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1 Introduction

Let X be a smooth projective variety over C. The main subject of this article is
investigating the derived category of coherent sheaves on X. We define D(X) as

D(X) := D*(Coh(X)).

Recently D(X) has attained much interest in many mathematical aspects, and is
expected to represent several symmetries. We have the following examples:

e Homological mirror symmetry

If X is a Calabi-Yau 3-fold, it is expected there exists another Calabi-Yau
3-fold X, such that X and X are related by some symmetry. X is called a
mirror manifold of X. It is expected we can define Fukaya category Fuk(X),
which depends not complex structures but symplectic structures, such that we

have an equivalence 5
D(X) — DFuk(X).

e Moduli spaces of stable sheaves

D(X) is useful in investigating moduli spaces of stable sheaves. It is well-
known that some moduli spaces have equivalent derived categories with that
of the original varieties. The famous example of Mukai [8] shows if A is an
abelian variety and A is its dual, the Poincare line bundle gives an equivalence

D(A) — D(A).

e Birational geometry

Let ¢: X -~+ X* be a 3-dimensional flop. In (2], Bridgeland showed there
exists an equivalence

D(X) — D(X).
His method is considering X* as a moduli space of perverse sheaves Per(X) C
D(X). It is remarkable that his method gives a conceptual proof of the exis-
tence of flops.



In this article, we are concerned with the problem “To what extent is X determined
by D(X) 77 We define FM(X) as the set of smooth projective varieties, whose
derived categories are equivalent to D(X), up to isomorphism. The members of
FM(X) are called Fourier-Mukai partners of X. Take an object P € D(X x Y).
Then we can define a functor

8%y == Ra.(f*(+) ® P): D(X) — D(Y).

Here f: X xY — X and g: X x Y — Y are projections. The following theorem is
fundamental.

Theorem 1.1 (Orlov [11]) Let Y € FM(X) and ®: D(X) — D(Y) gives an
equivalence. Then there exists an object P € D(X x Y) such that ® is isomorphic
to the functor ®%_,.. Moreover P is uniquely determined up to isomorphism.

P is called a kernel of ®. The problem is classifying the Fourier-Mukai partners
of X. The followings are known results.

o dimX =1
In this case, it is easy to show FM(X) = {X}.

o dimX =2

In this case, FM(X) = {X} except X is a K3 surface or an Abelian surface,
or an elliptic surface. When X is one of such varieties, FM(X) are given by
some moduli spaces of stable sheaves. These results are shown by Bridgeland-
Maciocia [4] and Kawamata [7].

e X is a general type or =K x is ample

When X is a general type, Kawamata [7] showed Y € FM(X) if and only if
X and Y are K-equivalent. When +Kx is ample, then FM(X) = {X}. This
is a result of Bondal-Orlov [1].

In these results, we can see the common methods in treating this problem, summa-
rized as follows:

e If Kx has much information, then we can reconstruct (general) closed points

{OI}IEX

o If Kx has no information, then we can use Torelli theorem

The main purpose of this article is to generalize these methods, and the main idea
is the following;:

“If there exists E € [mK x|, then use E to reduce the problem to lower dimen-
sional case.”



2 Correspondence of canonical divisors

In this section we compare the canonical divisors of X and Y, when Y € FM(X),
and state the main theorem. Firstly we define the Serre functor.

Definition 2.1 We define Sx as
Sx = Quwx|[dim X]: D(X) — D(X).
Sx satisfies the following categorical property
Hom(E, F) =2 Hom(F, Sx(E)),

and characterized by this property. Therefore if ®: D(X) — D(Y') gives an equiv-
alence, then we have an isomorphism of functors

cI)on%‘Syofb.

Since the kernel of the left hand side is given by P ® f*wx[dim X] and right hand
side is given by P ® g*wy[dimY’], we have an isomorphism by Orlov’s theorem

P® frwxldimX] — P ® g*wy[dimY].
So it follows that dim X == dimY and for all m € Z we have an isomorphism
Pm: PQ O(mfKx) = P®O(mg*Ky).

On the other hand, since Sx is a categorical invariant, we have the isomorphism of
natural transforms

Tm: Nat(idy, SP[—dm]) — Nat(idy, SP[—dm)).

Here d = dim X and Nat means natural transforms. Note that Nat(idx, S%[—dm)])
contains H%(X,mKx) as a linear subspace and it is easy to show that the above
isomorphism preserve these subspaces. So we have an isomorphism

HY(X,mKx) — H’(Y, mKy).
Take 0 € H(X,mKx) and div(c) = E € |mKx|. Let of € H(Y,mKy) corre-
sponds to ¢ and div(c!) = E' € [mKy|. We want to compare E and E!. It is easy

to show that @ preserves these supports. For Z — X closed subscheme, we define
Dz(X) as follows:

Dz(X) := {a € D(X) | Suppa := USupp H'(a) C Z}.
We have the following lemma.

Lemma 2.2 & takes Dg(X) to Dgi(Y).



(Proof)Take a € Coh(X) N Dg(X). Then
oM(a): a = a® O(NmKx)
are zero-maps for sufficiently large N. Then
(@"¥(®(a)): ®(a) — ®(a) ® O(NmKy)
are also zero-maps. This implies Supp ®(a) C E', and since Dg(X) is generated by
Coh(X) N Dg(X), the lemma follows. O

Unfortunately D(E) is far from Dg(X) and we want to compare D(E) and
D(E"Y. If D(E) and D(E?) are equivalent, then the relation between E and ET gives
some information of the relation between X and Y. For the sake of applications, it is
convenient to formulate the theorem on the complete intersections of these divisors.
Take E; € |m;Kx| for i = 1,2--- ,n. Here n is an arbitrary natural number. Take
a connected component C C (., E;. Then by the same argument of the lemma,
there exists an unique connected component Ct C (N, E! such that ® takes Do(X)
to Dt (Y). We assume the following conditions:

e C and C! are complete intersections.
o Tord*<Y (HX(P), Ocyct) = Tord XY (H5(E), Ogxet) = 0 for all k and 5 > 0.

Here £ is a kernel of®~!. These conditions are satisfied, for example, |m;Kx| are
free and E; are generic members. Main theorem is the following:

Theorem 2.3 Under the above conditions, there exists an equivalence &¢c: D(C) —
D(CY) such that the following diagram is commutative:

Liy,

D(X) —<» D(C) —%— D(X)
o o o
D(Y) Lot (ch <=, D(Y)

Here ig, ict are inclusions.

3 Outline of the proof of the main theorem

Take 0 € H°(X, Kx), E = div(o) as in the previous section. Let P € D(X x Y) be
a kernel of &: D(X) — D(Y).

Step 1 The following diagram commutes:

PRO(-mf*Kx) ~22, p

-
PRO(—mg*Ky) e, p.



(Idea of the proof) By definition induced diagram of natural transforms is commu-
tative, i.e. idoo = o' oid o 7_,. We can describe P in terms of ® by using the
proof of the Orlov’s theorem. Combine these results. [

By taking cones, Step 1 implies there exists an isomorphism

L L
P®OEngP®OXfo.

Take o;, E;, and C, C' as in the previous section. Then we have an isomorphism

L L
’P®OCXY§’P®OXXCt (*)
Here we used the assumption C and C' are complete intersections. Now we have

Step 2 There exists some object Pc € D(C x C') such that
L L .
P ® Ocxy P ® Oxxct ZicxctaPo-

L L

(Idea of the proof) By applying ® Ocxy to (x), we can see P ® Ocxy is a direct
L ‘ :

summand of P ® Ogyct, which is a push-forward from C x C'. Now we use the

L
assumption of the higher Tor to show P ® Ocxy is actually push-foward from
Cxct O

Step 3 Let ¥¢ := @gict: D(C) — D(C"). Then ®¢ gives a desired equivalence.

(Proof) Firstly we show the commutativity of the diagram. This easily follows from
the isomorphism of Step 2. Secondly we show that ®. gives an equivalence. Let
Ut D(CY) — D(C) be a functor defined from ¥ := ®~! as in the same way. Then
the commutativity of the diagram implies

Vet 0 Po(0z) = Op, Yot 0 Pc(Oc¢) = Oc.
These imply Wsy o &, = id, since the kernel of ¥t 0 @, is a diagonal. Similarly
®c 0 Ut = id, and the proof is completed. [
4 Applications

We can apply the Main theorem to the classification of FM(X). Note that the
minimal 3-fold X has an algebraic fiber space structure

m: X — Z 1= P1oj ©mxoH (X, mKx).

7 is called Iitaka fibration. Let Xj; be geometric generic fiber of 7. In this section,
we assume the following:



o X is a smooth minimal 3-fold of x(X) = 1.

e X; is a K3 surface or an Abelian surface.

e All the fibers of 7 is irreducible and reduced.
Before we state the theorem, we give a definition

Definition 4.1 Let H € Pic(X) be a polarization. We denote M (X/Z) by relative
moduli space of stable sheaves with respect to H. An irreducible component M C
MHY(X/Z) is fine if M — Z 1is projective and there ezists an universal family on
X Xz M.

The main theorem of this section is the following:

Theorem 4.2 [n the above situation, Y € FM(X) if and only if there ezists some
polarization H on X, and an irreducible component M C MH(X/Z) which is fine
and relative dimension =2, such that Y and M are connected by finite number of

flops.

(Out line of the proof) Let ®: D(X) — D(Y') be as in the previous sections. The
isomorphism H%(X,mKx) = H°(Y,mKy) preserves graded ring structures, so we

have
Z := Proj ®m>0H*(X,mKx) = Proj Bmxo H (Y, mKy).

Let mx: X — Z, my: Y — Z be litaka fibrations. Then the main theorem implies,
for general points p € Z, X,, Y, fibers at p, there exists an equivalence ®,: D(X,) —
D(Y,) such that the diagram

i‘
Xp

D(X) =X, D(x,) 2%, D(x)

Ll
Li;,p iype

DY) — D(Y;) —— D(Y).
commutes. For the sake of simplicity, we assume X, is a K3 surface. Now we use
the general facts of derived categories and singular cohomologies. For a functor
®% ., : D(X) — D(Y), which is not necessary equivalent, we can define a linear
map

Ph_y: H*(X,Q) 1= GrxoH (X, Q) — H*(Y, Q).

@%_y is defined by the algebraic cycle f*v/tdx ch(P)g*vtdy € H*(X x Y,Q), and
the following diagram commutes:

[

DX) —*~ D)
ch(twm;l lch(wm

H*(X,Q —*— H*(V,Q).



Moreover the correspondence ®%_, — ¢%_ . is functorial. Applying these facts to
our situations, we have the commutative diagram

H(X,Q) —2 H'(X, Q) 2 H*(X,Q)
¢l ¢pl ¢l
H(Y,Q) 2 H'(Y,,Q) —2 H*(Y,Q).

Asin [9], ¢ is defined over Z and preserves inner products. Here inner product on
H*(X,,Z)= H°® H?>® H* is given by (r,1,s)- (r',l!,s') = ' —rs’ —r’s. Now take
(0,0,1) € H*(Y;,Z) and let (rp, Ly, 5p) := ¢;(0,0,1). Then by composing suitable
equivalence if necessary, we may assume r, > 2, [, is ample. Moreover we can show
there exists a polarization H on X such that H|x, = dl, for some d > 0. Let
M C MH(X/Z) be an irreducible component which contains stable sheaves on X,
whose Mukai vector := y/td X, ch(x) equals to (rp,lp, sp). Then asin [9], M is non-
empty, and we can check the condition of the existence of the universal sheaves in
[9]. Moreover, since all the fibers of mx are irreducible and reduced, M is projective
by the argument of [6, Remark 4.6.8]. Therefore we can conclude M is fine. By
[5], M is smooth and the universal sheaf gives an equivalence D(M) — D(X). By
composing this equivalence with ®, we can reduce the problem to the following:

“If (rp, lp, 8p) = (0,0,1), then X and ¥ are connected by finite number of flops.”

Since X and Y are minimal 3-fold, it is enough to show X and Y are birational.
Note that (0,0,1)%/(0,0,1) & H*(X,,Z), so there exists a Zariski open set Z° C Z
such that we have a Hodge isometry

¢: RPmx.Zx|z0 — Ry Zy|z0.

Now using the results of the families of K'3 surfaces in [10], we can show that,
by shrinking Z° if necessary, there exists a _Hodge isometry d)’ Rry Zy|z0 —
R%my.Zy|z0 such that the composition # o $ is an effective Hodge isometry. By
Torelli theorem of K3 surfaces, there exists an isomorphism f,: ¥; — X, such that
(¢ 0 @), = f5. Then {fp}pez0 gives a section of Isomzo(Y, X) — Z°. O

5 Appendix
In the case of kK(X) = 2, we have the following result.

Theorem 5.1 Let X be a smooth projective 3-fold of k(X) = 2. ThenY € FM(X)
if and only if one of the following holds:

(1)X andY are connected by finite number of flops.

(11) There ezists a following diagram:

flops flops
Y - JH(d) M-"X
S

where m: X+ — S is an elliptic fibration with wy =, 0, H € Pic(M) is a polariza-



tion, d € Z, and J¥(d) ¢ MH(M/S) is an irreducible component which is fine and
contains line bundles of degree d on smooth fibers of &.

In the case of K(X) = 1, If we eliminate the assumption “all the fibers of the Iitaka
fibration are irreducible and reduced” in the previous section, we have the following
result.

Theorem 5.2 Assume X is a minimal 3-fold of k(X) = 1, and generic fiber of its
[litaka fibration is a K3 surface. Then'Y € FM(X) if and only tf of the following
holds.

(i) There ezists a polarization H on X and an irreducible component M C
MH(X/Z), which is fine and relative dimension two, such that Y and M are con-
nected by finite number of flops.

(ii)There exists a polarization H on Y and an irreducible component M C
MH(Y/Z), which is fine and relative dimension two, such that X and M are con-
nected by finite number of flops.

I hope that Y € FM(X) if and only if (i) holds, but unfortunately I couldn’t
prove. The problem is whether we can take moduli space which is projective.

By the same method, we can study FM(X) when X; is an Enriques surface or
a bielliptic surface. Let X be a good minimal model (i.e.Kx is semi-ample) and
mx: X — Z be its litaka fibration. Let m := min{3 | w}e}; = Ox,}. Then there
exists a Zariski open subset Z° C Z such that w¥5* = Oxo, where X° = 73'(Z9).

Let
. m—1 )
px: X0 = Speco_, (@ w%’”) - X°

1=0
be its canonical cover. Let Y € FM(X) and my: Y — Z be its litaka fibration.
Then, min{s | w?}ﬁ' = Oy, } is also m because general fiber of 7y is also a Fourier-

Mukai partner of general fiber of mx. Let us take a canonical cover my : Yo - YO
Then the equivalence ®: D(X) — D(Y) gives an equivalence ®°: D(X°) — D(Y°).
Let G = Gal(X°/X°) = Gal(Y°/Y®) 2 Z/mZ. Let px, := pxlz,, Pvp = prly,-

Definition 5.3 A functor ®: D(X?) — D(Y?) is G-equivariant if there eists
some group isomorphism o: G — G such that the following diagram commutes for
allge G:

DX 2. Do)
g‘l la(g)‘
pxY) 2. po),

By combining the method of [3] and our method, we can easily show the following
theorem. '



Theorem 5.4~( By shrinking Z° if necessary, ) There exists a G-equivariant equiv-
alence °: D(X%) — D(Y?) such that the following diagram is commutative:

D(x%) -2, D(X°) X, p(x?)
(©) <I>°J_ &EOJ_ ¢°J'
D(Y®) -2 DY) -2, D(Y?).

Moreover there exists a G-equivariant equivalence 51,: D(/~p) — D(}~’p) such that
the following diagrams commute:

is
Xp Xpe«

D(X%) — D(X D(X9
@) w| | w|

D(FY) —=, p(¥) —= pP),

E

(" %l @;l
D(¥;) —-—» (ff) 22, D(Y,).
Assume the following:
e X is a smooth minimal 3-fold of xK(X) = 1.
¢ Xj is an Enriques surface or a bielliptic surface.
o If Xj; is a bielliptic surface, all the fibers of wx are irreducible and reduced.

Under these conditions, we can study FM(X) by using the above theorem. In fact
we have the following theorem:

Theorem 5.5 Under the above conditions Y € FM(X) if and only if there ezists a
polarization H on X and an irreducible component M C M¥(X/Z) which satisfies

o M is fine and M — Z is relative dimension two.
e For all z € M, corresponding stable sheaf E, satisfies E, @ wx = E,.

such that Y and M are connected by finite number of flops.

Problem 5.6 By the classification of FM (X) in the surface case, FM(X,) = {X,}
in this case. Are there any member in FM(X) which is not blratlonal to X ?
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