss we will see in 3.8,
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ghe EmRil}i}ator of ekM$" (R) iR "jR with raspect te the duality paking wR Å~ HX(R) --ÅÄ k.

Then it follows from Proposition 2.6, together with Proposition 1.3 (3), that

                  r(mn+d-i, blR) = ifftr • T(rnd-i, wR)

for ag n ) O. OR the other hand, the F-raSioRality of Spec R X {m} implies that
7(rnn,wR) = [wR]Årn for al1 n ÅrÅr O ([H, Lemma 2.6]). Thus we have the inclusions

R)n-g("2RiÅrdw2 {; (wRlÅrR-; = T(ran-i}"iR) ww R)n-d ' 7(a}d'i,wR) {ll; R2n-d(blRlÅrd-i,

so that [wR]Årn-i = R)n-d[cvR]Ård-i. Comparing the graded pieces of the least degree
of tke both sides, we cbtain the required eq"ality [LtiRln me a;wwd • [e`2R]d for n ÅrÅr e• g

3.8. Geometric reinterpretation. Recently, the author found a geometric simplific&
tion (or even a trivia3ization!) of the above proof, To begin with, let us recall

Lemma 3.9 (Muinford (M}). Let Åí be a giohally generated ampSe line bundSe on an
projective variety X and X a coherent sheaf on X satisjuing the vanishing

                   Hi(X,Tx CX'i) ma g for i År C.
Then .T' is generated by global sections,

 in chasacteristic nero, the assertign ef Theorem 3.6 imiiiediate}y follows from the
Kodaira vanishing theorem applied to Mumford's lemma for S == tux x cXdimX+i.
Ik cbaracteristic p År e, we caii use the Serye vtwi$billg theorem iRstead by virtue ef

the following

Lemma 3.le. Let X be a pro7'ective variety of characteristicp År O with the ,Flrvbe-

nius endomorphtsm F: X -- X, and let L be an invertible sheaf on X. Assume that
X has eniy F-injective si#guiarities.` ij the ex-moduie L X "Ftr,;wx IM FrS(wx Q Cf)

ts generated by globat sections for some e E N, then so ts wx op L.

  The above iemma foilows because the F-imjectivity giiaJrantees the surjectivity of
the dual Ftobenius map CX FSwx or }tomx(F.eOx,wx X L) - wx X L.
  Now, let Åí be a glebasty generated ampie line bundle en a projective variety X
with only F-injective singularities, and put .Jr = ,CXdiMX+i x ,ITISwx for e ÅrÅr O. Then

Hi(x,s& cX-i) ----- Hi(X,wx x ÅíXpe{dimX+i-i)) = e for i År g by the vani$hing
theorems of Serre and Grothendieck. Thus we see that wx x LXdirnX+i is globally

generatad by Lemma$ 3.9 and 3.IO.
  The author does meot kuow the answer to the following question unless dim X = 1.

Question. Let X be a smooth prejective variety of characteristic p År e and let L
be an ample line bundle on X. ts the rank p"dmX vector bundle LXdi"X+i x F7swx
generated by global seetiens fer $gme e E N?
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