
SEMI-ALGEBRAIC GEOMETRY OF BRAID GROUPS

KYOJI SAITO

O. INTRODUCTION

  The braid group of n-strings is the group of homotopy types of movements of n
distinct points in the 2-plane R2. It was introduced by E. Artin [1] in 1926 in order

to study knots in R3. He gave a presentation of the braid group by generators and

relations, which are, nowadays, cailed the Artin braid relations.

  Since then, not only in the study of knots, the braid groups appear in several
contexts in mathematics, since it is the fundamental group of the configuration
space of n-points in the plane. Early in 70's the braid groups are generalized
to a wider class of groups, the fundamental groups of the regular orbit spaces of
finite reflection groups (Brieskorn [6]), which are called either the generalized braid

group (Deligne [3]) or the Artin group (Brieskorn-•Saito [2]). The regular orbit
space turns out to be an Eilenberg-MacLane space (Deligne [3], c.f. Brieskorn-
Saito [2]). Through the study of holonomic systems on the Eilenberg-Maclane
spaces, representations of the generalized braid groups are studied (Kohno,...). Also

through the braid relations, the actions of braid groups on triangulated categories
are studied (Seidel-Thomas,...). Still, we are far from full understanding of their

         .representatlons.
  As for the study of the Eilenberg-Maclane spaces, it was from the beginning a
question raised by Deligne, Brieskorn, Saito,. . . to find the paths in the Eilenberg-

MacLane spaces which give a generator system of the Artin groups satisfying the
Artin braid relations. In this note (based on [4]), we will give two answers to this

question. We approach the problem by the semi-algebraic geometry of the orbit
space induced from the flat structure on it [7].

                  1. ARTIN GROUPS OF FINITE TYPE [2]

Definition. Let H be a finite index set. A symmetric matrix M = (mij)i,hEn is
called a Coxeter matr-ix if

    i) m"=1foriEn,
    ii) mij = mJ•i E Z)2 for il j' E II,

   iii) indecomposabMty: ifn=IllJ s.t. mij =2 for i E I, j' E J
                       -I=e or J= e.
  To such Coxeter matrix lt(f, we associate two groups presented as follows.

     .AA!LAz!alLg!;QulAt

A(A4f) := Åqgi,...,gt l gigj... = g,•gi... for Vi,J' E n)

                  V Yv/
                   mij mij
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e A Coxeter rou

W(M)::Åqai,•-•,atl aiaJ•••• : al-ai... for Vi,j G rl,

N-.-V St"
 Mij Mlj
     a?t =l foriff XÅr

  By tlie definition, there is a natural surjective homemorphism:

                          A(M) -+- VV(M).

  It is well known that the list of finite Coxeter groups give a complete list of finite
reflection groups. 'Irhey are classified by the symbols At (l Årww 1), Bt (l ) 2), Dt (t )

4), E6, E7, Es, F4, a2, El3, H4, I2(p) (p)3) ([51).
  If PV(IL(t) is a finite group, A(IL/I) is called of finite type. In this note, we shall

consider only Artin grottps of finite type.

  We shall denote by Aw or by A(W) the Artin group A(M) for W ; = W(MÅr.

gxQ7nple. Leg g =: {g, 1,. . . ,g} and tke Coxeter matrix ls giveR by

mij =
1

3

2

i=j'
ii-j"l :1
li - j'1 }r 2•

Then, one has the most cla$sical examples:

    e VV(M) = est+iww syrnmetric group of l + 1 elements, where the generator
      ai (1 K i S t) corresponds to the transposition of i - lth and ith elements,

    . A(MÅr : B(g " 1År== braid group of g + l strings, where the generator gi
      (l S i S S) correspoftds to the "half-braiding" of i - kh and ith strings
      (see #gure below).
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SEMr-ALGEBRAIC GEOMETRY OF BRAID GROUPS

         2. ri['OPOLOGICAL REALIZATION OF ARTIN GROUPS [5], [6]

  We realize the Artin groups as the fundamental group of certain complex con-
figuration spaces [6].

  First, redall the vector representation of the Coxeter group [5].

  Let Vw := Åí.EnRea be the based real vector space of rank t, is equipped
with a symrnetric bilinear form B(e.,ep) = cos(Tfmafi) for a,6 E fi. For each
a E ll, we coiisider a reflection on Vn w.r.t. ea defined by: sa(u) = u-2B(tt, ea)ea

 Ft2. CA.n"tr

      - -'"t
                 whose refiection hyperplane H. is given by the (e.)Å}.
     a
    -.t
  e='

              ,
Theorem (Tits). The correspondence a. H s. (a E n? induces an injective ho-
momorphtsm VV(M) - GL(V). By this embedding, tet us regard VV := W(M) a
finite subgroup of GL(V) geneTuted by reflections. Let R(W) be the set of all reflec-

tions in VV (which is a union of conjugacy elements of the generators s. (a E n]).
Then the action of V[X on the set of connected components of Vw Å~U,ER Hs,R (called

chambers? is simple and transitive.

  Next, we describe. the configuration space as the quotient variety of Vvv by the
finite reflection group W-action. We give two descriptions of the quotient variety:
one set-theoretic, the other categorical (the latter is also necessary, since we shail
consider it over the field R which is not algebraically closed).
  First, we recall the invariant theory for the VV-action on the (real) polynomial
function ring S(Vt;,) (c.f. [51). Chevalley Theorem states that the W-invariants
S(Vdi)W is generated l := #H algebraically independent homogeneous elements,
say Pi,..., Pl, of degree mi +1=2Åq••• Åq mt +1= h:

                        S(Vtt,)W' = R[Pi,..., Pi].

The set of VV anti-invariant polynomial (==the polynomial which alter its sign by
the action of a refiection) is a rank 1 free module over S(Vca)W generated by

                      ,,III((.)fs = aO((i'ii iilli',))

where fs is a linear form defining the reflection hyperplane H, ofa reflection s, and

Xi,...,Xt is a linear coordinate system of Vw (here and in sequel in the present
note, for simplicity, we disregard the positive or non-zero constant factor in such
calculations). The square of the anti-invariant is an invariant:

                Aw=(,El!I](,lv)fa)2=(aa((xP',i ifi/t)))2,

called the discriminant. As an element in S(Vdi)W, we develop it in a polynomial

ln Pt:

          Avv=AoPit+AiPtt-i+•••+Ai forAiER[Pi,...,Pi-ij•
Then, it is a highly non-trivial fact that the leading coefiicient Ao is a non-zero
constant ([5],[7]) so that Axt at the origin has multiplicity l.
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  1 A set theoretic description of the quotient variety: since the invariant poly-
nomial Pi (1 S i S l) defines a function on the orbit space Vw,c/VV for Vpv,c :==
Vw xR ÅqC. The polynornial map (Pi,. . . , Pi) induces the homeomQrphism:

              Vw,cfVV !,t Åqct
                           (Pi,,•.Pi)

                 UU          ÅqU.eRÅq;y) ils,c)/W tt P}nc := {x ff ÅëiltXw(i) =g}

Obviously from the definitioi} of Aw, the image of the reftec#ion hyperpiaRes ls the
zero ioci of Avv, which is denoted by Dw,c and is cailed the discriminant ieci. A
theorem of Steinberg states that a point in Vw,c is fixed by a non-triviaJ element
of W iff it belongs to a refiection hyperplane. This means that tbe space of regular
(=fixed point free) VV-orbits in Vw,c is homeomorphic to the complement Ct XDw,c

of the discriminant loci,

  2. A schema-theoretic clescription of the quotient variety: we consider the aMne
scheme defined over R and its divisor:

                 Sw := Vw l! VV = Spec R[Pi,.,,, aj

                  UU
                 Dw :-- {Aw=O}.
. A!i advanta e oÅí ehe cate orica} uotieiS. SiRce C ls algebraical;y c}ose, the set gf

C-ratieRal points of Sw aRd Dw ls Ratgra;ly biject!ve te the $et tkeoretlc quetleRt
space Ci and Dw,c, !'espectlvely:

             Sur,c (wwHom(S(VW)VV,c)) ,, exi

            Dpv,c (mmHom(S(VW)V"1(Aw),C)) tu Dw,c

However, the set theoretic quotients Vyv,R/PV and (U,eR(vy) Nex,R)IW of real vector

space and real reflectien hyperplanes are only a (semi-algebraic) small part of the

R-rational point sets of Sw and Dvv, respectively.

 Sw,R (=Hom(S(W)W,R))!Ri )7E VwaIVU '
  U
 Pw,R (= Rom(S(Vi;, )W!(Aw), R)) ) (U..R{wÅr ff.,R)/W b?E if l År 2).

IR fae#, slRce W acts simple aRd #raRs}#ively gn #ke set of chambers, tke set thee-
reticai quotieRt (Yw,R X U.ERÅqw) ffs,pt)/W is homeomorphic to a chamber, and is

bljective to a connected compenent of the complement of the real categerica} quo-
tient space Sw,R X Dw,m, which we shail denote CS}, and Åëail the central component.

The set theoretic quotient of the real reflection hyperplane$ (U,ER(vv) Hs,R)IW is

the boundary of the central component Cev.
  We illustrate these phermomena by the example of type A2.

   K's3.-xthzathutuazualeV al

     H,VA.,R",-XLZttlj- ,SA.R

         xc]N er'xz2(liirlg

fiere, LHS of the figure lndicates the real vector $paÅíe Vw axxd k$ reftecticfi hyper-

planes, and RIIS indicates the real categorical quotient variety Sw,R together with
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Stw{1.ALGEBRAIC aEOMETRY OF BRA!D GReVPS

the real discriminant loci Dvv,R. Then shadowed aria is the centra! component,
wkose ciosure is tke set theoretical qttetient space oÅí Yw,R.

  Let us state two basic theorems on the topology of the cornplex regular orbit
space Sgv,c N Dvv,c, where the first one is due to Brieskorn [61 and the second one
is due to 9eligRe l31•

Theorern. 1. The ,fundamentat group of Spv,c X Dvv,c is isornorphic to the Artin
group Aw (e.g. the fundamentat group of Sas,.,,c X Ds,.,,c is isornerphic tQ the
bfigid gpaup A(Si.i.D = g({ -i- l)].

  2. The higher homotopy groups vanish: rri(Sw,cXDvv,c,*) = O, i ua 2,3,....
(i.e. Sw,c X Dvv,c ds an Eatenbere-MacLane space.?

Refnark. i. The abeve theorerns are proven by a ttse of the moneid of gallerles
(sequences of charnbers which are aeljacent successively) so that the isomorphisrn
in 1. is not explicitly given by a path in the Svv,Åë Å~ Dw,c. Therefore, Brieskorn,

DeligRe aftd several etker people asked tke questleik:

Question. Find a system of paths, say 7i, . . . , 7i in Sw,c X Dvv,c such that their
homotopy classes gives the generator system gi, . . . , gi in the Definition of the Artin

group.

Remark. 2. We note that the concept ofa polyhedron K dual to the chamber
decomposition of Vw plays a crucial role in Theorem$ 1 and 2. Here, a dual poly--
kedroal$ a efikvex hlt}l in Yw ef a W-orbk oÅí a peikg in a chamber C. So, tke set
of vertices of K is in one to one correspondence with the chambers in Vw, the set
of edges of K is in one to one correspondence with the faces (of ehambers) in Vw,
. . . , the opeR cell K correspeRds to tke origin of Yw.

uaLt1bth 1
A duai polyhedron K for the type A2 is
illustrated as the closad hexagon (with
its interior). C!early, one has: 6 vertices

ef K o 6 chambers, 6 edges of K e 6
faces of chambers, the open hexagon H
the origin of VA,•

K"•2}2fsl;:llret\k2tL,

s

Let us explain (indicate) by this picture, relations of K and Theorems.

. Relation with Theorem 1.
                  There are two W-orbit c}asses of the edges of K,F;'l S. twIEEiÅí-ac xt
                  which correspond te two generators, say a anci b, of  ,l           a B(3). There is one PV-orbit of faces of K (actually,
   e " the hexagon), which corresponds te the braid re!a-
                  tion aba == bab.

  . Relation with Theorern 2.
  IR tke preefefthe coRtrac#ibilky of (Sw,cXDw,c)N by De}igRe, the co}i#ract!bility

of K is essentiaiiy used.

  IR gkis Rote, We vvili glve two aR$wers tg tke a5gve qtie$tlcft by c"R$trgctiRg gke

dual polyhedron by a use of certain semi-algebraic geornetry on Svv,R.
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       3. PRIMITIVE VECTOR FIELD D AND A G.-ACTrON ON Svv [7]

  We intrgduee a Ga-act!eR ok Sw vvkiehi$ trafisversal (ln severa} $troRg serises,
which we do not explain in the ptesent note) by an integration of a particular vector
field on it. Let DerR(S[V']VV) be the S(VW)VV-module of polynomial coeMeients
vector fields on Sw. Since S(Vca)W is a graded ring, the module is also graded
(eig- deg(stt, ) = -deg(PiÅr = -(mi -l- l)År. TkeR, !t is easy to see gkat tke lgwest

graded piece of the module is a rank l vector space generated by

                             D=O
                                 6Pt

(where we recall that we have ordered as deg(Pi) Åq ••• Åq cleg(Pt) = h). In fact, il

is, up to aconstant factor, indepenclent ofa choice of the generator systern Pi,..., Pt

of invariants. We shall eall D a prirnitive veetor field. (Proof. Let us take another
system eÅí generators SIV"]W = R[ei, . . . , Qt] with deg Qi -ww-- deg Pi = mi ÅÄ l. Thea

the chain rule of the derivatives shows that

 oOpt =: illl,llÅqi 0aQpt" aOQ, (here,OaQpi =oforiÅqisince it is ofnegative degree)

      ., 0ei 5 .,, censt. S
         apt                          eet            aQt

Fpml t  We, now, iRtroduce a formal grotip aetieR on Sgs := Yva//W 5y the integratim}
ofthe primitive vector fie}d D. Actually, it ls globally defined as a G.-action (which
we shall call the r-action) as a traxxslation of the last coordinate Pt:

r== exp(.DÅr:Ga x Sw - Sw
             ){ X (Pi ,..., PiÅr N (Pb ..., Pi-hR -i- )i) '

       ".,e;a,.i',gh,a,t,t,h,.e,fi?g8,he,Oge,t,iC.,?.",08,iel:! ge6, Rim''ve .h-

Remark. poneRt iR Sw,R. TheR, as lllustrated in " "'' "
       the figure for the A2-type, the quotient b 't""
       set is not invariant by the action! -tt,t"
Remark. There is a one to one correspondence between the set of cennected com-
polteRts of Sw,R Å~ Dw,R aRd the set of coajugaÅëy cla$$ oÅí lnvQ!utive e}emeRts of W.
E.g. S3: {i}, {Uie'}

Remark. A Coxeter element of W is, by definition, a produet (in any order) of a sys-

tem of refleÅëtions whose reflection hyperplanes give a system of walls of a chamber

kk Vw. The coajugacy class of the Coxetex elemeRts is uniquely defined indepen-
dent eÅí the amblguitie$ iR the above defiukioii. [l]he grder ef a Coxeter element,
say c, is denoted by h. Then, the primitive hth rbot ofunity is an eigenvalue ofc of
multiplicity 1, and the eigenspace belonging the eigenvalue is regular (in the sense
that lt ls not Åëontained in any refiection hyperplafteÅr (see [51År. More precisely, we

caR shcw tha# t}ie IRverse lmage in Yyy,c cf #he ene dlmeRsionak-erbk r(Ga) - 0 of
the origin in Stv decornposes into a ttnion of lines, each of which is the eigenspace

of a Coxeter element for the eigenvalue of hth primitive root of unity.
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SEMI.ALGEBRAIC GEOMETRY OF BRAID Åq ROUPS

                4. MAIN THEoREMs [4, 'I'HEoREM A, B]

  We formttlate two tkeoreras eft certaiR semi-algebraic geoa}etry ln Sw,R afid in
Vpv,R, respactively. In order to forrmuiate the re$uit, iet tts pi-epare a notation

       CivÅ}}:=tthheeChOanlifie!Cigeedr?OÅ}MRPÅrOggeo.n.tinSvv,RXDw,Rcontaining

Theorem. 1. Fer A di geÅrg, eensider the intersection of three cempenents

              Jvv(A) := CW n T(-A) • CSv"} n T(A) • C5,/-}.

7Ihen, 1rv(A) ts a connected companent of the complement of three discriminants:
Sw,x X (Pw,R U r(AÅrbw,R # T(-XÅrPw,R) , and is hemeemorphie to a pa?ujSeietepe

[O, Alt. T7te origin O is a vertex of .rvv()L) and let ao =: ao(A) be the vertex of .rvv(A)

anti-padal to the on' gin. The edges of .rvv(A) adj'acent to ao(A) are inalexed by IT

and are transversal to the dtscrirninant Dw,R.

  2. T7xe inverse image Kw(A) in Yw,R ef the paralSeietepe JwÅqA) by the guotient
map Tw : Vw,R - Sw,R is a serni-algebraic potyhedron which is duat to the chamber
decomposition of Vw.

Revnark. The set of vertices of the polyhedron Kw(A) are mapped to the vertex
ao(X) ef Jw(AÅr. Tke trace ef the vertices vagtO-}' := {aeÅqk) i k E RÅre} is a ha!f
line, called the haif vertex orbit ands (in fact, one has an a priori description of the

vertex orbit axis by a use of Coxeter element [4], playing a crucial role in the whole

theory).

  We lilu$trate tke results ef Theorem l. aRd 2. by the example ef type A2. A
more precise figures for the types A2 and B2 are given in Appendix 2 and 3.
  The figure in RHS draw the real discriminant DA,,R and its translations to a
positive direction A and to a negative direction -A. The shadowed aria is the
2-dimeRsional para}}elotepe jA,(A). Tke ggure IR LHS d:aw tke uRioR ef tke re-
fiection hyperplanes Uffs,R == Tnt(DA,,R) and the inverse images of the shifted

discriminants. The shaclowed aria is the two dirnensional dual polyhedron KA,(A).

Xss?. tw? fil JA7,(X) .anstÅí S(4fiÅr

kmp)

xCN bisR

ct-V PA.,R

7,Tv(A

  The proof of Theorems is based on some more basic result on the semi-algebraic
clescription of the T atction, and is indicated in 6. To obtain a comprehensive
descriptioxx and understaRding of the po}yhedron, we should study not oRly the
polyhedron Kcei(kÅr:: Kw(k) in the reai veÅëtor space Vw,R, but al$o lts twln
polyhedroxx KWi(A) in the imaginary vector space vC'i Vw,m. For the details, one

is referrecl to [4] and its complete version, which is in preparation.
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                      5. AppLIcATIoNs [4, g4]
    (THE DESCRIPTION OF A GENERATOR SYSTEM OF TI(Sw,c X Dw(,c,*))

  As the applications to the Theorems 1. and 2. in previous section, we give two
answers to the question posed at the end of section 2. (and in the introduction).

Theorem. 3. Let Jvv(A) be the parallelogram in Theorem 1. Let ori (i E n? be the
edges of Jvv(A) ad2'acent to ao. Eor (i E II), choose a path Ni in the comple tilfication

7i,c of ori (i.e. an open Riemann surface in Svv,c containing k) which is based at
ao and tuming around the point Dw,R n 7i,c once counter-ctockuisely (see Fig.?.

  Fee,T.Lnhsgg!stua, tx",'47ci

                             pa-Åë
                           v    e JElp ao ei G41E!;kEsg. ao
                          ri   7As"i

Then the correspondence g i E A(VV) H 7i (i G n? induces the isomorphism:

Avv -X Ti(Sw,cXDw,c,ao)•

gi H Ni
The fundamental group of a complement of a divisor has another presentation by so
cailed Zariski-van Kampen method (see Le and Cheniot [ ]). We give a comparison
of the Zariski-van Kampen type generator system and our generators system.

Theorem. 4 (Zarisfoi-van Kampen type generators? Take any generat point * in the
central component CW, Then the reat orbit T(R) -* intersects utth the dtscriminant
Dvv,R atl= #n paints. LetlÅ} = (#r(Å}RÅro)•*)nDvv,R s.t. t == l++l'. Consider
the paths 6r,...,6t+. (resp. 6,-,...,6t'-7 in the hatf complemfication r(H)•* (resp.

r(-H)•* based at the paint* and turning once around each point at the intersection

T(RÅro) •*nDw,R (resp. r(-RÅro) •*nDwr,R?, where H:= {A ECl Im(A) År O}.

     Fs 9. [ks-suaE!Zia. 8" .gt nt

                        t,-p.atg     {-te,k6     .)--. sc AA;--.

   ptm,,).i L.-"r 2tZVW•-
  Since the base points ao and* lie in the same contractible set C&, one has a
canonical tsomorphdsm: ni(Sw,cXDvv,c,ao) crTi(Svv,cXDvv,c,*). Then one has:
1. The tsomorphism induces a bijection between the generator systems:

{Ni liE n} ,r {6-"i,...,6""t+,6--' i,•+•, 6--t-}•

2. The generators 6i+,...,6i+. and 6i-,...,dt: are mutua"y commutative among
themsetves, respectively.
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SgMl-ALGaBRAICgEOMETR\ OFBRA{DGROUPS

                    6. PRooF (l4, ['KEoREM CI)

  Theorems 3 ancl 4 are consequences of Theorems 1 and 2 (in a stronger form,
proof ls ott}itted, $ee [41År, Theerems i and 2 are ccnseqlleRees of the linearizatioR

of the real discriminant loci, roughly formulated in a Theorem in this section (to
be exact, the foymttlation ls Rot sueecieRt Åíor the applicatiett). kterested teader is

referred to l4] for a complete formulation and a prooÅí

  We prepare some notatioRs.

1. The G - uotient s ace T and the bifurcation divisor B

  Let us introduce an aMne scheme over R:

                 Tw :== Sw/lrGa = Spec XIAs•••, Pi-i]

and define the quotient map Tr : Svv N Tw. The restriction 7rrID. is a finite cover
ever Tw, whieh is branchlng along a ciivisor Bpv cr Tvv where Bw is defined by the
resultant (discriminant) of the discrirninant Avv me AoPit + AiPti-i + • • • + Ai a$ a

polynomial {tt one variabie Pi:

              6 (&w, OaApl3: ) = wg' • wg •i-- E x[pi,,.., pi -il,

where RXS is tke decempg$ltloR ef
LHS according to the multiplicities: 2,
3,...of the factor "22, w3,... (there is

no reduced fatctor due to the transver-
sality of the r-action to the discrimi-
natnt).

  The divisor Bw,p := {wp =: O} is
called the pth bifurcation leci, and we
define the bifurcation divisor Bvv :-ww
Up)3Bw,p. The sub-divisor Bw,)3 :--
Up23Bw,p is called the caustics.
  Recall #he vertex orbit ha}Åí aJcis AO+

denote by O+ :=
cal! k the vertex orblt half !IRe. It is a
but O+ n Bvv,)3,R ww O•
  KLs{}x.s}{;tggeg!t:: The ceRtral re ioR;

           Ew :=

F7s io. T- u2ue!!e!den

:SB" ))4,pt

 L'qt

rAa.pt ) BA,"

,.".

i
-

&iJ

SA}3

                 , dÅíscti$sed iR Kemark oÅí 3ectieR 4. Let tts
r.(AO+) its projection irnage in the real form Tw,R of Tw• and
                  highly RoR-triviaifact tkat C+ ( B;gy,2,R
    Therefore, we can define

                   the connected component of Tvv,R X Bvv,)3,R

                   containing the vertex orbit haif line O+.

We shall see that Ew is a simplicial cone of dimensiong- 1, whese faces are
indexed by the edges of the Dynken-Coxeter graph r(W) for the type of the Coxeter
group W (in fact, th!s is the back ground for the fact that the generator sy$tem Ni
(i E ff) in Theerem 3 satisfy the Artin-braid reiations. In orcler to formulate the

result, we prepare some more notation.

2.pmL clIac
  Let us intsoduce a based vector space, where the bas2s aye lndexed by tke set g:

                         -                         Vn := OaEnGa'va•
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Let us define the diagonal action of G. on 9fi by !etting A E G. acts on t E tÅrRT by

t H t + AÅí.an va. Let us introduce the qttotient spaee:

                        YR :in- V"WGa ' Åí Va+

                                    aEn
Let A. (a E ll) be the dual basis of the ba$ls v. $o that aRy elemeut SE 9xx is

expressed as X.efl Aex(U)v. (i.e. A. (cr E ff) are coordinates for Yn). Note that
A.a := A. - A" (a 7E fi E rl) form a root system of type Ai-i on Vn.

  Selving the algebraic equatieR llsw = g IR tke IRdeterraiRate Pi, we obtaiR;
xxumber of (mttltivalued) algebroicl functions on rrvv,c branching along Bvv,odd,c-
In fact, by choo$ing the half vertex orbit !ine O+, as for the•base point of the
muitivaitted functiens, we can naturally index the algebroid functions by the set ll
[4). That is: we have the "deeomposition" of the discriminant polynomial:

                Aw = AoPtS-}-Ali)tVE-1+-•-+Al
                     = AoHadirr(Pt ww 9a(Pi,"'-,Pl--i))
                                    "
                                     a}gebraic fufictlons

'Irheorem. Consider the multivalued atgebroid maps') cw and bw defined by the

correspande#ces

                  cvv : Aa :Pt-opcr, exEn
                  bvv : Aa"=v)B-spa} a,SE"
which makes the following diagram') commntative:

                       sw --!l'tt. gfi.

                        Irr                                IGqE aEp- Va

                       Tvv -{}i'2:". Vn.

The ?estf'ictien of the mgps te their reai fom;s cw,R : Sw,R - 9R,ec and 5w,ee :

Tw,R . Vn,R induce the fottowing semi-atgebraic isoTnorphisms of the central com-
ponent and the centrat repton to certain linear simplicial cones:

 cw,R : C& fy a• {t E Vrr,R :Act ÅqO for aE rli, A. ÅrO foraE rr2}
 bva,R : Evy rt a - {t E Vn,R : A.pt År O for a G rli,e G rl2, ars E Edge(r(VV))}

where rrti (i = 1,2? ts a deeomposition n= ni lln2
such that each rri is totalty ddsconnected subset of the

vertices ef tke Ccxeter-bs{?}tsn gptph r(}Y) (see the
figure for the example of type E6), and a G {Å}1}.
The sign factor cr can be determined exactly !#1. The

iineariiatien maps cA, and bA, are igtttstrated in Ap-
pendix 1 (taken from f4D.

*År To be exaÅít, the raaps cw aRd bw skott}d be
spaces of Svv and Tw, and the branch of the maps
specified. In [41 (and in the

I;g gg.

 rrt

Ks:

   ffz

T;7trr, xx lr2

                                         degked cg a $tikable ceverkig
                                            in consideration should be
                      forthcoming paper iR preparationÅr, we proceed this by
two means either by a tise ofsttitabie topoiogicai covering spaces with some careful
consideration of base points, or by a use of suitable finite algebraic covering. Both

are technical}y compl!cated aitd we do Rgt ge ipto a}}y detai}s l!} the pre$ent Rote.

- lg-
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Af?Re-Ldtt t"

Fig.16. The linearization morphisms of type A3:
          cli], :(7r.)-iEAe,} 2t fir(A,) and bk'J, :EXe,} ft Er(A,).

  The shaded aria in the two figures in RHS are the total real region
EAe,} in TAej,R and the cone Er(A,) in Vn, respectivelY. Their inverse

images (T.)-i(EAe,}) in Skel,R and [iFr(A,) in IA7in are illustrated as the

vertical cylindrical domains sandwiched inside (either semialgebraic or
straight) booklets in the two figures in LHS, respectively.

 S[El

iN

lcxel

TAej,.

L•

(Tr)'i(EAZ})

VfiA3

Ha3
ttt

t

tt
t

t

ttt

.

l
'ii

i'l,...•

Ha ••••

t,/;'

l...•,,.........,.,.•,iiiil...I'-'•:•-•-•----•::=•••••••-•••••••ttttttttIO-•-H.H-.

ttttt

t t;
::.I.:,...

l

Ha
.s

t
.

-tt

i/t:tttttttttttt-tttttt

tt--J-tttt-tttt..iil•ttttttttttttttt

(Tn)

VfiA3

L.

Bkel,,

Bkel,,/

ibkel

- 1(Er(A3))
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Er(A3)
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                    v-- (rr.+i.År-i(gklk,k - AÅr

 3 lines in Vi, are the refiection hyperpianes for WA,.

2. h is odd and coset [fil = [-ll:
a) Inv([6]) :Inv([-1]) = {{'cti, 02, ' ' ', -CM(h+3)12 me

b) Zw(-1) : VV(-1) = W(I2(h))
  Zw(-ak) = W(-ak) ww ÅqorkÅr (k = 1,••• , h).

c) Fig.20. Polyhedra Jki} and KA-,i for A = 1

V.- ,i

             •'Z'li,i,l ("A-i )-i(JoSII,ik.:,)

                             7VA2,R              B2 1• :''

               x`iiRpe•LtileK 2-

1. h is odd and coset [1]:

a) Inv([li) xe {{1}, {ai, dv2, • t • , a(h+3)12 = A, ' ' ' , ah}},

b) Zw(1) == W(1) = W(r2(h)),
  Zw(ale) x W(aic) = ÅqdvkÅr (k = 1,-•• ,h).

c) Fig.19. Polyhedra Jk'} and KA",i for A = 1

V.+,i  VAR sAtllk Dk",i,kÅqkA
              i, (TA"i )-i("A'2.ik..,-,F,") o urlÅít.i

                                  Dk#,L

                            ij

                   e-- (rrE,i,.)-nyi(Pk-,1,1 + )L)

3 kRes IR YI, are the regectiefi kyperp}aRe$ fcr WA,.

         Ng. 21.
c)" positions of sA',i,k and Sk'-,lk

    inside SA,,c A {Im(,IZ) = g}.

Dk+,i,k -

B,•••, -ah},{-1}}.

,Pll-,ik + A

l,l.llElpt,,ii,li: O

      pk-,}k

DS-,i,h - A

Dk+,i,k

     Re(S)
 r'A2•R '[,I3Re(RÅr

        Im(S)  [-1]
 A2,R

- 13-
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3. h is even and coset [1] = [-1]: In thiscase, --1 =AE W(I2(h)).

a) Inv([ij) =Inv([--li) ={{1}, {-1}, {ai, a3, - • •, ah-i}, {dv2, a4, ' ' ', aft}},

b) Zw(1) = W(1År x W(I2(h)),
 Zw(-1) = W(-1) == W(l2(h)),
 Zyy (ak) = W(ak) = Åqorle, orkg.h12År (k = 1, • • • ,h).

c) Fig. 22. Polyhedra JSfi}(A) and K.Å};(A) forA=1.

 VB+,i VB,,R /IJ],ÅqrrS;R)-'i(DB,,R-X)

                     ÅqxS; R)-i(Dge ,R ÅÄ k)
             '.l-iiil
                            SS+,lk-sk-,i.]

                                 DB,,, := Db+:k . D[-

                                      PB, ,R ÅÄ k
                          +i                                          N                         TB2 R

4lines in VB+,i and VB, are

reflection hyperplanes for VVB..

Vi,1 B2,R X

4. h is even and coset

a) IRv([61) = {{Sk :=

b) Z.,(6,) =: ÅqAÅr ) VV(Bte)

e)

    Fig. 23.

 Twisted real forms:

 7rZ,,, : Ug, . SiS5j,..

T
JS-iB/'

il•.S,;i

     'KÅr (rB-iR) ww i (D B2 ,R + 1)

       (TB'iR)-i(DR,,R - 1)

  [B]:

B(aia2)ic-ilk = 1,•••,h}.

    =: {1}, Zur(6k,CP)ft

       Ug,
Z2•

i%': .

      cfi
     o
  -'
u3 n Ha{,c
(i = 1,••- ,p)

s
#B2,R

 fZ2

s.ge,l,.

  -
DkP,],.

9

c{s}
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