
Derived categories of coherent sheaves on algebraic

                         surfaces

Hokuto Uehara

                      Abstract
I give an overview of several results on clerived categories of coherent
skeaves on srnooth aigebraic surfaces. I also expiain our fiew resttits IR

[Ue04] and [IU041.

1 Introduction

Let X be a smooth projective variety over C. The derived category D(X)
of X is a triangulated category whose objects are bounded complexes of
coherent sheaves on X. By an equivalence P(Y) N-- P(X), we always mean
a C-linear equivalence of triangulated categories.

   If there exist$ aR equivaleRce betweeR D(IY) and P(X), we call X a
Fourier-Mukai (FM? partner of Y. We denote the set of i$omorphisrm classes
of FM partners of X by F2Vf(X).

     FM(X) := {Y smooth project!ve val'iety l D(XÅr tP(Y)}/ or

We also denote the group of isornorphism classes of autoequiva!ences of
D(X) by AuteqD(X).

       AnteqD(X) :ex {Åë : D(X) cr jlÅr(X) autoequivalence }/ !

It is quite impgrtant to afiswer the following problem.

Problem l.1. Sttppese tkat we are giveR & smgoth projecgive variety X.
Then describe (i) FM(X) ancl (ii) AuteqD(X).

   In this article, I exp}ain some known results on Problem 1.1 for smooth
algebvaic surfaces. We treat Problem 1.1(!) ixx g2 and (i" in S3.
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Notation and conventions.

  (i) All varieties are defined over C.

 (ii) Let X and Y be smooth projective varieties. We say that X and Y are
     K-equivalent ifthere exist a smooth projective variety Z and birational

    morphisms f : Z- X, g : Z . Y such that f'Kx tv g"Ky.

 (iii) For a set I, we denote by III the cardinality of l.

 (iv) Let X be an algebraic variety and Z a closed subset of X. Dz(X)
    denotes the full subcategory of D(X) consisting of objects supported

    on Z.

2 Fourier-Mukai partners ofsmooth projective
faces

sur-

In [BOOI], Bondal and Orlov showed that a lot of information can be ex-
tracted from the objects {O.lx E X} when the canonical divisor Kx or the
anti-canonical divisor -Kx is arnple. In particular, in this case they further

showed that Y or X if D(Y) cr D(X). Recently, Kawamata [Ka021 obtained
a generalization of this result; Y is K-equivalent to X if D(X) or D(Y) and

if Kx or -Kx is big.
   On the other hand, Mukai [Mu81] showed that the Poincar6 bundle P on
A Å~ A, where A is an abelian variety and 24 := PicOA, induces an equivalence

tÅë,3n-s?oi.Dd(l[lk.ldjillSA)' The fUnctor tpft'--.A is the so'caiied Fourier-Mukai

                 OZ- -.A(-) = RrA.(1) j} L.1(-)),

where TA : A Å~ A - A and TA : 24 Å~ A - A are the natural projections. In

this equivalence, the structure sheaf Oa of the point a E 24 is mapped to the

invertible sheaf Pa on A corresponding to a. Therefore the derived category
of an abelian variety does not characterize the structure sheaves of points
anymore. Indeed, A is not (even birationally) isomorphic to A in general

even when D(A) 2t D(A).
   This example suggests that when Kx is trivial, D(X) no longer has
enough information to reconstruct (the birationally equivalence class of)
the variety X, and that a new and interesting relationship arises between
varieties X,Y with D(X) t D(Y).
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   In coxxnection with Problern 1.1(i) for smooth projective surfaces, we
have the following.

Theerem 2.l ({BMgil, IKae21). LeS S be a smoeth p7vjective surface
with IFM(S)1 År 1. Take T G FM(S) such that S g)g T. Then one of the
following holds.

  (" S a#d T are K3 surfacgs.

 (ii? S and T are abelian surfaces.

(iii? S and T are minimgg elliptie surfaces wtth the nen-iero Kodaira di-
    men$ion re(S) me rc(T).

Combining the result above with Theorerns 2.2, 2.3, we obtain a complete
answer to Problem 1.!(i) for the surface case.

2.1 K3 surfaces and abelian surfaces

Let S be a K3 or an abelian surface. We shall recall the Mukai lattice
IMg87]. We de5Re a symmegric biliReay form oR He"(S,Z) :== eiH2i(S, z);

Åqx,yÅr := - fs(x"y)

     == fs(XIYI - XeY2 - X2ye)

where x ex xo+xi+x2,xi E H2i(S, Z) (resp. y = yo+yi+y2,yi G N2i(S, Z))
and xV = xc - xi ÅÄ x2. We define a weigkt 2 Hodge $tructuye by

We cal1 this lattice Muk
lattice of S,

iRherlts a Kodge strttcture frem ff2(S, Z)

   Now we
follows:

Theerem 2•2 (IMu87], Pr97]. See also [BM91D. Let S and T be K3
(resp. abelian) surfaces. The following statements are equivalent.

HO,2("ev(s, c)) .,, HO,2(s)

Hi,i(Nev(s, c)) ,., HO•O(s) o lli,i(s) e ll2,2(s)

H2,C(Kev(s, c)) ,,. ff2•g(s).

        ai lattice. Let us denote by T(S) the transcendental
i.e. T(S) : = NS(S)L in H2(S,Z). The transcendental lattice

can describe FM partners of K3 (resp. abelian) surfaces as
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 (i? T is is an FM partner of S.

(ii? there is a Hodge isometry of Mukai lattices q : HeV(S, Z) - HeV(T, z).

(iii) there is a iElodge isometry of transcendental lattices q : T(S) - T(T).

(iv? T is isomoTphic to a fine, two-dimensional moduli space of stable
    sheaves on S.

2.2 Minimal elliptic surfaces

Let T : S - C be a minimal elliptic surface. For an object E of D(S), we
define the fiber degree of E

                        d(E) = ci(E)•f,

where f is a general fiber of r. Let us denote by Aslc the highest common
factor of the fiber degrees of objects of D(S). Equivalently, Aslc is the

smallest number d such that there is a holomorphic d-section of T. For
integers a År O and i with i coprime to aAslc, by [Br98] there exists a smooth,

2-dimensional component Js(a, i) of the moduli space of pure dimension one
stable sheaves on S, the general point of which represents a rank a, degree
i stable vector bundle supported on a smooth fiber of T. There is a natural

morphism Js(a,i) - C, taking a point representing a sheaf supported on
the fiber T-i(x) of S to the point x. This morphism is a minimal elliptic
fibration ([Br98]). Ptit J`(S) := Js(1,i). Obviously, JO(S) ! J(S), the
Jacobian surface associated to S, and Ji(S) ! S.

   We can describe FM partners of minimal elliptic surfaces with non--zero

Kodaira dimension as follows:

Theorem 2.3 ([BMOI]). Let T : S - C be a rninimal elliptic surface and
T a smooth proj'ective variety. Assume that the Kodaira dimension rc(S) is

non-zero. Then the following are equivalent.

  (i? T is an FM partner of S.

 (ii? T is isomorphic to J'(S) for some integer b with (i,Aslc) -- 1•

Remark 2.4. Take a divisor D on S such that D • f = Aslc. Then tensoring
with Os(D) gives an isomorphism

                       Ji(s) or Ji+Aslc(s).

Therefore if T : S - C has a section, we have

                         r(s) ! JJ (s)

for all i,J' E Z. Nainely in this case we can conclude FIL/I(S) = {S}.
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2.3 NontrivialFMpartners
It was well-known that there are K3 (re$p. abelian) surfaces S,T such that
D(S) cx D(T) but S Y T, namely the cases (i) and (ii) in Theorem 2.1 realiy

occur. More strongly, Ogttiso and others recently preved:

Theorem 2.5 ([Og021 and (HllOYI). Let IV be a positive integer. Then
there are K3 (respectively, abelian? surfaces S such that I FM(S)l ) N.

In the proof of '[rheorem 2.5, they actually show the following statement:
There are K3 (respectively, abelian? surfaces Si (1 g i S IV? such that (i?
for gRy 1 S i Åq 2' Åq- N, the Ne'ron-Sevevi Sattices NS(Si) and NS(Ss•) are
not isornorphic, therefore Si pt SJ- as well, but such that (ii? there ts aHodge

isometrst pij : T(Si) ---, T(Sj) for any 1 Ki,]' Åq- N.

   [l}heorem 2.5 fellows Srem tkis by Tkec}rem 2.2. IR my paper [ge{}4], I

show a similar rettsult to Theorem .P..5 in the case of minimal elliptic rational

surfaces. But my proof is very different frorn the one of Theorem 2.5 beeause

we have no sttch latticetheoretic characterization of FM partuevs ef mlnimal

elliptic surfaces as in Theorem 2.2.

lrheerera 2.6 (IUeg41År. (" Letp 5e apesitive integer. Then there is a
     rational etliptic surface S(p) such that S(p) has a singularfiber of type

     plo and at least three non-multiple singular fibers of doffferent Kodaira 's

     types.

 (ii? Let N be a geositive integer andp a prime number such that p År 6(N-
     1) -}- l. Then twe have lFM(S(p))I ) N.

In contrast to Theorem 2.5 and Theorem 2.6, it is predicted that the set
FM(X) is finite for any smooth projective variety X. Actually thls was
shewn fo!' the 2-dimensional case ([BMel] and IKaC2]).

   It was conjectured by Kawamata in [Ka02, Conjecture 1.2] that given
birationa31y equivalent smooth projective varieties X and Y, they are FM
partners each other if and oniy if they are K-equivalent. Theorem 2.6 pro-
duces a counterexample to his conjecture as follows:

Corellary 2.7 ([Ueg41). As a speciaj case in Theofem 2.6, S = S(ll)
has an Mf partner T such that T 7 S. These S and T are birational FM
puartners, but they are not K-eguivagent.

Proof Note that if varieties X and Y are K-equivaJent, they are isomorphic
in codimension 1 ([Ka02, Lemma 4.21). In particular, if surfaces S and T
are not l$emcrphic, they are ftot K-equivaleftt. We cak aiso coficlttde tkat T
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is rational, since rc(T) = -oo and the Euler numbers e(T) and e(S) coincide

([BMOI, Proposition 2.3]). D
   Theorem 2.6(i) follows from the Persson's list [Pe901 and the logarithmic

transform. We shall explain how to show Theorem 2.6(ii) below.

2.4 Sketch ofthe proofofTheorem 2.6(ii).

First we need some standard notation. Fix a minimal elliptic surface with
a section T : B - C. Let n = Spec k" be the generic point of C, where
k = k(C) is the function field of C, and let k be the algebraic closure of k.

Put ij = Speck. We define tlie PVeil-Chatelet group WC(B) by the Galois
cohomology Hi(G, Bn(A)). Here G = Gal(A/k) and B,(k) is the group of
points of the elliptic curve Bn defined over k. Suppose that we are given a

pair (S,g), where S is an elliptic surface S . C and q is an isomorphism
J(S) - B over C, fixing their O-sections. Then we have a morphism

                   Bn Å~ Sn - J(S)n Å~ Sn - Sn•

Here the first morphism is induced by g-i Å~ ids and the second is given by

translation. We obtain a principal homogeneous space Sn of Bn. Since this
correspondence is invertible and the group Hi(G, Bn(k)) classifies isomor-

phism classes of principal homogeneous spaces of Bn, we know that VVC(B)
consists of all isomorphism classes of pairs (S, g). Here two pairs (S, g) and

(S',q') are isomorphic if there is an isomorphism a : S - S' over C, such
that p' o a. = q, where a. : J(S) -. J(S') is the isomorphism induced by a
(fixing O-sections).

                        J(s) -g:'.- J(s,)

                        gi lq'

                         BB
   Now let T : S(p) - C be the elliptic fibration obtained in (i). Put S :=

S(p) and B := J(S). Because every (-1)-curve on S is a p-section of T, we
know that Aslc =p. For i E Z, there is an isomorphism pi : J(Ji(S)) -B

such that (Ji(S),gi) corresponds to iC E WC(B) ([Fr95, page 38]). By
Theorem 2.3, each Jt(S) is an FM partner of S for 1 g i Åq p. We can also
check Ji(S) is rational (see the proof of Corollary 2.7). Put

        l={1,...,p-1}, l(a) = {iEIl Ji(S) or .Ta(s)}
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for aG f.
union), F
where

Tkefi tkere are ii,...,iM E l stich that I : UÅí1.iIÅqis.) (disjoint

ix a E I. We construct an injection (between sets) Åë : l(a) - G,

      G := {7 E Aut(B/C) l 7 fixes the zero section of B - C }

To construct ep, we use the inforrnation of singular fibers of S - C (see
[Ueg4] for the detail$). Then since the ordey of the group G is at most 6,
we have 6A(f }it ili =rm p- 1. By the assttmption p År 6(iV - 1) + 1, we have

M) IV, which completes the proof of Theorem 2.6(ii). U

3 Autoequivalences of derived categories

3,1 Twist functors

llet X be a srnooth projective variety. We note that AuteqD(X) always
contains the group A(X) : : (Aut .X x PicX) Å~ Z, generated by functors of
tensgring wlth iRvertible sheaves, atttcmorphisrxxs oÅí X afid the shift fuRctor.

When Kx or -Kx is ample, it is shown that AuteqD(X) "-". A(X) in [BOOII.
WheR .X ls an abeliEvat variety, Orlev solves Problem 1.1 iR iC}"2]. IR this

case, AuteqD(X) is $trictly larger than A(X).

   The twist functors aloxxg spherical objects are autoequiva!ences of an-
other kind that are not in A(X). Seldel and Thomas [STOIj introduced
them, expecting that they should correspond via Kontsevich's hornological
mirrer ÅëeRjecture to the generalized Deha twist$ along Lagrafigian spheres.
'1[rhese functors play an essential role in our paper [IU041 and we recall the

de5Rkion.
   For an object 7) es D(X Å~ Y), an integral functor

                    ÅëZ.-y : b(X) --ÅÄ D(Y)

is defined by
                ÅëZ.y(-") = Rry.(mp as L7r}(-)),

wherexx : X Å~ Y - X and Ty : X Å~ Y - Y are the prejections.

Definition 3.1 ({STellÅr. (i) We say that an object a E D(XÅr is spher-

    ical if we have cr Xwx 2a and

HomB(x)(a, or) g (gc kS g, dimx
k = O, dim X.
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 (ii) Let a E D(X) be a spherical object. We consider the mapping cone

                     e = cone(TraV il; T5ct - OA)

     of the natural evaluation TraV g} T2'cv - OA, where A c X Å~ X is the

     diagonal, and Ti is the projection of X Å~ X to the i-th factor. Then
     the integral functor T. : = ÅëCx-.x defines an autoequi,valence of D(X),

     called the twist functor along the spherical object a.

Example 3.2. (i) Let X be a K3 surface and L a Iine bundle on Z. Then
     L is a spherical object of D(X).

 (ii) Let Z be the fundamental cycle of -2-curves in ADE configurations
    on a smooth surface X and L a line bundle on Z. Then L is a spherical
    object of Dz(X).
In Example 3.12 below, I give a highly non-trivial example of a spherical
object.

   Consider the derived category D(X) for a smooth surface X. It is natural

to ask how large the subgroup of AuteqD(X) generated by A(X) and the
twists along spherical objects is.

   In our paper [IU04], we consider a chain Z of -2-curves on a smooth
surface X and study the autoequivalences of the derived category Dz(X) of
coherent sheaves on X supported by Z.
   Note that the twist functor Ta can be defined as }ong as the support of
a is projective, even if X is not projective. Moreover, the category Dz(X)
depends only on the formal neighborhood of Z in X. Thus we can assume
as follows:

               Y = Spec C[[x,y, z]]/(x2 + y2 + zn+i)

is the A.-singularity,

                          f :X ---+ Y

its minimal resolution and

                   Z= f-i(P) = Ci U'''U Cn

where P E Y is the closed point.
   For an autoequivalence O E Auteq Dz(X), we don't know if it is always
isomorphic to an integral functor. Here, an integral functor from Dz(X) to
Dz(X) is defined by an object IP E D(X Å~ X) whose support is projective
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over X with respect to each projection. If an autoequivalence is given as an
integral functor, we call it a Fourier-Mukai transform (FM transform). Let

                AuteqFM Dz(X) c AuteÅqlt Dz(X)

be the subgroup con$isting of FM transforms. Remark that Aut .X or Aut Y
and PicX or Pic(X/Y) act faithfully on Dz(X) in our setting; therefore we
see 2tgL(x) Åq : AuteqFM pz(x).

   We denote the dualizing sheaf on Z by wz and put

         B = ÅqToc,(-i),Twz l 1 S l E{ nÅr c AuteqFM Dz(X).

The foliowing is a main result of PU04i.

Theorem 3.3 ([IU04]). We have

           AuteqFT2ifDz(x) :ÅqÅqB,PicXÅr x AtttX) Å~ Z.

Here Z is the group generated by the shift [1].

Remgrk 3.4. We kltow moye about subgroups of AuteqFM Pz(X), ghat i$,
we have the following:

   e BnPicX == ÅqmpOx(Ci),.••,XOx(Cn)År•

   . ÅqB,?ic XÅr 2-t B Å~ Z/(n + 1)Z.

  e B :ÅqT.Ia ff ulÅrz(X), spherical År.

   Put at := Oc,(-1) (1 SiS n) and ae ;= an-Fi := wz, where we
censider tke su$x i ef ai modttlo n+ 1 (tkat ls, ai =: an"ÅÄi for all i G Z).

B is generated by all Tct,'s by definition. We denote by Bk the subgroup of
B generated by al} Ta,'s except Ta,. The result in [STOI] implies that the
defining relatioRs of the group Bk is as follows:

      (I:::;+;.,;Ttt//...T,ai+iTaitZTai+i i.ff?,pÅq.;;.k,,}k-i,k

In other words, Bk is the Artin group of type A. (the braid group on n +
1 strands). Therefore the generators, To.,(-i) (1 K e S n) and Twz, of

B satisfy the defining relation$ of the Artin group of type An, which i$
denoÅíed by v4(A.). Cefisequently, we kRow that the group .4(An) acts oit
AuteqFM Dz(X).
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CoRjeÅëture 3.5. The action ef She group .xt(A.) en AuteqFMDz(X) ts

faithful. Therefore the group B is the Artin group of t?Jpe An+

   According to Oriov's theerem [Or97], any auteequivalence ep E Auteq D(S)
for a smooth projective variety S is isomerphic to an integral functor Åë8-.s

for sgme IP E P(S Å~ S). g$ing tlke Or}ov's tkeorem, we gbtain Theorem 3.6
below. The main part of the proof of Theorem 3.6 is parallel to the one of

Theg}'em 3.3.

Theorem 3,6 ([IU04]). Let S be a smooth proJ'ective surface of general
type whese canenicaS megel has An-singuiGritie$ at wer$t. Then we hgve

         AuteqD(S) = ÅqCZ7e.(.År,A(S) l C : -2-curve, a E ZÅr .

3.2 Sketch of the proof of Theorem 3.3.

We exptain how to show Theorem 3.3.
   Let ni be the generic point of Ci. For a coherent sheaf 8 G Cohz(X), we

define
                    l(S) :== Åí lengthox,,, Sn,

                            i
and for a E Dz(X), define

                      l(a) :=: ]Z]) l(NP(a)).

                              p

When a is spherical, we can see that every cohomology sheaf HP(a) is a
pure efte-dimexxsigRal Oz-modu}e (Lemma 3.7). Hence if g(a) = l, we get
a X Oc, (a)[i] for some a, b,i E Z.

   We divide the proof of Theorem 3.3 into two steps.

3.2.1 Stepl
First of all, we prove the following.

Key PrepesitiGfi, For a $phericag ct with g(a) År i, there is an auteeguiv-

alence W E B such that l(cr) År l(W(a)).

In the proof of the theorem, showing Key Proposition is the rnost essential.

Our proof of Key Proposition is rather technical and diMcult, so I give a
very rotzgh idea of it here. In g3.3, I find $ G B as in Llie propositioit for

the concrete example.
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   By usiiig a spectra1 sequence, we can show

                  s(w @) sÅíg(kp (7tg(a)År) g)
                           q
for any W E AuteqDz(X) ([IU04, Lemma 3.11]). 'Jrherefore to prove Key
CIaim it suMces to find V E B such that

             Åíl(Åë(7ifP(a))) Åq 2l(NP(a))(= l(a)).

              pp
Actua}ly we can fud $uch $ wheRi y} År 1.

   TQ carry out this, we need more information of eobomology sheaves of
spherical objects in Dz(X). The following lemma is a key tool to enable
computations.
   Recall that a ce}kereRg skeaf f eR a variety X is rtgid if gxe}(.7 , SÅr = e.

Lemma 3.7 ([IUQ4]). (i? if cr E Dz(X) is a spherical obj'ect, then the
    sheof (IDp HP(a) is a rigid Oz-module, pure of dimension 1.

 (ii) Let S be a ceherent ez-modw{e, ppte of diTr}ensioR i. Then S decem-
    poses into a diTect sum of sheaves in Åí(Z), where Åí(Z) is the set of
    tine bundtes L on C, u-••u Ct where 1 gsSt -Åq.. n.

3.2.2 Step2

For Åë G AuteqDz(X), put a : (b(Oc,) and P = Åë(Oc,(-1)). By Key
Proposition, we may assume that l(a) = 1. Next we shaw the existence of
W E B suck #ha# gÅq$(a)) -- l ar}d g(S) År g(ig(git)). I"he ixductieR oR g(S)

induces:

Claim 3.8. For Åë ff AuteqDz(X), there is an autoequivalence W E B such
that $e ep(a) = ig o if(S) = l.

Consequently, we can assume that there are integers a, b(1 S bX n) and i,
Emd there is an autoequivalence g) E B such that

                   $ o Åë(Oc,) 2! Oc, (a) Ii]

  iWhen n : 1, we cannot find such W. Instead of it, we can find Wi E B such that

           iÅq$iÅqctÅrÅr Åq Åí;ÅqWi(N"(aÅrÅrÅr -- ÅíiÅqXg(a))( :S(aÅrÅr.

                   gq
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and
                 w o e(oc,(-O) :! Oc, (a - 1) [il.

IR particu}ar, fox aay peint x E Ci, we can find a poiRt y E Cb vvkh $o
Åë(O.) :)i Oyii]. The= we caR ratker easily shew tke foliewlRg claim by
ifiduction oR n.

Claim 3.9. For any ep G AuteqDz(X), there exists an integeri and W E B
such that WoO sends every skyscraper sheaf O. with x E Z to Oy[i] for
some y E Z.

Note that up to here we do not assume that Åë is axx FM transform. Finally
Lemma 3.10 below cornpletes the proof of Theorem 3.3.

Lemma 3.10 ([BM98]). Suppose an autoequivalence dj G AuteqFM D(X)
for an algebraic variety X satisLfies the fogloutng; for any point x E X, there

is a paint yEX sscch thag e(e.) :! Oy. iZrhen eG PicX x Au#X.

                                                          E

3.3 Example ofspherical object

The aim of this subsection is to find W E B as in Key Proposition for a
non-trivial spherical object.

   Let S be a srnooth projective surface. The following proposition shows
that an object a of D(S) is determined by its cohomology sheaves 7ti(a)
and the classes e'(a), up to (non-canonical) isomorphisms.

Proposition 3.!1 ([IU04]). Suppose we aTe given coherent sheaves gi on

S and eiements
                      ei E Extk(gi, gi-!)

for aii i E Z such that ge 's ane zefv except for finiteSy many i's. Then
there is an oby'ect dv ff D(S) and isomorphtsms pai : 7t'(cr) ! gt such that
pai.i[2] o eZ(a) : e' o pai. This cr is uniquely determined up to isomorphisms.

Example 3.12. Now we go back to the situation of Theorem 3.3. We give
a rather non-trivial example of a spherical object a wr D(X), supported on
Ci U• • •UCs, a union of -2-curves in As-configuration on X. First we define

the cohomology sheaves of a as follows:

                     Cl C2 C3 C4 C5
        7t2(a): wa
         Rl: me    ' R2: @-(eH{}
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with 7'ti(av) --"- Ri e ve2. Here by the figure above for 7t2(a) we mean

                }t2(a) = oc,vc,vc,(e,-1,O),

the line bundle on Ci U C2 U C3 such that the degrees of it on Ci, C2, a3' are

O, -1,O respectively. The rest are similar. Notice that

  gxt}(?t2(a), ?ti(ct)) or- Extk(}S2(a), R" $ Extk(7t2(ct), R2) ex- Åë e Åë

and

 Extk (7t'(a), UO(a)) or- Extk(7Zi, ?tO(a)) Åë Extft (R2, ?tO(a)) tw C e Åë.

Keep the$e isomorphisms in mind, and take

             e2(ev) == (ei, e3) E Extl( Ft2(a), 7"t'(a))

aRd
             ei(or) = (O,ei) E Ext3c(7t'(a), 7tO(av))

with e?,eg,e5 E C'. The data 7tfi(a) and ei(a) E Ext'x' (7ti(a),7ti-i(a))

deteTmike aii ebject or E 9(X) by ProposkioR 3.ii. We caR see that a is
spherical (see [IU04]).

  For all of computations below, see [IU04, Lemma 3.15]. Now let us put
a'  := Toc2(-2)(a). First we have

                   Cl C2 C3 C4 Cs
      N2(a'): m
        R5: (!År--Åq[]År

      7tO(a'): ww
wlth ?ti(a') = 7Zl e 7ZS. IR particulay,

                  t(To.,(-2)(a)) ww l(or)•

Then we can see from computations that

              l(To.,(-i)(7t2(a'))) = l(7t2(a')) - 1

                   l(Toc,(-i)(7?tl)) =l(Rl) ww1

                   S(To., s} (R5)År : g(R5) " 1

             t(To., (-i) (IFtO(of))) = l(7'tO(a')) - 1.
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Consequently, we have

 2g(Tec, (-g o Toc,Åq-2År(?t"(a))) = !5 " 1 - 1 - 1 --- l = 13 Åq ls = s(or).

  p

Then (1) implies that

                 g(Tec, Åq-o o Toc, (-2År (a)) Åq i(a)

as desired.
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