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1 Introduction
  Let X be a smooth projective variety over C. The main subject of this article is
investigating the derived category of coherent sheaves on X. We define D(X) as

                        D(X) := Db(Coh(X)).

Recent}y D(X) has attained much interest in many mathematical aspects, aRd is
expeeted te yepreseRt several symmetrie$. We kave tke fellowiRg examples;

  e Homological mirror symmetry

    lf X is a Calabi-Yau 3-fold, it is expected there exists another Calabi-Yau
    3--fold .Jl, such that X and .jl are related by some symmetry. .jl is called a

    mirror manifold of X. It is expected we can define IFXLikaya category Fuk(X),
    which depends not complex structures but symplectic structures, such that we
    have an equivalence
                           D(X) - DFuh(.5lr).

  e Modul! spaces of stable sheaves

    D(X) is gsefui in ikvestigatiRg medgli spaces of stable sheaves. I# i$ well-

    knowR that some raodgli spaces have eqgiva}ent derived categories with that
    ef the original variet.ies. The fameus example of Mtikai [8] shews if A is an
    abelian variety and A is its dual, the Poincare line bundle gives an equivalence

                             D(A) - D(A).

  e Birational geometry

    Let ip: X ----+ X'" be a 3--dimensional flop. In [21, Bridgeland showed there

    exists aR equivalence
                            D(X) - D(XÅÄ).

    His method is cott$idering XÅÄ as a modgli space oÅí perverse sheaves Per(X) c
    D(X). It is remarkable that his method gives a conceptual proof of the exis-

    tence of flops.
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In this article, we are concerned with the problem "To what extent is X determined
by D(X) ?" We define FIVf(X) as the set of smooth projective varieties, whose
derived categories are equivalent to D(X), up to isomorphism. The members of
FM(X) are called Fourier-Mukai partners of X. Take an object P E D(X Å~ Y).
Then we can define a functor

                                 L                ÅëR-y :- Rg.(f"(*) x P): D(X) - D(y).

Here f: X Å~ Y - X and g: X Å~ Y -År Y are projections. The following theorem is
fundamental.

Theorem 1.1 (Orlov [11]) Let Y E FAII(X) and Åë: D(X) - D(Y) gives an
equivalence. Then there exists an obJ-ect 1År E D(X Å~ Y) such that Åë is isomorphic
to the functor ÅëPx-y. MoreoverP is uniquely determined up to isomorphism.

   1) is called a kernel of Åë. The problem is classifying the Fourier-Mukai partners

of X. The followings are known results.

   e dimX =1
     In this case, it is easy to show FM(X) == {X}.

   e dimX=2
     In this case, FM(X) = {X} except X is a K3 surface or an Abelian surface,
    or an elliptic surface. When X is one of such varieties, FA(I(X) are given by
    some moduli spaces of stable sheaves. These results are shown by Bridgeland-
     Maciocia [4] and Kawamata [7].

   e X is a general type or Å}Kx is ample

    When X is a general type, Kawamata [7] showed Y E FA4t(X) if and only if
    X and Y are K-equivalent. When Å}Kx is ample, then FM(X) = {X}. This
    is a result of Bondal-Orlov [1].

In these results, we can see the common methods in treating this problem, summa-
rized as follows:

   . If Kx has much information, then we can reconstruct (general) closed points

     {Ox}xEX

   e If Kx has no information, then we can use Torelli theorem

The main purpose of this article is to generalize these methods, and the main idea
is the following:

   "If there exists E E lmKxl, then use E to reduce the problem to lower dimen-
sional case."
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2 Correspondence ofcanonical divisors
IR thi$ sect}oit we compa:e the canonical divisers ef X and Y, when Y G FAIf(X),
aRd $tate the main theorem. Firstly we define the Serre ftmctor.

Definition 2.1 We define Sx as

                  Sx := ggwxldimXl: P(X) - D(X).

Sx satisfies the following categorical property

                    Hom(E, F) 2t Hem(E Sx(ff)),

and characterized by this property. Therefore if Åë: D(X) - D(Y) gives an equiv-
a}eltce, theR we kave aii isomorphism of fuRctors

                         oosx or syoÅë.

Since the keme} of the }eft haRd side ls given by P X f"cvxidim X] aRd right h&nd
side is giveR by CP X g"wyldirn Y], we have anisomorphism by Orlov's theorem

                7' `29 f"wx [dim xYl -S-+ IP op g"wy[dim Y].

So it follews that dimX : dimY aixd for all m E Z we have an isomorphism

                p. : px O(mf"Kx) -2f-} px o(mg*Ky).

On the other hand, since Sx is a categoricai invariant, we have the isomorphism of
natural transforms

             T. : Nat(idx, gex(-dmi) -Ell-År Nat(Xy, S.M[-d?nl).

Here d = dimX and Nat means natural transforms. Note that Nat(idx, SxM[--dm])
contains ffO(X,mKxÅr as a linear subspace and it is easy to show that the above
isomerphlsm preserve these subspaces. Se we kave aR is"merphlsra

                    HO(X, mKx) -!-År NO(Y, mKy),

Take cr E HC(X,7nKx) ai3d div(ff) = E E lmKxl. Let gt E ffe(Y,mKy) corre-
sponds to a and div(at) ww Et E lmKyl. We want to compare E and Et. It is easy

to show that O preserves these supports. For Z g X closed subscheme, we define
Dz(XÅr as follows:

           Dz(X) :== {a E D(X) 1 Suppa :xe USupp N'(a) c Z}.

We l}ave tke Åíollewing lei}kma.

Lemma 2.2 op takes DE(X) to DEt(Y)•
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(PToof)Take a E Coh(X) n DE(X). Then

                      a"(a) : a -År ax O(IVmKx)

are zero-maps for sufficiently large N. Then

                 (at)"(Åë(a)): Åë(a) - Åë(a) X 0(IVmKy)

are also zero-maps. This implies Supp tp(a) c Et, and since DE(X) is generated by

Coh(X) n DE(X), the lemma follows. []

   Unfortunately D(E) is far from DE(X) and we want to compare D(E) and
D(Et). If D(E) and D(Et) are equivalent, then the relation between E and Et gives

some information of the relation between X and Y. For the sake of applications, it is

convenient to formulate the theorem on the complete intersections of these divisors.

Take Ei E lmiKxl fori= 1,2•••,n. Here n is an arbitrary natural number. Take
a connected component C c nZ.=i Ei. Then by the same argument of the lemma,
there exists an unique connected component Ct c nZ•=i E,t• such that tp takes Dc(X)

to Dct(Y). We assume the following conditions:

   e C and Ct are complete intersections.

   e Tor,O. XXY(Hk(P), Oc.ct) = Tor9• XXY(Hk(Åí), Oc.ct) = O for all k and i År O.

Here 8 is a kernel ofÅë-i. These conditions are satisfied, for example, lmiKxl are

free and Ei are generic members. Main theorem is the following:

Theorem 2.3 Under the above conditions, there exists an equivalence Åëc : D(C) -
D(Ct) such that the following diagram is commutative:

                    D(x) -!le'!L,e D(c) k.t D(x)

                    Åët Åëci tpi
                    D(y) -Y'IL,et D(ct) 2.• D(y) •

Here ic, ict are inclusions.

3 Outline of the proof of the main

Take a E HO(X, Kx), E = div(a) as in the previous section

a kernel of Åë: D(X) - D(Y).

Step 1 The following diagram commutes:

                      pxo(-mf*K.) 4dXa p

                          p-ml

                      PXO(-mg"K.) -dXa' p.

theorem
. Let CP E D(X Å~ Y) be
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(ldea of the proof) By defiRition indttced diagram of itatural transforms is commu-
tative, i.e. id oa ww at o id o z.. We can describe IP in terms of co by using the

procf of the Or}ov'$ tkeorem. Combine these re$"lts. U

   By takikg coRes, Step l implies there exi$ts aR isemerpkl$m

                        LL                      p x OE.y -"-V P x Ox.gt.

Take a,, E,, and C, Ct as iR the previous sectioR. Then we have anisoinorph!sm

                     LL                   P & Ocxy ;it 1' X Ox.ct • • • (sr).

Here we used the assumption C and Ot are complete intersections. Now we have

Step 2 There evists some obl'ect Pc as D(C Å~ Ct) such that

                   LL                 P op Ocxy E;i: T) X Oxxct tw icxct*1)c•

                          LL(Idea of the prooLf) By applying Q Ocxy to ()k), we can see T) X 0cxy is a direct

summand ef IP X Oc.ct, which is a push-forwamd from C Å~ Ct. Now we use the
                                  Lassumption of the higher 7'or to show P & Oc.y is actua!!y push-feward from
UÅ~ ct. I]

Step 3 Let Åëc :--• ÅëP cC
-
.ct : D(C) - P(Cb. Then Åëc gives a desired eguivaience.

(Preof) Firstly we $how the ceramutakvky okhe diagram. Tkis easi}y follows from
the isomorphism of Step 2. Secondly we show that Åëc gives an equivalence. Let
$ct : D(Ct) --, D(C) be a fuRcter defiRed from g} := Åë-i as in the same way. TheR

the commutativity of the diagram implies

               {Ifct o Åëc(C)x) = Ox, if'ct o Åëc(0c) =: 0cr-

These imply Wci o Åëc = id, since tke keme} of Wct e ec is a diagoma}. Similarly
opc o Vcrt = id, and the proof is completed. O

4 Applications
We can apply the Main theorem to the classification of FM(X). Note that the
miRimal 3-feld X has aft aigebraic fiber space strncture

                 g: X - Z := Proj e.)eHO(X, mKx).

7r is ca!led Iitalra fibration. Let Xfi be geometric generic fiber of g. In this sectien,

we assume the following:
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   e X is a smooth minimal 3-fold of rc(X) == 1.

   e Xfi is a K3 surface or an Abelian surface.

   e All the fibers of T is irreducible and reduced.

Before we state the theorem, we give a definition

Definition 4.1 LetH E Pic(X) be apolarization. VVe denote IVIH(X/Z) by relative

moduli space of stable sheaves with respect to H. An irreducible component M c
MH(X/Z) is fcne zf M - Z is pro7`ective and there exists an universal family on

XxzM•
The main theorem of this section is the following:

Theorem 4.2 In the above situation, Y E FM(X) if and only if there eststs some
polarization H on X, and an irreducible component M c MH(X/Z) which is fine
and relative dimension =2, such that Y and M are connected by finite number of
flops.

(Out line of the proof) Let Åë: D(X) - D(Y) be as in the previous sections. The
isomorphism HO(X,mKx) !l! HO(Y, mKy) preserves graded ring structures, so we

have
           Z : = Proj O.År.oHO(X,mKx) !)! Proj e.)oHO(Y, mKy).

Let rx : X -- Z, ry : Y - Z be Iitaka fibrations. Then the main theorem implies,
for general points p E Z, Xp, Yp fibers at p, there exists an equivalence tpp : D(Xp) .

D(Y,) such that the diagram

                   D(x) -Ll'lke-,Np D(x,) -!t'Ee:.p' D(x)

                    ot Åë't ept
                   D(y) -!'I2-,Vp D(y,) -el'2i:.p" D(y).

commutes. For the sake of simplicity, we assume Xp is a K3 surface. Now we use
the general facts of derived categories and singular cohomologies. For a functor
ÅëPx-.y: D(X) . D(Y), which is not necessary equivalent, we can define a Iinear

map
              ipZ.,.: H'(X, Q) := G,-.,Hk-(X, Q) - H*(Y, Q).

ipZ-y is defined by the algebraic cycle f'vXfEl5ich(7))g'VfEIF E H'(X Å~ Y, @), and

the following diagram commutes:

                        D(X) -:!L+ D(Y)

                   ch(*)vfaJii tch(*)vfa7

                      H*(x,Q) L H*(Y,Q).
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Mereover the correspolldence Åëfx'.y --. ip9x.ww,y is fuitctorial. Applying these facts te

our situations, we have the commutative diagram

                         .*               H*(X,Q) g'P N*(X,,Q) -e:'lie:,P' H*(X,ap)

                 ipi di"i dii
                         -* t               ff*(y,Q) -E'2i-p ff*(y,,@) nyil'kt.p" ff*(y,ap).

As in [9], ipp is defined over Z aRd pre$erves inRer produÅëts. Here inner pyodgct og
,El"(Xp,Z) = ffOG H2 o ll4 is given by (r, l, s) • (r', l', s') == ll' - rs' - r's. Now take

(O,O,1) E H'(Y,,Z) and let (rp,gp,s,) := ip,-i(O,O, 1). Then by composing suitable

equivalence if necessary, we may assume rp k 2, lp is ampie. Moreover we can show
there exists a polarization H on X such that HIx, = dlp for some d År O. Let
M c Mg(X/Z) be an irreducib}e componexxt which contains stable $heaves on Xp
whose Mukai vector := pm ch(*) equals to (rp, lp, sp). Then as in [9], M is non-

empty, aitd we caR check tke condkioxx of ehe exi$teRce ef the imiversal skeaves in
[9]. Moreover, since all the fibers of Tx are irreducible and reduced, Alf is projective

by the arggmeRt Qf [6, Remark 4.6.8]. 'TherefeTe we cag ceRclude M is fiRe. By
[5], M is smooth and the universal sheaf gives an equivalence P(M) - D(X). By
cemposing this eq"ivalence with Åë, we eaR reduce the problem Åío the fol}owiRg;
   "If (rp, lp, sp) = (O, O, 1), then X and Y are conmeected by finite number of flops."

   Since X and Y are miniina! 3-fo!d, it is enough to show X and Y are birational.
Note that (O,O, 1)Y(O,O, 1) ;: N2(Xp,Z), so there exists a Zariski open set ZO c Z

such that we have a Hodge isometry

                     di: R27rx.Zxlzo - R2ry*Zylzo-

Now using the resttlts of the families of K3 surfaces in [le], we can show that,
by shrinking ZO if necessary, there exists a Hodge isometry di': R27ry.Zylzo ---År
R2Try.Zylze snch that tke composition Åë"" o di is an effective Hodge isometry. By

Tgrelli theorem of K3 surfaces, there exists an isomorphism fp : Yp . Xp such that
(ip' o ip)p == f,". Tkexx {f,},Eze gives a sectloit ef Isemze(Y, X) - Ze. :

5 Appendix
In the case of K(X) =2, we have the fellewing re$uk.

'III'heorem 5.2 Let X 5e a smeoth projective S-feld ofK(X) == 2. Then Y E jFAIf(X)
of and only if one of the following holds;

   (i?X and Y are connected by fcnite number offlops.
   (ii? There e cists a following diagram:

                     flops                                         Hops                  Y --. Jll (d) M--.X
                           TXs/Ai'

where 7r': X+ --År S is an elliptic fibration with LuA,f ff-i:. O, H E Pic(IL/I) zs a polariora-
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tion, d E Z, and JH(d) ec MH(M/S) is an irreducible comgeonent which is fine and

contains line bundles of degree d on smooth fibers of rr.

In the case of K(X) =: 1, If we eliminate the assumption "all the fibers of the Iitaka

fibration are irreducible and reduced" in the previous section, we have the following
result.

Tkeerem 5.2 Assume X is a minimgg 3-fegg ofK(X) rm i, and generiefcber efits
Iitaha fibratioR is a K3 s#rface. Then Y E FfYf(X) of and onjy zf of the foilewing
holds.

   (i?There exists a polanization H on X and an irreducible component M c
IVfH(X/Z), which is fine and relative dimension two, such that Y and IVI are con-

nected by finite number of flops.

   (ii?There exists a polame'uation H on Y and an irreelucible cornponent IVI c
AilH(Y/Z), which is fine and retative dimension two, such that X and IL/f are con-

nected by fcnite number of flops.

   l hepe tkat Y E ,ge'M(X) if aRd oRly if (" ho}ds, btit gnforttmately I cou}dR't

prove. Tke problem is wketker we cax take medgli space wkick is prejective.
   By tlie same raethod, we can study FM(XÅr wken Xn- i$ an Eftriques surface or
a bielliptic surface. Let X be a geod miRimal model (i.e.Kx is semi-ample) and
Tx: X - Z be its Iitaka fibration. Let m := min{i I cvli2k or Ox,}. Then there
exists a Zariski open sttbset ZO c Z such that cv9gi cv- O.yo, where XO = TIi(ZO).

Let
                 px -Xfo :speco., (tlll.lioiw$-2)) -,xo

be its canonical cover. Let Y E F?VI(X) and Ty: Y aj Z be its Iitaka fibration.
FI'heft, miR{i I wzX,i ;)( Oy" }$ also m because general fiber of xy is a}sg a Fourier--

Mtikal paytker cf genera} fiber of 7rx. Let gs take a camonical cover gy : iPe - Yg,

[I'heR the equivalence Åë: P(X) -- D(Y) gives aft equivalence epe: D(Xg) - P(Yg).
Let G= Gal(51fO/xe) tw Gal(Ye/YO) !x Z/mZ. Let px,p : me pxix,, py,p := pyly,•

Definition 5.3 A functor diO: D(.5iiO) - D(ii70) is C-equivariant if there exists

some group isomorphism cr : G ---ÅÄ G such that the following diagram commutes for
all gE G:
                        D(51fo) --!!tOl- D(yo)

                         g'i Sa(g)"

                        zi}(slfe) x" "(il7o),

By cembining tlie metked of [31 aRd o[ir method, we caxx easily shew the fellowing

theorem.
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Theorem 5.4 ( By shrinicing ZO of necessary, ) There exists a G-equivariant equiv-
alence SO: D(5ifO) - D(YO) such that the following diagram is commutative:

                      D(xe) -wwIl}f D(.j?o) -il{.!i-,* D(xG)

             ' (Q) opoi diot epot
                      D(yg) kf D(Yc) L'• D(yg).

Moreover there exists a a-equivariant equivalence dip: P(-?.) -" D(Yp) such that

the follewtng diagrams commecte:

                         N wwlt'ke--Årp -" -t&t="p. -

(Q,)

(Q")

D(xO)

5ei
D(YO)

D(Xp)

ÅëpJ
D(Yp)

 lliÅí
  Yp

  - Px,p

 . Py,p

D(XTp)

$pi

D(YP)

D(•51p)

6pS

D(YP)

 i9p'

 px,p.

lat,p.

D(xo)

6" i
D(YO),

D(Xp)

tpp i
D(YP)'

   Assume the following:

   . X is a smooth minimal 3-fg!d of rc(X) =xx 1.

   e Xfi is an Enriques surface or a bielliptic $urface.

   . If Xij is a blel}iptlc surface, al} the gbey$ of gx aTe }rredgcible aftd redgced.

Under these conclitions, we can study FM(X) by using the above theorem. In fact
we have the following theorem:

Theorem 5.5 UndeT the above eenditiens Y ff FM(X) of and enly if there emists a
polarization H on X and an irreducible component M c MH(X/Z) which satisfces

  . M ts fine and M - Z ts regative dimension two.

   e For all x di M, comesponding stable sheof E. satisfies Ex X wx = Ex.

such that Y and M are connected by fcnite number offlops.

Problem 5.6 By the classification of FM(X) in the surface case, FM(X,) an {X,}
in this case. Are there any member in FIL(l(X) which is not birational to X?
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