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Varieties with non-linear Gauss fibers

SATORU FUKASAWA (HIROSHIMA UNIVERSITY)

ABSTRACT. The main purpose of this talk is an announcement of
the speaker’s recent result: Existence (or construction) of a projective
variety whose general fiber of the Gauss map is the given projective
variety. The speaker also talked about history of studies of Gauss fiber
structures, and explained the linearity of Gauss fibers in characteristic

0 and differences between 0 and positive characteristics.

1. INTRODUCTION

In this paper, the base field K is an algebraically closed field and
varieties are integral algebraic schemes over K.
Precisely, “Gauss fibers” mean general fibers of the Gauss maps.

Definition of the Gauss map is as follows:

Definition 1.1. Let X C P¥ be a projective variety. The Gauss map
v on X is the rational map from X to the Grassmannian G(dim X, N)
such that y(p) = TpX for any smooth point p € X, where TpX is the

projective embedded tangent space.

Example 1.2. If X C PV is a hypersurface given by F, then
( oF OF
y = o

e et X e — ~ pN*
X, .aXN).X +G(N-1L,N) =PV

We study the following natural question:
Question. What is the structure of the general fibers of y?

(1) If charK = 0 then general fibers are linear spaces ([1],[5],[16]).

(They are one-points when dim = 0.)
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E. Bertini (1907) and C. Segre (1910) found many results about
projective duality. The speaker does not know whether they mentioned
Gauss maps, but thinks that they got essentially the linearity of fibers.
About their history, refer the Kleiman’s paper [11]. On the other hand,
Griffiths-Harris proved this fact ([5]).

This fact, when X is a curve, implies that multiple tangent lines
(which have two or more distinct tangential points at X) are only
finitely many. A cone surface (which is the join of a curve and one
point) and a tangent surface (which is covered by tangent lines of some
curve) are concrete examples with dim X = 2 > 1 = dim y(X).

In differential geometry, a result analogous to the answer (1) is
known. Let f : U — R3 be a surface (U is an open subset of R?).
The (classical) Gauss map < is the map which assigns to a point the
unit normal vector. If the rank of the differential of v is 1 everywhere
then this surface is called developable surface, which is a kind of a ruled
surface. Then the Gauss map is constant on each lines. Developable
surfaces can be developable onto a plane, conversely, can be made out
of paper ([6]). (The speaker showed a model of a tangent surface when
he talked.)

(2) If char K > 0 then fibers may be two or more distinct points.
Example 1.3. Let charK =p > 2. YZ%! -~ X% =( C P2,

A. H. Wallace gave examples of this kind ([15]). Kleiman-Laksov also
found interesting examples ([12]). It seems to be difficult to construct
smooth varieties of this kind, but H. Kaji ([8],[9]), J. Rathmann ([14])

and A. Noma ([13]) constructed such varieties.

Remark 1.4. (Zak’s theorem [16]) Let X C PV be a smooth projective

variety not linear. Then the Gauss map is a finite map onto its tmage.

(3) If char K = 3 then there exists a surface whose Gauss fibers are

plane smooth conics ([2]).
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Example 1.5. XZ5 — (Y® + W)W =0 c P3.

In the speaker’s best knowledge, this is the first example whose gen-
eral Gauss fibers are not finite unions of linear spaces. (The speaker
mistook the defining polynomial for X Z%— (Y®+ Z%)W when he talked.
This surface has two lines as Gauss fibers. Dr. H. Nasu pointed out
this mistake at Kochi meeting next week of Kinosaki symposium. The
speaker thanks him.)

More strongly, the speaker got the following answer:

(4) When charK > 0, for any projective variety Y, there exists
a projective variety X whose general fibers of the Gauss map
are Y ([3]).

2. PROJECTIVE DUALITY AND LINEARITY OF GAUSS FIBERS

In this section, we introduce the general theory of projective duality.
The speaker explains that the theory induces the linearity of Gauss
fibers naturally when the characteristic is 0. The speaker believes that
the audience or the readers can understand where he identified the
differences lie between 0 and positive characteristics.

Let X c PV be a projective variety. Let

CX :={(z,H) € Xgn x PN*|T, X Cc H} c PN x PV

be the conormal variety, let p, : CX — P¥" be the natural projection,
and let X* = p;(CX) be the dual variety. Then we can also define
CX*, which can be considered as a subvariety of PV x PV*,

Definition 2.1. If CX = CX* then X is called reflexive.
Reflexivity is stronger than duality.
Remark 2.2. If X is reflezive, then X** = X.

The following theorem implies that any projective variety in charac-

teristic 0 is reflexive.
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Theorem 2.3. (Monge-Segre-Wallace criterion [11)) Reflexivity of X
1s equivalent to the separability of the projection ps : CX — X*.

Reflexivity implies the linearity of contact loci.

Remark 2.4. If X is reflexive then for a general tangent hyperplane
H € X*, its contact locus Xy = {z € Xgn|T:X C H} C X is a linear

space.

The proof is easy because Xy = p,p;'(H). The linearity of contact
loci implies the linearity of Gauss fibers.

Remark 2.5. If X is reflexive then the general fiber of the Gauss map

is linear.

The proof is easy because vy (T) = (Vpcy Xa-

We find that the linearity of Gauss fibers in characteristic 0 is induced
from reflexivity, and varieties with peculiar Gauss fibers constructed by
the speaker are not reflexive.

3. MAIN RESULT

In this section, the speaker states the main result and gives the proof
for plane curves’ case. This proof is essential, and the general case is

proven the same.

Theorem 3.1. Let charK > 0. For any projective variety Y C P*,
there erists a projective variety X C PV of dimension k such that for a
general point p € Xgm, Y = v 1(y(p)) C TpX = P* (set-theoretically).

Proof for plane curves Y C P2. Let p > 0 be the characteristic, and
let Po, P1,pP2 ¢ Al - P3 be

po=(1:0:u:uP),pp=(0:1:0:0),po=(0:0:1:0).
Let n: A x P2 - P3 be

(u)x (L:gn:92) = [po+yp +y2p2) = (L yr u+ya: vP).
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We may assume that y; —a is a local parameter at a smooth point (1 :
a:b) €Y. (We can always take this coordinates by linear transforms
of P2)) Let X be the closure of n(A! x Y), and let 7 := n|ai1xy :
A!'xY — X. Then the following proposition holds, and completes our
proof. O

Proposition 3.2. The morphism 7 is birational, and Ty )X = n(ux
P?) for a general point (u,y).

Proof. The differentials of 7 is given by the matrix

0 1 0
1 dyz/dyl 0

(upper row is a list of the differentials by u, lower is the differentials
by y1). We find the separability of 7 by this matrix and, because 7 is
generically one-to-one, birationality of 7.

On the other hand, the intersection of a projective tangent space
with A3 (whose first element is not 0) is the plane z3 = u?. This
coincides with the intersection of n(u x P?) with A3. O

Explanation. The plane P2 ¢ P2 spanned by pq, p1, p2 moves in
P3 by u. Y C P? moves in conformity to the plane P | and constructs
X. Then, for almost all point z € X the tangent space T;X coincides
with the plane PZ containing x. We can check easily the inseparability
of n, hence the moving of P? is special to positive characteristic.

Because the construction of X in the proof is parameteric, calculation

of the defining polynomial of X is comparatively easy.

Example 3.3. In the setting of the proof, let p = 2 and let Y C P?
be the plane curve given by Y& + Y3 + Y2 = 0. Then the defining
polynomial X is

X0 +Y® 4+ Z8 + XZ'W + X2Z°W? + X3W3.

Remark 3.4. The proof for the general case is given in [3]. The base
space A! which moves projective planes and the how of the moving {p;}

are more free and formulated to some eztent.
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Furthermore, we can also construct varieties whose general fibers are

two or more Y's for the suitable moving {p;}.

4. SUPPLEMENT

The idea for the construction in the proof of main theorem is based
on “circular surfaces” ([6],[7]). Circular surfaces are given by moving
circles continuously, and have been studied in differential geometry.
Recently, they are studied from the modern viewpoint of real singular-
ity theory ([7]). Circles are Y's in our setting. The speaker also found
another new Gauss fiber structures by this idea ([4]).

Gauss maps on curves or smooth varieties are detailed in [10]. By
the Zak’s theorem (Remark 1.4), varieties with positive dimensional
Gauss fibers are singular. Prof. H. Kaji told the speaker the following
problem about one year ago: Construct varieties whose general Gauss
fibers are not finite unions of linear spaces and singularities are as
small as possible. However, a satisfactory answer has not been given.
For example, the existence of normal surfaces whose Gauss fibers are
plane smooth conics is unknown. The importance of this problem will

increase.
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