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Hodge theoretic approach to generalization of Abel’s
theorem

Shuji Saito

The following notes are based on the lectures delivered by the author at “The Arith-
metic, Geometry and Topology of Algebraic cycles”, June 15-July 4 in 2002 at Morelia,
Mexico. It overviews some recent works on filtrations on Chow groups and higher Abel-
Jacobi maps done by the author and others. He sincerely thanks the organizers of the
conference for givinig him the opportunity.
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1 Abel-Jacobi maps and non-representability of Chow
group

We start with recalling the theorem of Abel-Jacobi: For a Riemann surface X the Abel-
Jacobi map

px  Ao(X) = J(X)
is an isomorphism. Here Ag(X) denotes the group of zero-cycles of degree zero on X

modulo rational equivalence and J(X) is the Jacobian of X, which is defined to be the
complex torus (indeed an abelian variety)

H(X,Q%)"/H:\(X,Z),

the dual of the space of the holomorphic 1-forms on X quotiented by the first homology
group of X embedded in the space by integration of forms. Fixing a base point 0 € X we



have the formula for a = ) .y nsz] € Ao(X),

px(a)=(w—>2nz/03w) (w e H°(X,Q%),

z€X

where f: is the integration along any chosen path from 0 to z.

Now let X be a projective smooth variety over C and let CH"(X) be the group of
algebraic cycles of codimension r on X modulo rational equivalence. A fundamental
problem is to search for a reasonable (particularly Hodge theoretic) theory that provides
us a good understanding of the structure of CH"(X). The first significant step toward
this problem was taken by Griffiths who defined the Abel-Jacobi map

px : CH(X)pom — J"(X)

where CH™(X)pom C CHT(X) is the subgroup of those cycle classes that are homologi-
cally equivalent to zero (namely whose cohomology classes are trivial) and J"(X) is the
intermediate Jacobian of X, which is defined to be the complex torus (not an abelian
variety in general)

FP U H?™ (X C)*/Homir(X, Z), (m = dim(X) —r)

where FPH?(X,C) denotes the Hodge filtration on H4(X,C). For a € CH"(X)hom We
have the formula

Pe(@) = (w — /P W) (we FmEmY(X,C)),

where I is a topological 2m + 1-chain such that T = a and w € F™H?™ (X, C)
is represented by a harmonic form on X. We note that in case r = d := dim(X),
CH*X)hom = Ao(X), the group of zero-cycles of degree zero on X modulo rational
equivalence, and J4(X) = Alb(X), the Albanese variety, and p% is the so-called Albanese
map.

If Griffiths Abel-Jacobi map were an isomorphism, there would not be much to explore

in the world of algebraic cycles. It is not the case due to the following theorem of Mumford

Theorem 1.1 Let X be a projective smooth surface over C with H*(X,Q%) # 0. Then
CH?*(X)nom = Ao(X) is infinite dimensional. In particular Ker(p%) is very large.

I will give a precise definition of infinite dimensionality later in 2.3. The above theorem
implies that Chow groups in general are too large to be represented by ordinary algebro-
geometric structure. Even though the result may be now considered an origin of the whole
edifice of theory of mixed motives, a pessimistic feeling should have spread over the study
of algebraic cycles in those times. With his ingenious insight S. Bloch shed new light by
proposing the following conjecture.

Conjecture 1.2 Let X be a projective smooth surface over C with H(X,0%) = 0. Then
p% is an isomorphism.

Note H°(X,9Q%) = F2H%*(X,C). The conjecture suggests that even though the struc-
ture of Chow group seems chaotic, it is mysteriously related with Hodge structure.
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2 Bloch-Beilinson filtration on Chow groups

An important observation is the following natural isomorphism discovered by Carlson
[Cal,
JT(X) = EXtMHs(Z, H2r_1(X, Z(’I‘)),

where M HS denotes the category of mixed Hodge structures introduced by Deligne [D].
This implies that an element of CH"(X)nom/Ker(p%) is captured by an extension in
MHS. One may then have a naive expectation that there may be a secondary cycle class
map from Ker(p%) to higher extension groups Ext}, ¢, which fails due to the fact that
Exth;ys = 0 for p > 2. It was A.Beilinson who got an innovative idea to remedy the
situation. He postulates the existence of such a suitable category (called the category of
mixed motives) that all elements of Chow groups are captured by higher extensions in
the category. A more precise formulation is the following conjecture.

In the rest of these notes we neglect torsion: If M is an abelian group we let M denote
M ® Q by abuse of notation.

Conjecture 2.1 For every projective smooth variety X over C, there exists a canonical
filtration (called Bloch-Beilinson filtration)

CH'(X)=F),CH'(X) D> F},CH"(X) D F4{,CH"(X) D ---
such that the following formula holds for each integer v > 0:
FY . CH™(X)/FyH'CH™(X) = Extigpmc (1, R¥Y(X)(r)).

Here MMc denotes the (conjectural) category of mized motives over C which contains as
a full subcategory Grothendieck’s category Mc of (pure) motives over C, h*(X)(r) € Mc
denotes the cohomological object with Tate twist associated to X and 1 = h%(Spec(k)).

In [Sa2] and [J] it is proved that the Bloch-Beilinson filtration is unique if it exists
under the assumption of the standard conjectures. Several candidates for Bloch-Beilinson
filtrations exist. Among those we adopt the filtration

F5,,CH™(X) C CH'(X) (v>0)

defined in [Sa2], Def.(1-3). In this section we denote Fj,,CH"(X) simply by F*CH"(X).
The definition of the filtration will be included in the appendix. It satisfies the following
properties (cf. [Sal] and [Sa2}):

(F1) FOCH™(X) = CH"(X) and F1CH"(X) = CH"(X)hom.

(F2) F?CH"(X) C Ker(pk) and F2CH"(X)NCH"(X)ay = Ker(p%)NCH"(X)ayg, where
CH"(X)ay C CH"(X) is the subgroup of those cycle classes that are algebraically
equivalent to zero.

(F3) F*CH7(X) is respected by the action of algebraic correspondences.

(F4) The induced action of algebraic correspondences on the associated graded module
GrpCHT™(X) factors through the homological equivalence.
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(F5) FNCH™(X) = FrH'CH"(X) for any N > r + 1.
The existence of a Bloch-Beilinson filtration would implies the following conjecture.
Conjecture 2.2 F*ICH"(X) =0.

If X is a projective smooth surface over C, FICH%(X) = Ay(X) and F2CH?*(X) =
Ker(p%) by (F1) and (F2). One immediately sees from the definition that H%(X, Q%) =0
implies F2CH?(X) = F3CH?*(X). Thus 2.2 is a generalization of Bloch’s conjecture 1.2.

Now we state a result which refines 1.1 by using the above filtration. For this we need
refine the notion of infinite dimensionality for Chow groups introduced in 1.1 by Mumford.
Indeed we define certain hierarchy of infinite dimensionality. Let X be a projective smooth
variety of dimension d over C. Here we are concerned only with CH?%(X) = CHy(X), the
group of zero-cycles on X modulo rational equivalence. In [Sal] more general cases are
treated. Note that FICHy(X) = Ao(X) and FZCHy(X) is the kernel of the Albanese
map Ao(X) — Al(X) by (F1) and (F2).

Definition 2.3 Let X be a projective smooth variety of dimension d over C. Fiz sub-
groups F and S of Ap(X). For an integer u > 0, S is of rank < pu mod F if there
ezxists Y, (possibly reducible) smooth projective of dimension < p over C and a morphism
f:Y — X such that

S C F + Image(Ao(Y) L5 Ay(X)).

Let k(S mod F) be the minimal integer > 0 for which S is of rank < pmod F. In
case F C S we also denote rk(S/F) = rk(S mod F).

We have the equivalence of the conditions
Tk(Ao(X)) > 1 & A¢(X) is infinite dimensional in the sense of [M].

One can prove that if S is weakly representable modulo F' (which means that there
is an abelian variety A over C and a reasonable map p : Ag(X) — A(C) such that
Ker(p) NS = FN S, see {Sal], Def.5.1), then rk(S mod F) < 1. We refer the readers to
[Sal] for the proof of the following theorems.

Theorem 2.4 Let X be a projective smooth surface over C. The following conditions are
equivalent:

(1) F2CHo(X) = F3CHy(X).
(2) rk(F2CHy(X)/F3CHy(X)) < 1.
(3) rk(Ao(X)/F3CHy(X)) < 1.
(4) HY(X,0%) =0.
Note that 2.4 strengthens 1.1 which is equivalent to the implication
rk(F2CHy(X)) < 1= H°(X,0%) =0.

There exists the generalization of 2.4 to higher dimensional case.
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Theorem 2.5 Let X be a projective smooth variety of dimension d over C. Assume that
B(X) (cf. below) holds. For an integer v > 2, the following conditions are equivalent:

(1) F*CHo(X) = F**1CHy(X).
(2) Th(F*CHo(X)/F**'CHy(X)) <v — 1.
(3) Tk(Ao(X)/F*F'CHy(X))<v-—1.
(4) H*(X,Q) = N*H*(X,Q), where N°H*(X,Q) C H*(X, Q) is the coniveau filtration
(cf. 6.2 for the definition).
By definition B(X') holds if the inverse of the hard Lefschetz isomorphism
L9 . HY(X,Q) = H*¥9(X,Q) for Vq <d:= dim(X),

is algebraic, namely induced by an algebraic correspondence (cf. section 6), where L €
H?*(X,Q) is the class of an ample line bundle. Recall that B(X) is the so-called hard
Lefschetz conjecture and is a part of the standard conjectures. The following fdacts are
known (cf. [K]). Let C be the category of smooth projective varieties over C.

(B1) Let X € C. The Hodge conjecture for X x X implies B(X).
(B2) If B(X) and B(Y) hold for X,Y € C, then B(X x Y) holds.

(B3) If B(X) holds for X € C and Y C X is a smooth hypersurface section, then B(Y')
holds.

(B4) If B(X) holds in the following cases:
(?) dim(X) < 2.

(#) X is a smooth complete intersection in a projective space.
(#42) X is an abelian variety.

(iv) X is a flag variety.

3 Mumford’s invariants

Now the following problems arise.
(I) Find a tractable invariant to capture cycles in F*CH"(X) with v > 2.
(II) Relate the invariant to higher extensions in a suitable category.

Of course the second problem arises naturally in view of Beilinson’s conjecture 2.1.
We will discuss it in sections 4 and 5. In this section we discuss the first problem. In his
seminal work [M] Mumford used holomorphic 2-forms to capture zero-cycles on a surface.
C. Voisin [V] generalized it to families of zero-cycles on surfaces. The purpose of this
section is to generalize those constructions and to associate to a cycle in FYCH"(X) its
class in the cohomology of certain complex arising arithmetic Gauss-Manin connection,
which we call Mumford invariants. Such theory of cycle classes has been formulated as
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a conjecture by Green and Griffiths where they use the conjectural filtration of Bloch-
Beilinson (see [G]).
For that purpose we use another filtration (cf. [Sa2], Def.(1-2))

vCH'(X) C F%,,CH™(X) C CH™(X) (v20),

which is a slight modification of F§;,CH"(X) used in the previous section (the definition
of FECH™(X) will be recalled in the appendix). It satisfies (F'1) through (F4) in the
previous section. We have the following fact (cf. [Sa2], Thm.(1-1)).

Proposition 3.1 We have FECH™(X) = Fg,,CH"(X), assuming the homological and
numerical equivalences coincide.

First we introduce some notations. In what follows f : X — Spec(C) denotes a smooth
projective variety over C. Let QL — be the differential module of C over Q, the algebraic

c/Q
p _ Pl p . . .
closure of QQ, and put Qc o= /\Qc s Note that Qc glsa complex vector space of infinite

dimension if p > 1. Let
H)p(X/C) = HI(X,Qy/c) and FPHDR(X/C) = H(X, Q%) C Hp(X/C)
be the de Rham cohomology of X/C and its Hodge filtration. Let
V : Hpp(X/C) — Qé/@ ® Hpp(X/C)

be the arithmetic Gauss-Manin connection, that can be defined to be the boundary map
arising from the exact sequence of complexes of sheaves on X

0 — f*Qt/5® Uxscl—1] = Dy 5/ F Uy g = Vxsc — 0,

where Q¢

X/Q
of f*QF — @ QT — QX/G' We extend V to

p —_—
c/Q X/Q

denotes the sheaf of differentials of X over Q and FPyy o denotes the image

V : 0%g® Hba(X/C) — Q41 ® Hba(X/C)

by the formula
Vw®n) =dw®n+(-1)"w® Vn.
Two basic facts are:

(1) (fatness) V2 =0

(2) (transversality) V(FPHE(X/C)) C Qé/ﬁ ® FP1H} o (X/C).

Definition 3.2 For integersr,v > 0 the space VJ™(X) of Mumford invariants is defined
to be the cohomology of the following complex:

v— T— r—v V 14 bt 4 TV V v T—y— r—v
QU e® F7 " HER" (X/C) — Qg ® FT ™ Hpz"(X/C) — Qs @ FT™* ' HEz¥ (X/C)
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Proposition 3.3 There erists a natural map
v ¢ FY'CH™(X) — VJ™(X)

which is functorial for a morphism Y — X of projective smooth varieties over C and
satisfies @5 (F**ICH™(X)) =

In case v =1 ¢ is related to the Griffiths Abel-Jacobi map pY as follows. It is the
Griffiths construction of infinitesimal invariants of normal functions. We note

J'(X) = H"}X,C)/F"'H*"(X,C) + H\(X, Z(r)).

We have the comparison isomorphism H%(X,C) — HJ},(X/C) preserving the Hodge
filtrations and the arithmetic Gauss-Manin connection V annihilates the image of the
subspace HY(X,Q(r)) C HY(X,C). Hence V induces

7 J(X) = VJI(X)

and one can check that ¢ = 7 0 p.

The map ¢% can be defined by the same idea of the definition of the infinitesimal
invariants of higher normal functions introduced in [Sa3], which generalizes Griffiths nor-
mal functions and infinitesimal invariants. It is based on the theory of cycle classes in
Deligne cohomology. In the next section we will explain a refinement of the above cycle
class map by using the theory of cycle classes in higher extension groups in the category
of arithmetic Hodge structures developed by Green-Griffiths, M.Asakura and M.Saito (cf.
(A1}, 3.2 and 4.2 and [MSa2]).

Here we give a brief explanation of the construction of ¢%;’. We start with the cycle
class map defined by El-Zein [EZ]

¢pz : CH™(X) — H'(X, Q;;G)

where the important point is to use 2% & instead of Q% . There is a filtration

Q>r_‘ > vaQ>r

x/Q X/Q ® 0272P[-p]). (f: X — Spec(C))

= I'mage( f*QC o X/a

Its graded quotients are given by

>r >1~—
Grk me =f QC/ﬁ x,/cp ]
In view of

HY(X, f*Q = ® OF)c7) — OF tg® FTPHpR(X/C),

c/Q
we get the spectral sequence

EP = HPH(X, Grh Q>'Q) = ® FrPHY.(X/C) = HPH(X, Q")

C/Q X/Q

whose differential d5"? is identified with V by [KO]. Thus the construction of ¢%” is reduced
to show the following facts which are shown by the same argument as [Sa3], Lem.(1-1)
and Prop.(2-1):



(1) The above spectral sequence degenerates at Es.
(2) oY (FYCH™(X)) C F*H' (X, Q)Z(;Q-), where the last group denotes the filtration on
H"(X, Q)Z{;G) associated to the spectral sequence.

Now we present a theorem implying that ¢} with v > 1 is able to detect non-trivial
cycles in the kernel of Griffiths Abel-Jacobi map.

Let X C P*! be a smooth hypersurface of degree d and of dimension n. By the
Lefschetz theory the restriction map H*(P"+!,Q) — H*(X,Q) is an isomorphism unless
i = n. By the definition of F*CH"(X) it implies that if 2r > n+1,

(1) CH"(X)hom = F'CH'(X) = F*-"CH"(X).
(2) FNCH"(X) = F—"*CH"(X) for VN > 2 —n+1.

Thus F*CH™(X)/F**'CH"(X) is interesting only if v = 2r — n. Now we consider the
case r = n — 1, namely the case of one cycles on X.
Let £ C X be a line on X and consider

Be:=d- ] - [X N L] € CH™(X)nom = F*2CH" 1(X),

where L C P+ is a linear subspace of dimension 2 intersecting properly with X. We are
interested in the image of 8, under

¢ = ¢}—1,n—2 . Fn—2CHn—1(X) —_ VJn—l,n—z(X).
Theorem 3.4 ([Sa3], Thm.(0-1))

(1) If d > n > 3 and X is general with respect to £, then ¢(B;) # O and hence (B ¢
F1CH™(X).

(2) Assumed > 2n —1 and X is general. Then ¢(CH" 1(X)aq) = 0.

By [Bo], Prop.2.1 there exists always a line £ C X if d < 2n — 1. Thus we get the
following,.

Corollary 3.5 For every line £ on a general hypersurface X C P™*! of degreed = 2n—1,
Be & F*ICH™ 1(X) + CH" M X) alg-

Remark 3.6 (1) In case n = 3 and d = 5 (quintic S-folds) 3.5 is due to Griffiths,
who found the first example where the homological and algebraic equivalence do not
coincide even modulo torsion.

(2) If n > 4, the intermediate Jacobian J" 1(X) vanishes so that it is not possible to
capture B; by using the Griffiths Abel-Jacobi map.

(3) In [N] Nori captured a nontrivial cycle in the kernel of the Griffiths Abel-Jacobi map
by using the de Rham cohomology of the total space of a family of projective smooth
varieties over a parameter sapce S.
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Here we explain the idea of the proof of 3.4 very briefly. We refer the readers to [Sa3]
for the details. As for (1) we use the induction on n. We take a hyperplane H C Pr+!
such that £ C H and that H intersects transversally X. Put Y = X N H. The first key
step is the construction of the commutative diagram
¢n—2,n-3
Fn—3CHn—2(Y) Y VJn—z,n-3(y)

1ia Li.
¢}—1,n-2

Fn—20ﬂn—-1(x) SN VJn-—l,n—Z(X)

where the vertical maps are the Gysin maps for the immersion ¢ : Y — X. By definition
Be € F*~2C H™ (X)) lies in the image of i, on the left hand side. The key point is to show
the fact: if H is a general hyperplane containing /, i, on the right hand side is injective.
Then 3.4(1) is reduced to the same assertion for Y and the induction proceeds. By the
definition of ¢, on the right hand side, the injectivity follows from the exactness at the
middle of the complex:
Q274 ® FPHpR(U/C) ~, Q¢ ® FPHpR(U/C) ~, Qg E® F'HpR(U/C)
where U = X —Y and FPHY,(U/C) = HY(X,QZ (logY)) with sc(logY'), the complex
of the sheaves of differentials of X over C with logarithmic poles along Y. It can be
controlled by using (generalized) Jacobian rings that provide an algebraic description of
the infinitesimal part of variation of mixed Hodge structures associated to the cohomology
of the universal family of the moduli space of U.
The key idea to show 3.4(2) is to define a subspace

VJ(X) C VI¥(X),

which we would call the algebraic part of VJ"(X). The idea originates from the theory
of formal tangent spaces of Chow groups which was developed by Bloch and Stienstra.
It is also inspired by a Hodge theoretic study of this subject done by Green-Griffiths (cf.
[G]). The desired assertion then follows from the following:

(1) ¢ (F*CH(X)NCH ™ (X)ay) C VJ:};(X).
(2) If X is general and d(n —r) > 2r + 1, then VJ;/(X) = 0.

These are shown by the same argument as [Sa3|, section 4.

4 Mumford invariants as higher extensions

The purpose of this section is to relate the Mumford invariants to higher extensions in
a suitable category following the works of Green-Griffiths [G] and Asakura [Al], 3.2.
It is motivated by the Beilinson’s formula in 2.1. Let R be a smooth algebra over Q
and let Dp C Endg(R) be the ring of differential operators generated as a subring by
Or = Derg(R, R) (derivations) and R (scalars). If R has a local coordinate {z;}1<<n and
{55}15;9; is the dual basis of {dﬂ)g}lsgSm we have

Dp=(DR-&" (6*:=0035" - 85n).
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It is endowed with the filtration of differential order

m

FDc=@ R (lol=) )

laj<p =1

A filtered Dg-module is a pair (M, F) of a Dg-module M and an increasing filtration of
finite R-modules F,M C M (p € Z) satisfying

(1) M =UyezFoM  (F,M =0p<<0),
(2) F,Dg-F,M C Fp M,
(3) F is a good filtration, namely there exists go € Z such that

F,Dp-FeM C Fp M for Vp and Vg > go.

We remark that we may drop the last condition (3) to get the same result in this section.
Let MFg be the category of filtered Dg-modules. For an object M = (M, F) of MFp its
Tate twist M(r) is defined to be (M, F(r)) with F(r), = F,_,. Every morphism in MFg
has a kernel and a cokernel but its image and coimage are not isomorphic in general. Thus
MFpg is not an abelian category but it becomes an exact category by defining a complex
in MFg

(M11 Fl) - (M2) F2) - (MZ’ F2)

to be exact if and only if
Grf M, — GrP M, — GrPe M,

is an exact sequence of R-modules. Thus we can consider higher extension groups in the
sense of Yoneda in MFg.

Let f : X — Spec(R) be a smooth projective morphism. The algebraic de Rham
cohomology M = H}p(X/R) = RSy /p with the filtration F,M := FPH}p(X/R)
gives rise to an object of MFp: We let § € Og act on M via Vy, the covariant derivative
of 8 with respect to the algebraic Gauss-Manin connection

V : Hpp(X/R) — Q}z/ﬁ ® Hpp(X/R).
Proposition 4.1 (¢f. [G] and [A1]) For integers p,q > 0, Ext} r (R, Hjp(X/R)(r))
(R is considered as a Dp-module via the augmentation Dg — R and endowed with the

filtration F,R=10 ifp <0 and F,R = R if p > 0) is isomorphic to the cohomology of the
following complex

At ® FF P HE o (X/R) > Q0 ® FTPHDR(X/C) o Qe @ F™ " Hiy o(X/R)
For a morphism ¢ : R — S of smooth Q-algebras we have the functor

M.FR—*Mfs; (M,F)-—-* (S@RM,S®RF),

10
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Here S ® g M is endowed with structure of Dg-module in such a way that if {z;}1<<n is
a local coordinate on R and {0;}1<i<n is the dual basis of {dz;}1<i<n,

6(a®m) =06(a) ®m + zn:G(qS(a:,-)) ®om (a€S, me M,6 € Og).

i=1

Now we put
MFc = lim MFp.

RCC

where R ranges over the subalgebras of C which are smooth over Q. Let X be a smooth
projective variety over C. By the above construction H},p(X/C) gives rise to an object
of MF¢. 4.1 immediately implies the following,.

Corollary 4.2 For integers r,v > 0 there is a canonical isomorphism
VJI™(X) = Extiz(C, Hpz"(X/C)(r)).

Proof of 4.1. For simplicity we assume that R has a local coordinate {z;}1<<,. Let
{8:}1<i<n be the dual basis of {dz;}1<i<n. We have the Koszul resolution of R as a filtered
Dpg-module:

0 — Dp(—n) ® AV — -+ o Dp(~1)®V — Dp — R — 0,
where V is a Q-vector space with a basis {e;}1<i<n and the boundary maps are given by
4 p-1 Ld . e
Dr(—p)®AV — Dp(—p+1)@ AV ; £®ei,A- - -Ae;, — Z(—l)’f-@.-j@eilk - Rei AN,
j=1

It is an exact sequence in MFp and 4.1 follows easily from the following standard fact.
Lemma 4.3 For (M, F) € MFg we have

) EM ifv=0
EXtM].-R(DR(p)’ (Ma F)) = { 1;) otherwise

5 Arithmetic Hodge structures

In this section we give a brief explanation of cycle classes in higher extension group in
the category of arithmetic Hodge structures due to M. Asakura and M. Saito (cf. [Al]
and [MSa2]). In the construction of the previous section, the Q-structure is not taken
into account. The theory of arithmetic Hodge structures remedies the defect and gives a
refinement of the Mumford invariants.

Let S be a smooth scheme over Q. An admissible variation of mixed Hodge structures
on S is defined to be a datum (Hg, Ho,W., F", V, 1), where

- Hyg is a local system of finite dimensional Q-vector space on S(C)*",

- Hp is a locally free Zariski sheaf of Og-module of finite rank,
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- W. C Hg and W. C Hp are increasing filtrations, called the weight filtration,
- F' C Hp is a decreasing filtration, called the Hodge filtration,
- V: Hpo — Hp ® (1} is an algebraic connection such that V? =0,

i : Ho® OF — Hp ® OF which induces Ho ® C — Ker(V°"?), called the
comparison isomorphism,

and they satisfy the following conditions:

(1) Two weight filtrations are compatible with respect to 4,

(2) For every point s € S(C), the fibers Hg, < Hp , with the induced weight filtration
and Hodge filtration define a mixed Hodge structure, namely an object of M HS.

(3) (transversality) V(W,) C W, ® Q}, V(FP)C Fr 1@l for V¢,p.
(4) (polarrizability) omitted,
(5) (admissibility) omitted.

We let VM HS(S) denote the category of admissible variation of mixed Hodge struc-
tures on S. Some important remarks are the following:

(3) VMHS is an abelian category.

(13) For a projective smooth morphism f : X — S, we have the associated cohomological
object
HY(X/8)(r) = (R fI"Q(r), Hp(X/8), V, W 120, F*T),

where f°" : X(C) — S(C), Hpp(X/S) = HI(X,Qy/s), V is the algebraic Gauss-
Manin connection, W, (resp. F'*7) is the degree shift of the usual weight (resp.
Hodge filtrations). In particular it gives rise to the Tate object Q(r) in case X = S.

(44i) For S = Spec(R) we have the functor
TMF - VMHS(S) g M.:FR 3 (HQ,Ho,W,F',V,i) -3 (H@,F.),

where F, = F~? and the action of Dr on Hp is given by the action of ©¢ induced
by covariant derivatives with respect to V.

For a morphism T — § of smooth varieties over Q, the inverse image functor VM HS(S) —
VMHS(T) is defined. The category of arithmetic Hodge structures is now defined by:

MME! = lim VMHS(S),

(S,m)

where the limit is taken over the set of smooth schemes S over Q@ with embeddings
n: Q(S) — C. By the above construction MMEH is an abelian category with the Tate
object Q(r) and the cohomological object H¥(X/C)(r) associated to a projective smooth
variety X over C. It is endowed with the functors

rmr : MMEE 5> MFe and ryg : MME? — MHS,
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where the first one is induced by the functor in (éi) and the second is obtained by taking
the fibers over the point of S(C) corresponding to the given 7 in view of (2). The proof
of the following theorem due to M. Asakura and M. Saito requires the theory of mixed
Hodge modules {MSal], which is beyond scope of these notes.

Theorem 5.1 There exists a cycle map
PX + FYCH'(X) — Extiuan (Q0), H(X/C)(r))
satisfying the following:
(1) The composite of py' with the map
Ext)y pian (Q0), H 7 (X/C)(r)) — Exthrys(Q0), H ™' (X,Q(r))) = J'(X)

coincides with the Griffiths Abel-Jacobi map px, where the first map is induced by
ry and the second is Carlson’s isomorphism.

(2) The composite of py with the map

Ext} pqan (Q(0), H ™ (X/C)(r)) — Extjiz (C, Hpp*(X/C)(r)) = VJ™(X)

coincides with @5, where the first map is induced by ryr and the second is the
isomorphism of 4.2.

Finally we remark that there exist cycles whose Mumford invariants vanish but whose
images under the refined cycle maps do not vanish (cf. [A2], Thm.1.3, [RS]).

6 Appendix

In this section we recall the definitions of two filtrations on Chow groups used in these
notes. They are excerpted from [Sa2], §1. First we introduce notations.

Let C be the category of smooth projective varieties over C. For X € C we denote
Hi(X) = H*(X,Q) for simplicity. For V,X € C and for T € CHY(V x X) let

T : CH*V) > CH"(X) and ¢k : H=2~)V) - HY(X) (s=r—q+dim(V))

be the homomorphisms induced by I' as an algebraic correspondence. They are given by

the formulae
Lu(a) = (mx)((ny)* (@) - T) for « € CH*(V),

1 (B) = (mx)u((v)*(B)UIT]) for B € H2=)(V),

where mx : V x X — X and 7y : V x X — V are the projections and [['] € H*#(V x X)
is the cohomology class of T".

Definition 6.1 For v > 0 we define FRCH™(X) for VX € C and for Vr > 0 in the
following inductive way:

(1) FRCH*(V) = CH*(V) for VV € C and for Vs > 0.

13



(2) Assume that we have defined FECH*(V) = CH*(V) for YV € C and for Vs > 0.

Then we define

FgH'CH™(X) = ) Image(T. : FsCH™~4(V) - CH"(X)),
Vig.T'

where V, q,T" range over the following data:

(@) V € C of dimension dy,
(b) T S q Sr+dV;
(¢) T € CHYV x X) satisfying the condition pf ™ = 0, where

Definition 6.2 We define Fg,,CH"(X) in the same inducitve way as 6.1 except that we

9912.,""" : Hz’_"(V) — H2r-y(X) (s =r—q-+ dv)

replace (2)(c) by the following condition:

(¢) T € CHYV x X) satisfying the condition

E (P (V) C NTH R (X),

Here N*H*(X) C H*(X) denotes the p-th coniveau filtration:

N?H*(X)= lim Ker(H*(X)— H*(X -Y)),

Yo X
codim x (Y)2p

where Y ranges over all closed subschemes of X of codimension> p.
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