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1. Motivation.

In algebraic geometry, the basic relation between the Lie algebra of vector fields and
the automorphism group schemes (see below) holds without any restriction. This suggests
that there should be some parallel facts in complex geometry and/or differential geometry.
So we try to set up some concepts about automorphism groups in complex geometry and in
differential geometry which are quite similar to that about automorphism group schemes
in algebraic geometry, and then study the corresonding problems and compare the results
with that of algebraic geometry.

2. Some terminologies and notation.

Let S be a base scheme (usually noetherian) and 7 : X — S be a separated morphism
of finite type. Denote by Ders(Ox,Ox) the sheaf of Og-derivations from Ox to Oy,
which is isomorphic to Homox(Qﬁ(/S, Ox) as a coherent sheaf on X, and is a sheaf of Ox-
Lie algebras. Hence 7. Ders(Ox,Ox) is a quasi-coherent sheaf of Og-Lie algebras, whose
sections are called vector fields. In particular, if § = Speck for a field k, then we denote
Ox/x = HO(X,Ders(Ox,0x)), the k-Lie algebra of vector fields on X. If ch(k) = p > 0,
Ox/x is a p-Lie algebra over k.

Let G be a separated S-group scheme of finite type. Denote by wg,s the sheaf of (left)
invariant differentials of G over S, and Lie(G/S) := Homog(wg,s, Os), the sheaf of left
invariant derivations of G over S (which is a coherent sheaf of Lie algebras on §).

Let p: GxgX — G be an action of G on X over S. For any open affine subset V C S,
denoting by U = 7~1(V), a derivation D € Ders(Ox,Ox)(U) is called p-invariant if the
following diagram is commutative:

Ou _D Ou

[+ [+

pepr3(D)

PtOstU P+Ocxsu

The sheaf of p-invariant derivations (as a sheaf of Og-modules) will be denoted by D,,
which is a quasi-coherent subsheaf of 7,Derg{Ox,Ox) and is a sheaf Lie subalgebras. p
induces a canonical homomorphism of quasi-coherent sheaves of Og-Lie algebras

Lie(G/S) — D,
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For any S-scheme T, an automorphism f of T xgs X is called a T-automorphism if
pryof =pr;: T xs X — T. Denote by Aut(T x5 X/T) the set of T-automorphisms of
T x s X, which has a group structure. If the following functor

Auty,s: ((S-schemes)) — ((sets))
T — Aut(T x5 X/T)

is representable, say represented by an S-scheme G and universal G-automorphism @ :
GxsX — Gxg X, then G has a group scheme structure over S, called the automorphism
group scheme of X over S, denoted by G = Aut(X/S). By abstract nonsense we have

Fact. Suppose Aut(X/S) exists. Then

i) For any S-scheme T, Aut(X xs T/T) exits and canonically Aut(X xs T/T) =
Aut(X/S) xg T (i.e. automorphism group schemes commute with base change).
i) p=proo®: Aut(X/S) xs X — X is an action, and (Aut(X/S), p) represents the
following functor:

Acty/s: ((S-group schemes)) — ((sets))
G +— {actions of G on X}

Explicitly, each homomorphism h : G — Aut(X/S) corresponds to the action
po(hxsidx):GxgX — X.

Of course Aut(X/S) may not exist. For example, if S = Speck for a field k, then
Aut(A}/k) does not exist. On the other hand, if X is proper over k, then .Aut(X/k) exists.

When S = Speck and Aut(X/k) exists, we denote by Aut®(X / k) the zero component
of Aut(X/k), which is a normal subgroup scheme of Aut(X/k).

3. The basic relation between vector fields and automorphism group schemes.

Theorem 1. Let S be a noetherian scheme and T : X — S be a morphism of finite type
such that Aut(X/S) exists. Denote by p : Aut(X/S) xs X — X the universal action.
Then there is a canonical isomorphism of coherent sheaves of Og-Lie algebras

Lie(Aut(X/8)/§) —» D, = 1. Ders(0x, Ox) 1)

Remark 1. i) For any morphism 7 : X — S, one can define a “functor of vector fields”:

BFx/s: ((S-schemes)) — ((Lie algebras))
T — I(T xs X, Trxsx/T)

and for any group scheme G over S, one can define a “functor of left invariant derivations”:

Lieg/s: ((S-schemes)) — ((Lie algebras))
T — I(T, Lie(G x5 T/T))

Note that these two functors are usually not representable. Theorem 1 can be stated as: If
Aut(X/S) exists, then there is a natural equivalence of functors Lieaus(x/5)/s — DFx/s-
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it) If S = Speck for a field k of characteristic p > 0, then (1) is an isomorphism of
p-Lie algebras.

4. Some consequences and examples in algebraic geometry.

Corollary 1. Let k be a field of characteristic 0 and X be a geometrically. connected
proper scheme over k. Then the following are equivalent:

i) X is a homogeneous variety, i.e. X & G/H for some connected group variety G
and some subgroup scheme H C G;

ii) There exists for some n a monomorphism of coherent sheaves Q% e O%™ whose
cokernel is locally free;

iii) X Is smooth over k and Tx/, is generated by global sections.

Remark 2. We can define: a proper scheme X over a field k is called homogeneous if
Aut®(X/k) acts transitively on X.

In particular, if X is a geometrically connected proper scheme over a field & of char-
acteristic 0 having a k-point such that Q}{ /k 18 trivial, then X is an abelian variety.

This does not hold if ch(k) # 0. There is a famous counterexample of Igusa (1955):

Let E be an ordinary elliptic curve over a perfect field k of characteristic 2. Let a € E
be the k-point of order 2. Let X = E xx E. Let G = Z/2Z = {0,1}. Let 0 correspond
to idx and 1 correspond to the automorphism (z,y) — (—z,y +a) of X. Let Y = X/G.
Clearly Y is not an abelian variety. On the other hand, X has a closed subgroup scheme
H = 5 xy E whose action on X (by translation) commutes with the action of G, hence
induces a free action of # on Y. This shows that Qy, = OF.

In fact Y is not homogeneous, and A4ut®(Y/k) & H. Furthermore, we have
Pic®(X/k) = H.

Mehta and Srinivas (1987): If X is an ordinary smooth projective variety with trivial
tangent bundle (in this case “ordinary” is equivalent to that the Frobenius of X induces
a monomorphism on H'(X,Ox)), then there is an étale cover X — X such that X is an
abelian variety.

Corollary 2. Let X be a proper variety of dimension n over a field k of characteristic
# 2, having a k-point. If X is ordinary and Qi{/k = 0%, then X is an abelian variety.

If X is not ordinary, we have a counterexample when ch(k) = 3: Let E be the
supersingular elliptic curve y? = x® — z over Fa. It has an automorphism o of order 3
given by (z,y) — (z + 1,y). Let £’ be an ordinary elliptic curve over a finite field K of
characteristic 3 and a € E be a K-point of order 3. Let X = E x E’. Then X has an
automorphism of order 3 given by (g,g") — (o(g),¢9’ + a). Let G be the group generated
by this automorphism. We see that Y = X/G has trivial cotengent sheaf, and is not an
abelian variety (not homogeneous). But till now I have not seen any counterexample for
ch(k) > 3. We can conjecture that when ch(k) > 3, any proper variety over k having a
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k-point with trivial cotengent sheaf is an abelian variety.

Corollary 3. Let f : X — X be a finite étale covering of proper varieties over a field k.
If X is homogeneous, so is X.

This can be viewed as a generalization of Serre-Lang Theorem.

5. Parallel facts in complex geometry.

For a real or complex analytic space X, we denote by Oy its Lie algebra of vector
fields, and denote by Oy the sheaf of analytic functions.

For complex analytic spaces, the following fact is similar to the corresponding fact in
algebraic geometry.

Theorem 2. Let X be a compact complex analytic space. Then Aut(X) has a complex
Lie group structure, denoted by Aut(X), which has the following properties.

i) The canonical action of Aut(X) on X is analytic.
ii) Aut(X) represents the following functor

{(complex analytic manifolds)) — ((sets))
T — Aut(T x X/T)

ili) The Lie algebra of Aut(X) is canonically isomorphic to © x.

The following corollaries are also similar to the corresponding fact in algebraic geom-
etry.

Corollary 4. Let X be a connected compact complex analytic space. Then the following
are equivalent:

i) X is homogeneous, i.e. X = G/H for a complex Lie group G and a Lie subgroup
HCG;

ii) There exists for some n a monomorphism of coherent sheaves Q1 — O%™ whose
cokernel is locally free;

i) X is a complex manifold and its tangent bundle is generated by vector fields.

Corollary 5. Let f : Y — X be a smooth analytic map of compact connected complex
manifolds of the same dimension. If X is homogeneous, so is Y. (In particular, if X is a
complex torus, so isY'.)

However, the statement parallel to Corollary 2 does not hold, i.e. a compact complex
manifold with trivial tangent bundle need not be a complex torus. We have the following
counterexample given by Nakamura (1975):

Let G C GL3(C) be the Lie subgroup of upper-triangular matrices with diagonal
entries 1. Let K C C be a quadratic imaginary field, and Ox C K be the ring of integers.
Let H = GL3(Ox) NG, then H is a discrete subgroup of G. It is easy to check that the
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homogeneous space X = G/H is compact, and X has a trivial tangent bundle. However
X is not a Lie group, because a compact Lie group is a complex torus, but ©x = Lie(G)
is not a commutative Lie algebra. In fact Aut®(X) ~ G.

This shows that X is not algebraic. By GAGA, SL3(C)/SL3(Ok) is not quasi-
projective.

For trivial tangent bundles, we have the following result of Wang (1954):

Corollary 6. Let X be a connected compact complex analytic manifold. Then X has
trivial tangent bundle iff X = G/H for a connected Lie group G and a discrete subgroup
H C G. Furthermore, in this case the following are equivalent:

i) X is a Lie group;
il) ©x is a commutative Lie algebra;
iii) X is a complex torus.

6. Parallel facts in differential geometry.

For a real analytic space X, it is usually hard to set up a geometric structure of
Aut(X), this is simply because ©x is usually infinite (uncountably large) dimensional,
and we have no good set-up of infinite dimensional Lie groups.

To get rid of this problem, we need to find a natural way to restrict ©x to a finite
dimensjonal Lie subalgebra. There are at least two methods for this.

One method is to use some differential equations. Denote by Dif f(Ox, Ox) the sheaf
of linear differential operators from Ox to Ox. Let H C Dif f(Ox,Ox) be a coherent
subsheaf. For any open subset U C X such that H|y is generated by H(U), let

KU)= () ker(D:0x(U)— Ox(U))
DeH(U)

Then the X(U)’s glue together to give an R-linear subsheaf X C Ox. We may denote
K = ker(H). A vector field § € ©x is called H-harmonic if §(X) C K. The H-harmonic
vector fields form a Lie subalgebra of ©x, denoted by ©+. An automorphism g : X — X
is called H-harmonic if g*(K) = K. The H-harmonic automorphisms form a subgroup
of Aut(X), denoted by Aut(X,H). Furthermore, for a real analytic manifold T, a T-
automorphism f of T x X is called H-harmonic if f*pr3K = pr3k. this is equivalent to
that each fiber f; (over t € T) is H-harmonic.

Theorem 3. Let X be a compact real analytic space, and H be a coherent subsheaf of
Dif f(Ox,0Ox) such that dimg ©+ < co. Then Aut(X,H) has a real Lie group structure,
denoted by Aut(X,H), which has the following properties.

i) The canonical action of Aut(X,H) on X is analytic.
it) Aut(X, ™) represents the following functor

((real analytic manifolds)) — ((sets))
T— Aut{(T x X/T,H)
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iii) The Lie algebra of Aut(X,H) is canonically isomorphic to ©.

Another method is to use a metric. Let u be a metric on a real analytic manifold X,
i.e. a symmetric positive definite bilinear map

<,)uZTxXXTx—fRXX (1)

of analytic vector bundles over X. This can be understood as an Ox-linear map Tx Qo
Tx — Ox (where Ty is viewed as the tangent sheaf of X)), or a bilinear form on Tx , for
each z € X which varies analytically with respect to z. An automorphism g of X is called
u-orthogonal if for any sections D, D’ of Tx (over some open subset U C X),

(9.D,9.D")u = g7'*(D, D),
where g,D =g "o Dog": Ogu — Oy4y. This can be understood as: for any z € X and
any D, D’ € Tx z, (9.D,9.D"), = (D,D’),. All of the u-orthogonal automorphisms of X
form a group, denoted by Aut(X, u).

More generally, for an analytic manifold T, a T-automorphism f € Aut(T x X/T) is
called p-orthogonal if its fibers over T are all u-orthogonal. Denote by Aut(T x X/T, u)
the set of p-orthogonal T-automorphisms of T x X, which is a subgroup of Aut(T x X/T).

A vector field 8 € Ox is called p-orthogonal if for any sections D, D’ of Tx (over
some open subset U C X),

(D, D), = {8, D], D), + (D, 8, D),

It is easy to see that the u-orthogonal vector fields in © x form a Lie subalgebra, denoted
by ©,,.

Theorem 4. Let X be a real compact analytic manifold, and p be a metric on X. If
dim ©, < oo, then Aut(X, u) has a real Lie group structure, denoted by Aut(X, u), which
has the following properties.

i) The canonical action of Aut(X,u) on X is analytic.
ii) Aut(X, u) represents the following functor

((real analytic manifolds)) — ((sets))
: T — Aut(T x X/T, p)

iii}) The Lie algebra of Aut(X, u) is canonically isomorphic to ©,.

Remark 3. The above formulation works for any bilinear form as in (1), not necessarily
symmetric or positive definite. Furthermore, we can use more than one bilinear forms.

We can also combine the above two methods, i.e. use both differential equations and
metrics. As long as we can get a finite dimensional Lie subalgebra of © x, we have a similar
theorem. In particular, this can be set up for complex symplectic manifolds.
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Remark 4. We see that the concept of fine moduli can be adopted to complex geometry
and differential geometry, for automorphism groups. This concept can also be adopted for
Picard group, at least for manifolds. We hope there be more examples on this.

4. The idea of the proof.

In the proof of the above results, a key method is the so called “calculus of actions”
(by “calculus” we mean differential operators, de Rham complexes, Lie algebra of vector
fields, connections, etc.).

For simplicity we denote kK = R or C. For a Lie group G over k, denote by wg the
k-linear space of (left) invariant differentials. Similar to algebraic geometry, for an action
p of G on an analytic space X over k, we can define p-invariant vector fields on X, and
the p-invariant vector fields form a Lie subalgebra ©, C © x.

The following are some facts in calculus of actions.

Lemma 1. Let G be a Lie group over k, X be an analytic spaceoverk andp: Gx X — X
be an analytic action. Then
i) There is a canonical complex induced by p:

' 2 3
OX —we® Ox — /\wc ®Rr Ox — /\wG Rk Ox ... (2)
k k

it) The identity map of Ox induces a (unique) canonical Ox-linear map from 2y to
(2), in particular p induces a caninical O x-linear map

Q% = we @k Ox (3)

which is surjective when p is free.
iii) p induces a canonical homomorphism

0.« Lie(G) — 0, (4)
of Lie algebras over k.

Lemma 2. Let X be an analytic space over k. Let T be an analytic manifold and f be a
T-automorphism of T x X. Then f induces a canonical homomorphism f, : T — ©@x xT
of vector bundles over T. Furthermore, if T = G is a Lie group and f = &, = (pry, p) for
an analytic action p : G x X — X, then f. coincides with the canonical homomorphism
induced by (4):

f,:p,xidg:TGELie(G)xG—»GXxG (5)

The above facts are compatible with respect to a harmonic structure and/or a metric.
These are all parallel to some facts in algebraic geometry.
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In algebraic geometry, we combine calculus with deformation theory, and we use
calculus to prove the basic relation between the Lie algebra of vector fields and the auto-
morphism group scheme. But in differential geometry, we combine calculus with solutions
of differential equations, and we bear in mind the basic relation between the Lie algebra
of vector fields and the automorphism group to set up the Lie group structure of the
automorphism group.
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