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   Good hyperp!ane sectioms, whose existence is assured by Bertini's theorem, and
good fatniiies of hyperp}ane sectiens, scFcalled Lefschetz peRciis, are weli-kaewa
eemstructicns akd pgwerwful teeis in classical geometry, i.e., for varieties ever a field.

But fcr aarithmetic questioms one is llaturally ied to the censideratioR of medels over

Dedekud rings and, for local questions, to schemes over discrete valuation rings. It

is the aim of this note to provide extensions of the mentioned constructions to this
situation. We point out some new phenomena, and refer the reader to [JS] for some
aJrittmetic applications.

   Let A be a discrete valuation ring with fraction field K, maJcimal ideal m and
residue field F = A/m. Let n : Spec(K) and s = Spec(I') be the generic and closed
point of Spec(A), respectively. For any scheine X over A we }et Xn = X xA K and
Xs == X xA F be its geReric and special fibre, respectively.

e. Good hyperplane sections for good reductien schemes

  As a 'warm-up', we recan the classical Bertini theorem and extend it to varieties
over K with good reduetion. Let X c Pg be a smooth quasi-projective variety
over a field L. Recal1 that another irreducible smooth subscheme Z c Pbl is said to

intersect X transversally, if the scheme-theoretic intersection X•Z == X Å~pNZ (which

is just defined by the ideal generated by the equations of X and Z) is smooth and
of pure codimeRsioB codim?N(Z) in X. [I)hen the Bertmi theorem asserts that for
iRfuite L, there exists Em bratioRal byperplat}e H C meÅíf ikter$ectiRg X tsansver$ally

(cÅí [jell, 6.R, 2], aRd atso Theerem 3 belew). Ig tkis case, oRe cails Y = X • H a
smooth (or geed) hyperp}ane $ectieR of X.
   More precisely, the foilowing holds. One has the dual projective space (PY)V
parameterizing the hyperplanes in PÅíf (a point a = (ao:...:aN) corresponds to the

hyperplane with the equation aoxo+. . .+aNxN == O for the homogeneous coordinates
xi of Pg). Then, for an axbitrary field L, there is a dense Zariski open Vx c (P2)"

parameterizing those hyperplanes which intersect X transversally. Moreover, if L
is indnite, then the set Vx(L) of L-rational points is non-empty, since Pbl(L) is
Zariski dense in Pe. This show$ that, for an infinite field L, aad finitely many
smeoth vatietie$ Xi,...,X. in ?", there E"se exists Em L-ratieaal byperplai}e H

i=tersecting all X{ tramsversally, beeause Vx, fi...fi Vx. is gek-empty.

   If L is fuite, it may happen that Vx dees Rot have any L-ratioRal pgint. But,
by sieve methods, Poonen [Po] showed that in this case there always exists an b
rational point after replacing the projective embeddng by the d-fold embedding for
some d År O, i.e., there always exists a smooth L-rational hypersurface section of X.
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  Now consider a quasi-projective A-scheme (A a discrete valuation ring as above),
i.e., a subscheme X of the projective space PX over A.

  By a hyperplane H g P" over A we mean a closed subscheme which corresponds
to an A-rational point of the dual projective space (PX)V (= Grassmannian of linear

subspaces of codimension 1). Since every invertible module over A is free, H is given
by a surjection g : AN+i -" AN; or, equivalently, by an equation 2,N•=oaixi = O,

ai E A (i = O, . . . , N), not al1 in the maximal ideal in, for the coordinates xi on ]PA'} .

The correspondence is given by

                                 N
                        kerg=A•2aiei ,
                                 i=o
where eo,...,eN is the basis of AN+i,

Theorem O Let X c PX be a smooth quasi-pro2'ective A-scheme. IfF is infinite,
then there exists a hyperplane H c P" over A such that the scheme-theoretic inter-

section X•H=Xxp" H ts smooth overA and ofpure codimension 1 in X. lfF ts
finite and A is Henselian, then, for every given prime number e, such a hyperplane
exists after replacing A by a finite e'tale covering A'/A ofe-power-degree.

Proof Let H c PX be a hyperplane over A. Then H, and H. are hyperplanes
in PNK and P", respectively. With the notations as above, the condition on the
hyperplane is that (the K-rational point corresponding to) Hn lies in the good locus
Vx, c (P")V, and that H, lies in Vx.. Since H is completely determined by Hn,
this means that H, E Vx,(K) n sp-i(Vx.(F)), where sp:(P")V(K) - (P"(F) is
the specialization map, which sends Hn to Hs.
   It remains to see when this intersection is non-empty. But for any proper scheme

P over A and any open subschemes Vi c Pn and V2 C P., with closed complements
Zi = P, N Vi and Z2 = P, X V2, respectively, one has Zi(K) c sp-i(sp(Zi)(F))
where sp(Zi) = 7i n P. for the Zariski closure 2i of Zi in PN. Therefore Vi(K) n
sp-i(V2(F)) contains sp-i((V2 Å~ sp(Zi))(F)). The latter set has K-rational points,

if sp : P(K) - P(F) is surjective and V2 X sp(Zi) has F-rational points. The latter
set is open and dense in P,, if P/S has irreducible fibres, and Vi and V2 are dense
in their fibres.

   Applying this to P= (PX)V, Vi = Vx, and V2 = Vx,, where al1 conditions are
fulfilled, we see it suMces that the non•-empty open subset VV = V2Nsp(Zi) has
F-rational points. As explained above, this is the case if F is infinite. Hence, if
F is finite, it is the case over the maximal prQe-extension of F, hence over some
extension F'/F of e-power degree. If A is Henselian, and A'/A is the unramified
extension corresponding to F'IF, then the F'-rational point lifts to an A'-rational

point of P. Since the formation of the sets Vi and V2 is compatible with etale base
change in the base, this means there is a good hyperplane section for X over A'.

Remarks 1 (i) In contrast with the classical situation, the good hyperplanes over
A are not parametrized by a Zariski open in P", but by a subset of the type Vi(K)n
sp-i((V2)(F)) for Zariski opens Vi c (P".)V and V2 c (P")V.
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   (k) If, with the ftctatiens as in the pfcef, H, intersects the $meoth vatriety X.

transversally, and if Xn n Hn is non-empty, then X • H is a fiat A-scheme of finite

type, whose special fibre (X•H), = X.•H, is smooth. Since the smooth locus
of X•H is open, X•H must be smooth, if X and hence X-H is proper. This
shows that, for smooth and proper X, one has spimi(Vx.) c Vx,, and the locus in
(lptKY)V(K) cf ggcd hyperplanes fer XIA is just spwwi(Vx. (F)). Moreover, by applying

the mentioned result ef Poenen, this has an K-rational point after passing to some

multiple embedding.

  RecaJl that a smooth proper vaaciety V over K is said to have good reduction (over

A) if there is a smGoth preper A-scheme X wigh geRefic fiber X, == X xA K N V.

Corollary O lfF is finite and V/K is a smooth puro2'ective variety with good reduc-
tion, there exists a smooth hypersurface section which again has good reduction,

1. Geed hyperplaRe sectiens fer semi-stable $chemes

   For the applications, the case of good reduction is too restrictive, but often one

can reduce questioms to the case of semi-stable reduction and, by blowing up, even
to the case of strictly semi-stable reduction. Therefore }et X c--, IP;AY be a quasi-

pyojective strictly semi-stable A-scheme, i.e., X is fiat ever A, the geReric fibre XR

is smooth, the reduction is semi-stable (cf. below), and the irreducible components

of the special fibre X, are smooth. The aim of this section is to prove:

Theorem 1 IfF is infinite, then there eststs a hyperplane ,H C PX overA such

that the scheme-theeretic intersectSon X t H = X Å~?x H ts a strictiy semi-stabie
scheme everA. ijF is finite and A ts Henseliak, then, for eyery pR'me e there is a
finite unramified extension A' ofA ofe-power degree such that the same conclusion
holds after base change with A'.

Lemma 1 Let H c PX be a hyperplane over A, with special fcbre H. c P"
gnd generie fore KR C Pff. Let X. = U,M•,.iX be the gnien of smooth vasteties

intersecting transversaiiy. Assume that

  (i? H, intersects allp-fold intersections

Yi,.h,i. := Yi, A • • • fi Yi. (il Åq i2 Åq''' Åq ip)

    transversaily, for ail p ) 1,

 (ii? Hn intersects Xn transversally.

Then the scheme-theoretic intersectien X • H is a strslctly semi-stable scheme over
A. IfX is preper over A, cendition (ii? is implied by cendition (V.
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Proof We may assume that the residue fieid is algebraically closed. Semi-stable
reduction then means that the completion Ox,. of the local ring Ox,. at any closed

point x E X, is isomorphic to

B = A[[Xl, • • • , Xn]]/ÅqXi • • • Xr - TÅr (1 SrS n)

for suitab}e n and r, where rr is a prime element in A. Let f be the image of the
local equatieR fgr H at x, and let n g B be the maJciraal ideal. SiRce BlÅqfÅr i$ tke

completiek ef Ske local riRg ef X • H at x if x E X • ll, , at}d since the ixedgcible

compoRefits ef (X•H). ww X,•H. ase the cennected components ef the smoeth
varieties Yi • H,, the lemma foilews from the following two claims.

Claim 1 Assumption (i) implies that

 either (a) f is a unit in B,
 or (b) nÅr 1, f is in n, and has non-zero image in n/(n2 + Åqxi,...,x.År).

Claim 2 Assume condition (b) holds. Then

B!ÅqfÅr tw A[[y}, • i • } Yn-i]]1ÅqYi • • • Yr - rrÅr

In fect, this gives the strictly semi-stab}e reductioR, and by (ii) the gekeric fibre ef

X - H is smooth, too. If this generic fibre is Ron-empty, X • H is alse fiat; if it is

empty, X •H is empty. Without (li), claim 2 shows that every x E (X •H). == X, • H,

has an open neighbourhood in X • H of the right dimension, whose generic fibre is
non-empty and smooth. If X/A is proper, these neighbourhoods cover X • H.

Proof of claim 2 The elements xi mod n2 form Em F-basis of n/n2 (i = 1,...,n).

Hence we have
                           n                       f=2aixi modn2
                          i=l
with elemekts Gi E A which are determiRed modulo ÅqxÅr. If (b) hglds, theR eq is
a unit for one i with i År r (in particular, we must have n År r), as}d by possibly

renumbering and multiplying f by a unit we may assume i = n, and a. = 1. But
then
                B/ÅqfÅr tw A[[xi,•••,Xn-i]]/ÅqXi•••Xr ww 7rÅr•

Proof of claim 1 The elements xi,...,x. are the images of the local equations for
Yi,,•••,Yi. for suitable 1 S ii Åq ••• Åq ir S M. Thus the trace of Yi, n•••nYis iu
Ox,. 2! B is given by the ideal Åqxi,...,x.År, i.e., by the quotient

B' me BlÅqxl,•••,XrÅr tl;t F[[Xr+i,••',X#]] '

  This is zero-dimensional if and only ifr = n, and in this case Yi, fi• • •nYi. is zeror

dimensional as well. Then, by assumption on H, H does not intersect Yi, n • • • n Yi.,

and so f is a unit in B/Åqxi,...,x.År and hence in B.
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  If r Åq n, then H intersects Yi, n•••n Yi. transversaliy at x if and only if
the image of f in B' lies in n' - (n')2, where n' is the maximal ideal of B'. But
n' /(n')2 !!! n/(n2 + Åqxi, . . . , x.År) which proves claim 1,

Proof of Theorem 1 It suMces to find a hyperplane satisfying the assumption of
Lemma 1, i.e., to show that, with the notations introduced earlier, the set Vx, (K) n
sp"-i(V2(F)) is non-empty, where V2 is the intersection of the sets Vy,,,...,,. , and hence

open and dense in (Pes)V. This holds under the conditio!}$ QÅí [l]heorem l, by the

argumeRts used in the proof ef Theefem e.

If XfA is prgper, we uoted that sp-i(V2(F)) is contained in Vx.(K). Combining
this with the mentioned re$uks of Poonen [Po] we get:

Corollary 1 if F is finite and V/K is a smooth projective variety with strictly
semi-stable reduction, there is a smooth hypersurface section which again has strictly

semi-stable reduction.

2. Lefschetz penciis for schemes with (almost) good reductieR

  EveR if gge starts witk a vgsiety V cvey K with geod reducticR, iR geReral
infifiitely maRy fibres in a Lefschetz pencil (cÅí below) for Y will Ret kave good

reduction, because infinitely many hyperplanes specialize to the same hyperplane
in the reduction, and usually the induced pencil for the reduction of V has a bad
rnember. But one can arrange very mild singularities:

Definition 1 A smooth projective variety V over K is said to have almost good
reduction, if there is a projective A-scheme X such that Xn g V, and X. is smooth
over F except for a finite number of singular points which are ordinary quadratic
(cÅí [SGA 7 XV, l.2.l] and below).

In faÅít, eRe eEm eveR start with such singi}lasiSies, axd stlll get siRgularities which

aace nct werse - which is useful fer iRdectioR ok dimemsion. Our aim is to prgve:

Theorem 2 Let V be purojective K-variety with almost good reduction, and let
X c PX be a model ofV as in Definition 1. Iet d ) 2 be an integer and suppose
F is infinite. Then, after possibly passing to the d-fold embedding ofX, there emsts
a Lefschetz pencil {Vt}tGD, where D is a line in the dual pro2'ective space (PiKV)V,

satisfying the following conditions:

 (1? The axis of the pencil has good reduction over K.

 (2? There ex2'sts a finite subset X c PX ef clesed paints such that for any t Åë X, Vt

    has ajmcst gged reclucticn eyer AK(t), the integral clesure of A in the residue
    fieid, KÅqt) oft.

Suppose F is finite, A is ftrenselian, and e is a .tixed prime. Then the same result
holds afler possibly passing to a finite unramified extension K'/K ofe-power degree.
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The preef will be achieved in feur steps, Rwnbered (2.1) ev (2.4).

(2.1) Let (PX)V be the dual projective space over A. Its fibres over K and F coincide
with the dual projective spaces (PNK)" aind (Ppl)V, respectively, Furthermore, let

g me Cr(1,(PX)V) be the Grassmannian of 1ines in (PN)"; again its fibres over K
aRd F are the corTespoRdiRg GrassmanRiaRs for (Pff)" and (PiX)", Tespectively.

Accordii}g to ISGA 7, XVII, 2.5], after possibly passillg to the d-fold prejective

embedding, there is a dense open subscheme Wx, c gK such that the lines in Wx,
give Lefschetz pencils for Xn C P"•

(2.2) Since XF is possibly singular, we need a slight extension of the results in [SGA

7, XVIIj. Fir$t we extend the results to smeoth, bgt oRly quasi-pfejective veerieties.

Theorem 3 Let L be any field, tet U c Pg be a smooth irreducible guasi-projective

variety, and tet d k 2 be an inteper, After possibly passing to the d-fold embedding,
there is a non-empty open subscheme Wu in the Grassmannian Gr(1,(Pi)V) of
lines in the duaS projective space, such that the tines D in Wu satisju all properties

of Lefschetz peRcds utth respect to U, i.e.:

 (1? The axts ofD (i.e., the intersection of any two dzfferent and hence all hyper-
    planes parametrized by D) intersects U transversally.

 (27 There ts afinite su5schemeXcD such that fortEDXX the hyperplane Ht
    correspending te t intersects U traasversally.

(S] Fort E X the scheme-theoretic intersection U•Ht == Uxpst Ht is smooth except
   for one singttlar point which is ordinary quadratic.

Preef Let X be the closure gf U ig ? = PÅíi, a!id let Z = XNU (beth egdewed witk
the reduced subscheme structure). For (? = P" X Z, let ,7 be the ideal sheaf of the

closed immersion U c Q, and denote by .AX' = Y/,72 the conormal sheaf, regarded
as a locally free sheaf on U, aad by YV'V its dual. As in [SGA 7, XVII] consider the

closed immersioR of prejective buadles on U

            Pu(ArV) " Pu(Ov(1) XL r(P, Op(1))V) !;! U Å~ (IP",r)V

induced by the canonical monomorphism of bundles

          Jr!y2 - sk6pt g ou(--l)NÅÄi = Ou(-l) xL r(W, e?(1)).

(Here we adopt the convention that, for a vector bundle S on U, the projective
bundle P(Jr') = Proj(Sym(.1')) parametrizes 1ine bundle quotients of .T'.) The above
immersion identifie$ Pu(.IV'V) with the subvariety of points (x,H) in U Å~ (P")V for

which H touches U in x. I)et UV be She closure of the image of Wu(Al'") in (PLN)". It

is the dual variety to U and coRtains all hyperplanes in P" whidh touch U in sgme
point. One has dim UV S dimPu(YV'V) = N -- 1. Hence (PY)" Å~ U" is non-empty,
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and the set Mb' g gL xe ar(1, (Pi)V) of 1ines in (P")V contained in UV is clo$ed

and different from gL.
  Moreover, let (UV)O be the set of hyperplanes which touch U in exactly one point
which is an ordinary quadratic singularity. Then (UV)O is open in UV by results of

Elkik and Deligne ([SGA 7, XVII, 3.2], [SGA 7, XV, 1.3.4]). (If char L 7E 2 or if
n = dimU is even, then it is the Iocus where Pu(iArV) - (Pi)V is uuramified,) It

i$ non-empty after replaciug the giveR embedding by it$ d-multiple (d ) 2), by the
argumeRt in iSGA 7, XVII, 3.7, 4.2]. Since UV is ir!redLucible (by ixeducibility of
?u(.!V")), the clesed sgbscheme F'" == UV x (UV)e has eedimeasieR ) 2 iR (twg)"
im this case. Then the set Mff" c gL of lines in tw2 which meet jF"" is closed axxd

different from gL.
   Finaily, the set VVb K ar(N - 2,P") of codimemsion 2 1inear subspaces in P"
which intersect U transversally is open [Jou, 6.11, 2)]. It is also non-empty: Since
UV l (Pg)V, over the algebraic closure there is a hyperplane Hi intersecting U
tramsversally, and similarly, there is a hyperplane H2 intersecting U•Hi transversally.

This means that the codimension 2 linear subspace Hi • H2 intersect U transversally.

Recal1 the isomorphism

gL me Gr(1, (IPL")V) - 1-År Gr(N - 2, IP.eX)

sendiRg a pencil to its as. We denote the preimage of Wb in gL by Wb again.
   The conclusion is that there is a non-empty open sub$cheme Wu = VVb n (gL Å~
Mb') n (gL x Mb') g gL such that the 1ines in Wu satisfy al! properties of Lefsthetz

pencils with respect to U, ancl thus Theorem 3 is proved.

(2.3) Now we deal with the $ingular points of the special fibre XF of X in Theorem
2,

Theerem 4 Let L be any fieid, and let X c PÅí be a pro3'ective ptaviety which
ts smeeth exeept for finitely fnany siRg#gcr paints xi,...,x. wkieh gre erdinafy
guadratic. A#er pcssibiy passing te the d-feld e7}}bedding (a#y d 2 2?, there ts a
non-empty open subscheme Wx C Cr(1, (P")V) such that for the lines D in Wx the

following holds:

  (i? The arts ofD does not meet the singularpoints ofX and intersects the regular

     locus X'eg transversally,

 (ii? There ts afinite subscheme X gD such that fortGDÅ~Z the hyperplane Mt
     does not meet the singular points of X and intersects Xreg transversalty.

 (ii" Fer t E X the scheme-theeretic gntersectien X""g • Ht ts smeeth except for
    possibly ene singular paint which ts an erdinary quadratic sing#IEfigty.

 kv) IftEX and xi G Ht, then xi is an ontinary quadratic singularity ofX• Ht,

7
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Proof Applying Theorem 3 to X'e9 = X Å~ {xi, . . . , x.} we find a non-empty open
subset VV' == Wxreg g; 9L such that the lines D in V satisfies the properties (i) to
(iii) for X'eg instead of X.

  It remains to consider the singular points xi,...,xr, For each xi, the hyperplanes
in Pe which pass through xi form a hyperplane ,ETi K (PY)V. By the followimg
lemma there is a non-empty open subset Ui g iii such that for any hyperplane

H in Ui the inteTsectiolt Y • H has an ordinary quadratic siRgulatrity at xi. The"
Ei = ,Eii Å~ UIi is clesed and ef codimeksieR ;ir 2 iR (PY)", and se is F= U;•=iEi. The

set W" g gL cf lises in (geff)" which de get meet F' and are Rot ceRSained in any it

is thns epen and non-empty, and the prgperties (i) to (iv) abeve held for the lines
in Wx = I7V' n W" g gma.

Lemma 2 Let L be any field, let X c Pg be a projective variety of positive di-
mension, and let x be an tsolated singularity which is an ordinary guadratic point.
if fi. c (Pr)V denotes the locus of hyperplanes passing through x, then there is an

open dense subset U C tt. such that for all hyperplanes H in U the point x ts an

ordinary quadratic singularity ofX • H.

Preef We may assgme that L is aigebyaicaily clesed. Let A = Ox,. be the comple-

tioR ef the lgcai ring at x. Thek x is cailed an erdinaxy qlladratic singularity, if A

is isomerphic to the quotiexxt

                        L [[xi,•••, xn+i]] /ÅqfÅr ,

where f starts in degree 2, and where f2, the homogeneous part of degree 2 of f,
is non-zero, and defines a non-singular quadric in pmL (where n 2 1 by assumption).

We shall cal1 A the ring of an ordinary quadratic singulancity in this case.

Lemma 3 Let m c A be the maximal ideal, and let g e m Å~ {O} be an element.
Then A' := A!ÅqgÅr ts the ring of an erdinary guadratic singuiarity if the foiloutng

twe canditicns held

  (V The image9 ofg in m/ra2 is non-zero.

 (ii? The non-singularprop'ective quadric Proj(Sym(m/m2)1ÅqQÅr) and the hypersur-
    face Proj( Sym(m/rn2)/Åq9År) intersect transversally in Proj( Sym(m/m2)) X pall,

    Here Q corresponds to f2 under the isomorphtsm

                      L[[xi,..,,x.+i]] -ZÅr Sym(rn/rn2).

     (Mere intrinsicalty, q is determined up to a scalar focter as the generator of
     the l-dimensional kernel of the sunjectien Sym2(m!m2) -- m21m3?.

Preef Lift g to an eiement g E B := L[[x!,...,x.+i]], and let a be the !naximal

ideal of B. By (i) and a substitution we may assumop rm x.+i. Then B' := B/ÅqgÅr os
L[[xi,...,x.]], and

                            A' = B,/ÅqftÅr
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where f' is the image of f in B'. Then f' starts in degree 2 as well, and fi, its
degree 2 part with respect to the variables xi,.,.,x., is just the image of f2. If fS
is zero, then ÅqQÅr g ÅqgÅr in Sym(m/m2), in contradiction to (ii). Hence f5 l O, and

by (li) it gives rise to a non-singular quadric in

          Proj( Sym(m/m2)/ÅqgÅr) !-!! Proj( Sym(rn1(m2 + ÅqgÅr)) ! P".-'

by (ii) for n ) 2, i.e., A' is the ring of an ordinary quadric singularity.

   We proceed with the proof of Lemma 2. Choose coordinates Xo, . . , , XN on P"
such that x = (1:O:•••:O). The hyperplanes in Pg are given by points b = (bo:

•
 • • : bN) in the dual projective space (Pg)V', corresponding to the hyperplaiies

                           N
                          2bixi=o .
                          i=o
The hyperplanes through x are given by those b with bo = O and are parametrized
by (bi:•••:bN) Si (IFDLr-i)V. If xi = iXi}k,,i= 1,...,N, are the afiine coordinates on

the open afiine neighbourhood {xo l O} !;!! A", x corresponds to the zero point, and

                                                            N
the hyperplane associated to (bi:•••:bN) is determined by the element Åí bixi E
                                                           i=1
L[xl,...,xN].

Let n be the maximal ideal Åqxi,...,xNÅr. Then one has an isomorphism

                        LN -:-År n/n2

                                 N
                  (bi,•••,bN) - 2)bixi modn2 .

                                 i=1
Now let m c Ox,. be the maJcimal ideal, Then we get a surjection

                        g:n/n2 -" m/m2 ,

and for a point b = (bi,...,bN) E LN and the associated hyperplane Hb, the local

ring of x in X• Hb is
                                 N
                           Ox,x/Åq2 bixiÅr•

                                 i=1
By the above lemma, x is an ordinary quadratic singularity if the image E bixi
of 2 bixi in m/m2 is non-zero, and if the associated hyperplane in PL(mlm2) in-
tersects the quadric in PL(rn/m2) associated to the singularity transversally. The
latter condition defines an open subset U' in the dual projective space PL((m/m2)V)
parametrizing the hyperplaiies in PL(mlm2). Consider the non-empty open subset
U" g; PL((nln2)V) on which the projection

                    p:PL((nln2)V) --" PL((mlm2)V)

9
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assoÅëiated te gV is defuiecl. (To wit: U" is the cemplement of PL((kerg)V) g
PL((n/n2)V). Letting U = p-i(U'), we see that for the hyperplanes H in U the
intersection X • H has an ordinairy quadratic simgularity at x.

(2.4) We can now finish the proof of Theorem 2. Applying Theorem 4 to XF
and combining it wkh the result olt XK, we obtaik the wanted Lefschetz peRcil
ever Spec(A) previded there is an A-ratienal point iR g, corxespoRding te a ime
L over A, such that Ln lies in the open Wx. c gn (constructed in (2.1)) and L.
Iies in the open Ux, c g. (constructed in Theorem 4). This existence, under the
conditions of Theorem 2, follows now by applying the arguments in the proof of
Theerem g to P me g, Vi = Wx. and V2 = Ux.. Note that the specialization map
g(K) m g(A) - g(F) is surjective, and that 9L, over a field L, has a celllllar
decomposition, so that g(L) is dense in g for infinite L.

3. Desingularization of ordinary quadratic singularities

   For the applications, it is important to have a good description of varieties with

almost good reduction, and also a description of their desingularization, because
such schemes my be non-regular. We recal1 the following description of local rings
around an ordinary quadratic singularity [SGA 7, XV, 1.321.

Lemma 4 Let X be a fiat scheme offinSte type opter A, and assufne that X ts
smooth over A except for one singular point x if X, which is an ordinary quadratic
singttlarity (in X,?, Assume that X, is of dimension n at x. Then, afiter possibly
passing to a finite e'tale extension ofA, the Henselization of Ox,. is isomorphic to
the llenseiization of the foiiowing ring B at the mwtmai ideal Åqxi, . . . , x.", rrÅr.

   (V Ifx ts non-degenerate:

B = A[Xl, • • • , Xn+1]/Åq(? (Xl, • - • , Xn+1) - CÅr,

where (? is a non-degenerate quadratic form over A and c G m X {O}.
   (ii? ijx ts degenerate (x;hick can engy happen if char(F) rm 2 gRd n =: 2fn ts
even7:
          B = A[Xl, • • • , Xn+1]/ÅqP(Xl, • • • , X2m) + XZ+1 + bXn+1 + CÅr,

where P is a non-degenerate quadratic form over A and b,c G A with b2 - 4c E

mx {o}.

   In the situation ef Lemma 4 (i), let r = v(c), where v is the nermalized valuatioR

of K, so that c= nrrr, where r is a prime element in A and n is a unit in A. Then
we say that X has an ordinary quadratic singularity of order r. By possibly passing
to a ratnified extension of degree 2 (extracting a square root of 7r), we may assume

that r is eveR.

   in the sitmation of Lemma 4 (it), by pgssibly passing to a ramified extemsien ef
degree 2 (the splitting field of x2 + bx + c), and by a coordinate transformation, we
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may assume that c = O. In this case we let q = v(b), so that b = crq with a unit E,

and say that X has an ordinary quadratic singularity of order q.

Theorem 5 LetX be as in Lemma 4, and letg:X.X be the blowing up ofX
at the singular point x. Assumer ts even in case 2, andc =O in case (ii?. Then
the strict transform S7 of Y = X. is smooth, and the exceptional fibre F. = g-i(x)

contains a point hi Åë Y such that the following holals:

   (a2 F. X {di} is smooth, and Y and F. intersect transversally, i.e., the scheme-

thearetic intersection of these inside X ts smooth.
   (b? X N {X} is regular and has strict semi-stable reductio.n. .

   (c) In case (i?, ifx is of order r, then the behavior ofX atX..is as follows: If
r År 2, then hi is ordinary quadratic of orderr-2. ifr == 2, then X is also smooth
at th, and hence has strict semi-stable reduction.

   (d? In case (ii?, ifx is of order q, then the behavior ofX at di is as foIIows: If

qÅr 1, then di is ordinary quadratic of orderq-1. ijq= 1, then X is atso smooth
at X, and hence has strict semi-stable reduction.

Proof Since blowing-ups are compatible with flat base change, and since smoothness
and type of the quadratic singularity just depend on the Henselization of the local

ring, we may consider the rings B in Lemma 4.

Case (i): 1) Here the blowing-up of B at the ideal n= Åqxi,...,xn+i,TÅr is Proj(C),

for the B-algebra
                       C=B[Ui,•••,Un+i,T]/I
         l = Åq xi Uj - xj Ui, xiT - TUi, (?(Ui,. . . , U.+i) - nrr-2T2 År,

which is graded as quotient of the polynomial ring over B. in fact, the coordinate
ring of the aMne chart {Un+i l O} is

A[ul, • • • , un, xn+b t]/Åq (? (ul, . . . , un, 1) - nT'-2t2, xn+lt - T År,

with xn+iui = xi (i = 1,...,n). A similar description holds for the other charts
{Ui 7E O}. The coordinate ring for the chart {T l O} is

A[ui,•••,un+i]/Åq (?(ui,...,u.+i) - nT'-2 År,

with rui = xi (i = 1,...,n+1). This shows that the inverse image ofn is an
invertible ideal: it is generated by one element (by x.+i, xi, and r, respectively),

which is not a zero divisor, Moreover, the morphism Proj(C) - Spec(B) becomes
an isomorphism after inverting any of the elements xi, . , . ,xn+i,T. Finally there is

a surjection of graded B-algebras

C-e nn,     n)O

by sending Ui and T to xi and T in n, respectively. Thus, by leinma 5 below, Proj(C)

is isomorphic to Proj($.2o n"), the blowing-up of B in n.

11
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2) AssumerÅr 2. We comsider the special fiber of the blowing-up, obtained by
setting r == O. Thus its chart {U.+i f O} is

            Spec( k[Ul,•-•,Un,Xn+1,t]/Åq Q(Ul,•••,Un,1), Xn+ltÅr)
         = Spec( R[Xn+1, t] /Åq Xn+it År)

where R = k[ui,...,un]/Åq Q(ui,...,u.,1) År. It is reduced, with two smooth irre-
ducible compoReRts intersecting transversally-the fust one beiug the }ocus {t = O},
the secogd cge beiRg the lecgs {x." = e}. A similar result kelds fgr She cther
chasts {Ui f e}. The chart {T f g} is

                SPeC( k(Ui,-••,iLn+i]/Åq Q(Ui,•••,Un+i) År ),

which is smooth except for one ordinary quadratic singularity at u = (O, .

  We may identify the irreducible components as fo11ows.
of the special fiber of Spec(B) is obtained by blowing up

              B =: B/ÅqrrÅr == F[xi, • • • , Xn+i]/ÅqQ(Xl, • • - , Xn+i)År

ik the ideal ft == Åqxi,...,x."År. This is Proj(C), fer

           C= BIUi,•••,UnÅÄi]/Åq XiUj - XjUi, Q(Ui,••-,Un+i) År•

The aMne ring of the chart {Ui l O} is

            F[xi,ui,.,,,ai,•••,u.+i]/Åq Q(ui,•••,1,•••,un+i) År,

where xi uj = xj (j' #i
is at position i.

  The exceptionai fibre F. is obtained by letting xi ww ...

For rÅr2 we get

               Proj(FIca •••,Un+i,TYÅq Q(Ui,•••,Un+D År)•

In the chart {Ui 7E O} this corresponds to the locus xi ww O == T which is

           Spec(17[ul,,.,,u"i,•••,un+1,t]/Åq Q(Ul,•••,1,-••,Un+1) År)

and thus smooth. In the chart {T l O} we get

                 Spec(F[ui,•••,iLn+i]/ÅqQ(Ui,•••,Un+iÅr)•

This shews thag the exceptioRal fiber has gAe grdinasy q=adratic six
which cloes Reg lie ok fi.

whole blowikg-up we see that the order o

3) Now let r = 2. Then the chart {U.+i l O} of the whole blowing-up is

                       SPeC( S/Åq X.+i t- TÅr ),

--
,o).

byThe strict transform Y

      ), u'i means omission of ui, and the 1 in Q(ui,•••, 1,•••, un+i)
This is smooth over F, and corresponds to the locus T = O in .5lr.

                                   = xn+1 =g=T in C.

                                     gular peint
}Flrerc the previe"s description of the chart {T l g} fer the

             f the quadratic $ingularity is r - 2.
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where S = A[ui, . . . , un, xn+i, t]/Åq (? (ui, . . . , u., 1) - pt2 År is smooth over A and

xn+i,t are part of a local parameter system where they vanish. Thus we get a
regular scheme with semi-stable reduction over A, The same holds in the otherr
charts {Ui l O}. In the chart {T S O} we get the smooth A-scheme

              Spec( A[ui,•••,un+i]/Åq Q(ui,•••,un+i) ww nÅr )•

The strict tramsfeym Y ef Y kas exactly the same desceriptiek as before; k is smogth,

and it is agaix the }ocus where T = g. The excepgiellal fiber is

           Proj( F[Ui, • • • , Un+i, T]/Åq Q(Ui, . . . , U..+.D - nT2 År )

which is smooth as well, Therefore X has strict semistable reduction.

Case (ii): Here the blowing-up of

           B = A[Xl, • • • , Xn+1)/Åq P(Xl, • • • , X2m) + XZ+1 + bXn+1 År

(b E mN {e}) iR the ideal n me Åqxi,...,m.",xÅr is ]Proj(C), for

                      Cr:BIUi,•••,Un",Tlll,

where the ideal I is generated by the elements

                 xi Uj - xj Ui for i, j' E {1, .,.,n+ 1}
                 xiTme7rUi for iE{1,...,n+1}
                 P(Ul , • • • , Un) + U.2+1 + cTq"ITUn+1•

The coordinate ring of the chart {Un+i l O} is

      AIu}, • • + } un, xn-}.2, tl!Åq xn"t - 7, P(ui,. . . , u#) + 1 + c7;g-it År ).

ForiE {1,...,n}, the chart {Ui 7E e} is

              Spec( Alui,...,ui-i,xi,ui+i,...,ttn",t]/J ),

where

     J == Åq xit - T, .P(ui, . , , , ui-i, 1, ui+i, . , . , un) + ua+i + E7rq-itun+i År,

rhe aMne riRg for the charÅí {T i# e} is

           A[ui, • • • , z"nKllÅq P(ui, • • • , g.) + ua-}.i + exgwwiu." År.

  The strict transform of the special fiber X, is the locus T = O, and it has
exactly the same description as in case (i)2), except that the quadratic form is now
Q(Ui , • • • , Un+i) = P(ca, - • • , Un) + Un2+i• Thus it is smooth,

     :

l3
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  'Irhe exceptiomal fibre ceryespoxxds to the }ocus {xi = g me 7r}. IR the
{Ui pt O}, forifn+ 1, we get the subscheme

                  Spec( F[ui,..,,ai,...,un+i,t]/Åq fi År)

chart

wish

where n

        f`

= a mod rr.

== P(ui, . . . , 1, . . . , un) + uZ-Fi + E7rg-itun.}.i

In the chart {U.+i l O} we get the subscherne

Spec( F[Ui,•••,Un,t]/Åq fn+i År ),

                   fn+1 = P(Ul,• • •, ttn) " l + EKg'lt.

These are smooth. In the chart {T S O} we get the scheme

                     Spec( F[ui,•••,un+i]/Åq 9 År ),

                  g = P(ui, . . . , 2tn) + uk+i -l- E?rg-iu.+i.

IfqÅr 1, this has one quadratic singularity of order q- 1. Ifq =1, the scheme is
smooth, since ag/Ou.+i =E 7E O, It is also clear that the strict transform of the
special fibre and the exceptional fibre intersect transversally (in their smooth loci).

HeRce the claim follews.

Lemma 5 LetB be a noetherian ring, ietI c B be an ideal, and letX = Proj(e I")
be the blowing-up ofX = Spec(B) in the closed subscheme Y --ww Spec(B/J) corre-
sponding to I. Let

                          g: CNe In
                                   n)e
be a sunjection of graded B-atgebr(us. Then the X-morphism

               f =g' : Proj(G) I") ==X N Z= Proj(C)

induced 5y g is an isemerphtsm if and engy of the feglewing twe conditief}s hetd.

 (i? J generates an invertible ideal in Z = Proj(C).

 (ii? g induces an isomorphism gwwi(X X Y) 4 X N Y.

Proef: The gwo coRditioas are kaowR tg held for Z = X, and by ghe s=rjectiyity
of q, the morphism f is a closed immersion. In particular, f is affine. By (i), emb

point in Z has an open aff}ne neighbourhood V = Spec(R) c Z over which the
image of I is generated by one element a E R which is not a zero divisor. Hence
f-i(V) . V correspoRds to a surjection of rings R --. jR/J, which induces an
isomerphism aSger ixxverdRg g, by ceRditigg (ii) (fgr Z and JSilr). This meaas that

J. me O for the localization of the ideal J with respect to a. It foiiows that J = O,
because a is not a zero divisor. Therefore f is an isomorphism.
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