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1. Metlwatien.

  In algebrajc geometry, the basic relation between the Lie algebra of vector fielcls and
the automorphism group schemes (see below) holds without any restriction. This suggests
that there skog}d be some parallel facts iR cgmplex geometry and/oy d!ffereRtlai geometry.

So we try to set up some concepts about automoz'phism groups ln compiex geometry and in
differential geornetry which are quite similar to that about automorphism group schemes
in algebraic geometry, and then study the corresonding problems and compare the results
wltk that gf algebralc geomek'y.

2. Some terminologies and notation.

  Let S be a base sc}}eme (ttsually noetheriatt) and T : X ---+ S be a separated morpkism
of finite type. Denote by Ders(Ox,Ox) the sheaf of Os-clerivations from Ox to Ox,
whiÅëh is isomorphic to 7tomo.(9}ls, Ox) as a coherent sheaf on X, and is a sheaf of Ox-

Lie algebras. Hence T.CPers(Ox, Ox) i$ a quasi-coherent sheaf of 0s-Lie algebras, whose
sections are called vector fiGlds. In partieular, if S = Speck for a fteld k, the" we deftote
exlk == HO(X, IÅrers(Ox,Ox)), the k-Lie algebra of vector fields on X. If ch(k) me pÅr O,

ex/k is a p-Lie algebra over k.
  Let G be a separated S-grettp scheme of fiRite type. Denote by tvc/s the sheaf of (left)
iRvariant differentials of C over S, and Lie(C/S) : = ?iEemo, (cvcfs, Os), the sheaf of }eft

invariant derivations of G over S (which is a coherent sheaf of Lie algebras on S).

  Let p : CÅ~sX - G be an action of cr on X over S. For any open aMne subset V c S,
denoting by U : T-i(V), a derivation P E CPers(Ox,Ox)(U) ls called p-invariant if the
fellowing diagram i$ commutative:

                          o. L o.
                           ip" Sp"
                        p.oGÅ~su 2:'.!l[2S2Z,Pr2(D) p,oGÅ~su

The sheaf of p-invariarit derivations (as a sheaf of Os-modules) will be denoted by T),,
whlcl} is a gtiasi-cokerenS sttbsheaf of r.CPers(Ox, Ox) Emd i$ a sheaf Lie sgba!gebras. p
indttces a canonical homomorphism of quasi-coherent sheaves of Os-Lie algebras

                              Lie(G/S) --. 1År,

- 119-

代数幾何学シンポジウム記録

2004年度   pp.119-126

1



  For emy S-scheme T, an automorphism f of T xs X is ca}led a T-automorphism if
pri o f == pri : T xs X - T. DeBete by Aut(T xs X/T) the set ef T-automoyphisms ef
T xs X, which has a group structure. If the following functor

  ututx!s: ((S-schemes)) -+ ((sets))

                  T H Aut(T xsXfT)
is representable, say represented by an S-scheme G and universal C-automorphism Åë :
G Å~sX - G Å~sX, then G has a group scheme structure over S, called the automorphism
group schenie of X over S, denoted by G = Aut(X/S). By abstract non$ense we have

Fact. Suppose .4ut(X/S) exists. CTThen

    i) For any S-scheme T, Aut(X xs T/T) exi"ts and canonically .4ut(X xs T/T) -r-v
     Aut(X/S) xs T (i.e. automorphism .ffroLip schemes commute with base change).
    ii) p =: pr2 oÅë : vtt2`t(X/S) Å~s X e X is an actioll, acd (Aut(X/S),p) represents the
     following functor:

         utcÅíxls: ((S-group schemes)) - ((sets))
                              G " {axions efG on X}

     Explicitly, each homomorphisrn h : G --, .4ttt(X/S) corresponds to the action
     po (h xs ielx) : G xs X - X.

    Of course .4ut(XfS) may Rot exist. Fey exEwap}e, if S :Speck for a field k, tkeR
VIut(Ai/k) does not exist. On the otheur hand, if X is proper over k, then .4ut(X/k) exists.

    When S = Speck and .4ut(X/k) exists, we denote by .zlutO(X/k) the zero component
of Aut(X!k), which is a normal subgroup scherne of Aut(X/k).

3. The basic relation between vector fields and automorphism group schemes.

Theorem 1. Let S be a noetheriaR scheme and tr : X -+ S be a n]orphism of finite type
suck tkat Aut(X/S) exists. Denete by fi : .z{ut(X/S) xs X - X the maiversal actien.
Then there is a canonical isomorphistn of coherent sheaves of Os-Lie algebras

                 Lie(Aut(X!S)/S) -X-, P. xx r.Ders(Ox,0x) (1)

Remark 1. i) For any morrphism T : X - S, one can define a "functor of vector fields":

   E83x!s: ((S-schemes)) -, ((Lie algebras))
                    T N r(T xsX, tTTxsxltr)

and for any group scheme G over S, one can define a "functor of left invariant derivations" :

   ÅíiÅëa!s: ((S-schemes)) --, ((Lie algebras))

                   T twÅr r(T, Lie(G xs T/CZ"))

Note that these two functors are usually not representable. Theorem 1 can be stated as: If
.4ut(X/S) exists, then there is a natural equivalence of functors Åíie.ttut(xls)/s - EZJ3xls•
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p-L
 ii) If S = Speek for a fie!Åqi k oÅí charaÅíteristic p År g, theR (l) ls aR

ie algebras.
lsomorphism ef

4. Some censequencesand examples in algebraiÅë geometry.

Corollary 1. Let k be a field of characteristic O and X be a geometrically. connected
proper sckeme over k. Thell the foliowing are equivalent:

   i) X is a homogeneous variety, i.e. X !l! a/H for some connected group variety a
     and some sgbgroup scheme H c C;
   ii) There exists for some n a monomorphism ofcoherent sheaves st}lk c-+ 09" whose

     cokernel is Iocally free;

   ili) X ig sraoo#k over k aiid 7rxlk is geRera#ed by global sec#ioRs.

Remark 2. We can define: a proper $cheme X over
Agte(X/kÅr acts tra[Rsitive}y on X•

a fieid k is cailed homogeneous if

    In particular, if X is a geometrically connected proper scherne over a field k of char-
acteristic g having a k-poiRt sttch that st}efk is trivial, then X is aR abe}iaR variety.

    This does not holcl if'ch(k) # O. There is a fainous counterexarnpie of Igusa (1955):

    Let E be an ordinary eliiptie curve over a perfect field k of characteristic 2. Let a G E
5e the k-poiRt of order 2. Let X = Exk E. Let C= Z/2Z = {e,1}. Leg g ce:ÅíespoRd
to idx and i correspoml to the automorphism (x,y) H (-x,y+ a) of X. Let Y == X/G.
Clearly Y is not an abelian variety. On the other hand, X has a closed subgroup scheme
ff = pa2 Å~k E wkese actioR oR X (by translatioR) cgmraÅíites wkh the actieR eÅí O, heltce
induces a free action of H on Y. This shows that st}lk tw 02y.

   In fact Y is not homogeneous, and AutO(Y/k) or H. Furthermore, we have
PicO(X/k) 2 ff.
   Mehta and Sriniva:s (1987): If X is an ordinary smooth projective variety with trivial
tangent bundle (in this case "ordinary" is equivalent to that the Frobenius of X induces
a mgRomerphism oR ffi(X, Ox)), tkek the;'e ls aR etale cove}' X - X sttck that X ls aR
abelian variety.

Cerellary 2. Åíe# X
# 2, having a ic-point.

be a proper variety ef dimensigft n ever a Seid k of ckaracteris#ic
ffX is ordinary and st}lk Y Ok, then X is an abelian variety.

   If X !s not ordiRary, we kave a couaterexamp}e wkeft ch(k) = 3: Let E be t}}e
supersingular elliptic curve y2 xx x3 - x over F3. It ha$ an automorphism a of order 3
given by (x,y) N (x + 1,y). Let E' be an ordimary elliptic curve over a finite field K of
cka]t'acteristic 3 aftd a wr E be a K-point oÅí ordei' 3. Let X = il x E'. T}}eR X has aR
autornorphism of order 3 given by (g,g') H (a(g),g' + a). Let O be the group generated
by this automorphism. We see that Y rm X/G has trivial cotengent sheaf, and is not an
a5ellaxx va}'lety (Ret homogeReous). But till Rew l kave pdt seen aRy co{wttei'examp}e Åíoi'

ch(k) År 3. We can conjecture that when ch(k) År 3, any proper variety over ic having a
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k-point with trivial cotengent sheaf is an abelian variety.

Corollary 3. Let f : X --, X be a finite e'tale covering ofproper varieties
ffX is homogeneous, so is X.

   Tkls cast be viewed as a geReralizatigR ef Seyye-Lang 'lrheorem.

over a field k.

5. Parallel facts in complex geometry.

    For a real or complex analytic space X, we denote by G)x its Lie algebra of vector
fields, and denote by Ox the sheaf of analytic functions,
    For complex analytic spaces, the following fact is similat" to the corresponding fact in
algebraic geometry.

Theorem 2. Let X be a comapact complex analytic space. Then Aut(X) has a complex
Lie gronp structure, deneted by Aeet(X), which has #he following properties.

    I) The caiieRical action ofAut(X) eR X is aRaly#ic
    X) Aut(X) represeRts tke foRewiRg fuRcter

         ((complex anaiytiÅë manifelds)) - ((sets))
                                  T H Aut(T Å~ Xl/T)

    iii) The Lie algebra of vtlut(X) is canonically isomorphic to ex.

    The following corollaries are also similar to the corre$poxxding fact in algebraic geom-

etry.

Corollary 4. Let X be a connected compact complex analytic space. Then the following
are equivalent:

    l) X is heikggeneous, i.e. X 2! G/ff fgy a compfex Lie group G atid a Ke sgbgromp
      ff c G;
    li) There exisss for some n a monomorphism of coherent sheaves stk g 09" whose
      cokernei is locally free;

    iii) .X is a complex manifold and its tangent bundle is generated by vector fields.

Corollary 5. Let f : Y -- X be a smooth analytic map of comapact connected complex
rnanifolds of the same dimension. ffX is homogeneous, so is Y. (In particular, ifX is a
complex torus, so is Y.)

    However, the statement parallel to Corollary 2 does not hold, i.e. a compact complex
manifo}d witli tyivial tangent bundle Reed iiot be a cemplex toyus. We have the following
cctm#erexample giveit by Nakamm'a (1975):
    Let C c GL3(ÅqC) be tke Lie subgrcup eÅí Åíippey-tyiaagu}ar matrices witk diagonal
entries l. Let K c Åë be a quadratic imagiRary field, &nd OK c K be the ring of integers.
Let ff = GL3(OK) fi G, then N is a discrete subgroup of (!. It i$ easy to check that the
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homogeneous space X = C/H is compact, and X ha$ a trivial tangent bundle. However
X is not a Lie group, becatu$e a compact Lie group is a complex torus, but ex !! Lie(a)
is not a cornmutative Lie algebra. In fact v4utO(X) pu a.

   'I'his shows that X is xxot algebraic. By GAGA, SL3(ÅqC)/SL3(Ord is not quaSi-
projective.
   Fgr triviai taftgent b"xxdles, we have gke feiigwiRg resttlg of Waftg (i954):

Corollary 6. Let X be a connected compact complex analytic manifoId. Then X has
trivial tangent bundle iffX tw GIH for a connected Lie group G and a discrete subgrottp
H c G. Furtherrnore, in this case the following are equivalent:

   i) X is a Lie group;
   ii) ex is a commutative llie algebrai
   iii) X is a complex torus.

6. Parallel facts in differentia! geometry.

   For a reai aiialytic space X, l# ts gsually hayd to $et ttp a georr}etric sSruc#ure of
Axt(X), t}}i$ ls simply becatt$e gx is u$tta}}y iRRRite (ttxxcotzntab}y large) dimeRsiofial,

aRd we have no good set-up ef infinite dimeRsioital Lie grottps.
   To get rid of this problem, we need to find a natural way to restrict ex to a finite
dimensional Lie subalgebra, There are at least two methods for this.
   One method is to use some differential equations. Denote by Diff(Ox, Ox) the sheaf
of linear differential operators from Ox to Ox. Let 7t " Diff(Ox, Ox) be a coherent
subsheaL For any open subset U c X such that 7tlu is generated by 7t(U), let

rc(u) ww n ker(D:ox(u) -, ox(u))
      DEH(UÅr

llrkeR the K({7)'s glue tegether to give an R-}iReay subs}xeaf K c Ox. We may deRete
rc = ker(}S). A vector geX S G ex is called 7iC-karmonic if g(rc) c rc. The ?t-karmonic
vecter fields ferm a Lie st?balgebra of ex, deRoted by ON. Axx automorphism g : X - X
is called 7't-harmonic if g"(rc) = rc. The 7't-harmonic automorphisms form a subgroup
of Aut(X), denoted by Aut(X,7t). Furthermore, for a real analytic manifold T, a T-
automorphism f of T Å~ X is called H-harmonic if f'prSrc me pr5rc. this is equivalent to
that each fiber ft (overtwr T) is 7t-harmonic.

Theorem 3. Let X be a comapact real analytic space, and 7t be a coherent subsheaf of
Diff(Ox, Ox) such that dimR eH Åq oo. Then Aut(X, 7t) has a real Lie group structure,
denoted by Aut(X, 7t), which has the following properties.

   iÅr The canonical action ofAut(X,?i) oR X is allalytic.
   IlÅr .4Lgt(X, XÅr represents tke foRewiRg fufieter

         ((real analytic manifolds)) - ((sets))

                           T H Ant(T Å~ X/T, 7t)
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iii) The Lie algebra of v4ttt(X, 7't) is canonically isomorphic to eu.

    Another method is to use a metric. Let pt be a metric on a real ana!ytic manifold X,
i.e. a symmetric poskive definite bilineay map

Åq}Årg :CrxxxTx-eeÅ~X (l)

of anaiytic vector bundles oveur X. This can be understood as an Ox-linear map Tx Xo.
rx . Ox (where Tx is viewed as the tangent sheaf of X), or a bilinear form on Tx,. for

each x E X which varies analytiÅëally with respect to x. An automorphism g of X is called
pa-orthogonal if for any sections D,D' of Tx (over some open $ubset U c X),

Åqg*b, g* D'År. = g-" ÅqD, DrÅr.

where g.D=g-i" oDog" ; Ogif ---, Ogu. ']]his caR be tmderstood as: for any xEX and
any D,P' E Tx,., Åqg.D,g.D'Årpa : ÅqP,P'Årg. All of tke pa-orkkogonal &utomerpkisms cf X
Åíerm a grgup, deReted by Aut(X, pa).

    More geReraily, for ait anaiytic maRifold T, a T-aiitomorpkism f E Aut(T Å~ X/TÅr is
called pa-orthogonal if its fibers over T are all ps-orthogonai. Denote by Aut(T Å~ X/T, pa)
the set of thorthogonal T-autornorphisms of T Å~ X, which is a subgroup of Aut(T Å~ X/T).

    A vector fie}d e E ex is called pa-orthogonal if for any seÅëtions D,D' of Tx (over
some open subset U c X),

eÅqD, DtÅr. = Åq[e, D] , D'År. + ÅqD, [e, D'IÅr.

It is easy to see that the pa-orthogona! vector fields

by e..
in ex forrn a Lie subalgebra, denoted

Theorem 4. Let X be a real compac# Emaly#ic mEmifold, and pa be a me#ric eR X.
dim ep Åq oo, Shen Aut(X, pa) has a reaj Lie greap structure, denoted by Aut(X, geÅr, wh

has the foHowing properSies.

    i) The canonical action ofv4ut(X, pa) on X is analytic.

    ii) Aut(X, pa) represents the following functor

         ((real analytiÅë manifolds)) - ((sets))

                              T H Aut(T Å~ X/T, pa)

    iii) The Lie algebra ofAut(X, pa) is canonically isomorphic to e..

 If
ick

Remark 3. The abeve fermulation works for any bilinear form as in (l), ngt Recessarily
symmetric er pesitive definite. F{iythermore, we caR itse moye than oRe blligeatr forms.

    We caR a}sg c6mbiRe the abeve gwe metkeds, i.e. use both dlffereRtlal equatiofis aRd
metrics. As loRg as we can get a finite dlmens!oRa} Lie subalgebi'a of ex, we have a simil&r

theorem. In particular, this can be set up for complex sympiectic manifolds.
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Remark 4. We see tkat the coRcept of ftRe moduli c&R be adgpted to cofRp}ex geomeeyy
and differentiai geometz'y, for automorphism groups. This concept can also be adopted for
Picard group, at least for manifolds. We hope there be more examples on this.

4. Thei dea of the proof.

    in tke preef of tlie abeve resttlts, a key metkod is tke se called `tcaiculus of actleRs"
(by "calculus" we mean differential operators, de Rham complexes, Lie algebra of vector
fields, connections, etc.).

    Four slmpiicity we deRote k = R or C. For a Lie group G over k, defiete by wc tke
k-linear space of (left) invariant differentials. Similar to algebraic geometz'y, for an action

p of a on an analytic space X over k, we can define einvariant vector fields on X, and
the ftinvarlant vecter fields Åíerm a Lie subedgebi'a ep c ex.

    The following are some facts in calculus of actions.

Le;nma 1. Let G be a Me group over k, X be axx aitalytic space over k Emdp : CÅ~X - X
be an analYtic action. Then
   i) There is a canonical complex induced by p:

ox - + LJG Xk OX
   2
- Awa xk ox
   k

   3
- AwG opk ox...

   k

(2)

   ii) The identity map ofOx induces a (unique) canonical Ox-linear map from 9k to
(2), in particular p induces a caninical Ox-linear map

S'21:c -, cvG xk Ox (3)

which is surjective when p is free.

   iii) p induces a canonical hornomorphism

p.:Lie(G) -+ e, (4)

of Lie alg'ebras over k.

Lemma 2. Let X be an analytic space over h". llet T be an analytic inanifold and f be a
T-alltomorphism ofT Å~ X. Then f indtices a canonical homomorphism f. : 7rT -, ex Å~ T
of vector bundles over T. &rtkermore, ifT = G is a Lie group and f = Åëp = (pri,p) for
an analytic action p : 6 Å~ X --, X, theti f. coincides with the canonical homomorphism
induced by (4):

                  f. =p.xidc:tzr" 2! Lie(a) xG-ex xG (s)

   Tke abgve facts &re cempatible with respect to a karmonic strnctm"e aRdfei' a mek'ic.
These are al1 parallel to some facts in algebraic geometry.
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    In algebraic geometry, we combine calculus with deformation theory, and we use
calculus to prove the basic relation between the Lie algebra of vector fields and the auto-
morphism group scheme. But in differential geometry, we combine calculus with solutions
of differential equations, and we bear in mind the basic relation between the Lie algebra
of vector fields and the automorphism group to set up the Lie group structure of the
automorphism group.
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