
Varieties with non-linear Gauss fibers

SATORU FUKASAWA (HIROSHIMA UNIVERSITY)

ABsTRAcT, The main purpose of this talk is an announcement of
the $peaker's !ecent resuk: Exi$teRce (er coRstructioR) ef a pfejective

variety whose general fiber of the Gauss map is the given projective

variety. The speakef also talked abgut kistery ef stadies of Gttuss fiber

structures, and explained the linearity of Gauss fibers in characteristic

e aAd differeAces between e akd pesitive characteristics.

                    1. INTRODUCTION

  In this paper, the base field K is an algebraically closed field and

varieties are integral a}gebraic $cheme$ ever K.

  Precisely, "Gauss fibers" mean general fibers of the Gauss maps.

Defixxition of the Gauss map is as foilows:

DefiiRitieR 1.1. Let X c PN be G proj'ecttwe vGviety. The Gagss map

7 on X is the rational map from X to the Grassmannian G(dimX, N)

s#ch that 7(p) = TpX for Gny smeeth peintp E X, where TpX is the

projective embedded tangent space.

Example 1.2. IfX c PN is a hypersurface given by F, then

      7 rm (a5xF, : ••• : oaxF.) :x ---ÅÄ G(N - i, N) ;-Årf pN*.

  We study the follewiAg Ratural qge$ticn:

Questiek. What is the structure ef the general fibers of 7?

  (1) If charK = e then ge"eral fibers are linear spaces (ll],[5],[16]).

(They are onepoints when dim = O.)
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  E. Bertini (1907) and C. Segre (1910) found many results about

projective duality. The speaker does not know whether they mentioned

Gauss maps, but thinks that they got essentially the linearity of fibers.

Abogt their history, refer the KleimaR's paper [11]. OR the ether haRd,

GTifiths-Harris proved this fact ([5]).

  This fact, when X is a curve, implies that mu}tiple tangendines

(which have two or more distinct tangential points at X) are only

finitely many. A cone surface (which is the join of a curve and one

point) and a tangent surface (which is covered by tangent lines of some

curve) are concrete examples with dimX = 2 År 1 me dim7(X).

  IR differential geemetry, a Tesu}t analegou$ to the aRswer (1) is

kaown. Let f : U . R3 be a swiace (U is aA epeR sabset gf R2).

The (classical) Gauss map 7 is the map which assigns to a poiRt the

unit normal vector, If the rank of the differential of ty is 1 everywhere

then this surface is called developable surface, which is a kind of a ruled

surface. Then the Gauss map is constant on each lines. Developable

surfaces can be developable onto a plane, conversely, can be made out

of paper ([6]). (The speaker showed a model of a tangent surface when

he taiked.)

  (2) If charK År O then fibers may be two or more distinct points.

Example 1.3. Let chaiirK =p År 2. YZ2P-i -X2p == o c p2.

  A. H. Wallace gave examples of this kind ([151). Kleiman-Laksov also

found interesting examples ([12]). It seems to be diMcult to construct

smooth varieties of this kind, but H. Kaji (I8],[9]), J. Rathmani} (l14])

axd A. Ngma ([13]) constructed such varieties.

Remark 1.4. (Zak 's theorem [16]] Let X c PN be a smooth projective

variety not linear. Then the Gauss map is afinite map onto its image.

  (3) If charK = 3 then there exists a surface whose Gauss fibers are

plane smooth conics ([2]),
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Example 1.5. XZ6 - (Y6 + W6)VV = o a p3,

  In the speaker's best knowledge, this is the first example whose gen-

eral Gauss fibers are not finite unions ef linear spaces. (The speaker

mistoek the defining polyRomial for XZ6- (Y6+Z6)W wheR he ta3ked.

This surface has two lines as Gauss fibers. Dr. H. Nasu pointed out

this mistake at Kechi meeting next week of Kinosaki symposium. The

speaker thanics him.)

  More strongly, the speaker got the fo11owing answer:

  (4) When charK År O, for any projective variety Y, there exists

a projective variety X whose general fibers of the Gauss map
are Y([3]).

   2, PROjECTIVE DUALITY AND LINEARiTY OF GAUSS FIBERS

  In this sectio", we intreduce the general theory ef projeetive duality.

The speaker explains that the theory iRduces the lineaxiÅíy of Gauss

fibers naturally when the characteristic is O, The speaker believes that

the audiekce or the readers can uttderstand where he idektified the

differences lie between O and positive characteTistics.

  Let X c PN be a projective variety, Let

      C-X := {(x,H) E X,. x PN'iT.X c H} c PN Å~ lpN"

be the conormal variety, Iet p2 : CX - PN" be the natural projection,

and let X" = p2(CX) be the dgal variety. TheR we caR also defue

aX', which can be considered as a subvariety of PN Å~ PN".

Definition 2.1. lf CX = CX" then X is called reflexive.

  Reflexivity is stronger than duality.

Remark 2.2. lfX is reflestve, then X"" ww X.

  The following theorem implies that any projective variety in charac-

teristic O is refiexive.
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Theorem 2.3. (Monge-Segre-VVallace criterion [11]? Reflentvity ofX

is equivalent to the separability of the proj'ection p2 : CX . X*.

  Reflexivity implies the linearity of contact loci.

Remark 2.4. lf X is reflestve then for a general tangent hyperplane

H E X", its contact locus XH = {x E X,.IT.X c H} c X is a linear

space.

  The proof is easy because XH =: pip2-i(H). The linearity of contact

loci implies the linearity of Gauss fibers.

Remark 2.5. lfX is reflestve then the generalfiber of the Gauss map

is linear.

  The proof is easy because 7-i(T) = ATcHXH•

  We find that the linearity of Gauss fibers in characteristic O is induced

from reflexivity, and varieties with peculiar Gauss fibers constructed by

the speaker are not reflexive.

                      3. MAIN RESULT

  In this section, the speaker states the main result and gives the proof

for plane curves' case. This proof is essential, and the general case is

proven the same.

Theorem 3.1. Let charK År O. For any projective variety Y c Pk,

there evists a projective variety X c PN of dimension k sttch that for a

general pointp E X,., Y == 7-i(7(p)) c T,X 2 Pk (set-theoretically?.

Proofforplane curves Y c P2. Let p År O be the characteristic, and

let po,pi,p2 : Ai - P3 be

      po = (1:O:u:uP),pl = (O:1:O:O),p2 = (O:O:1:O),

Let n: Ai Å~ P2 . P3 be

    (U) Å~ (1 : Yi : Y2) H [Po + YiPi + Y2P2] == (1 : Yi : U+ Y2 : U")•
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We may assume that yi --a is a local parameter at asmooth point (1:

a:b) E Y. (We can always take this coordinates by linear transforms

of P2,) Let X be the closure of n(Ai Å~ Y), and let 7 := nlAixy :

Ai Å~ Y -. X, Then the following proposition holds, and completes our

Proposition 3.2. The morphismT is birational, andT.(u,y)X ma n(uÅ~

P2) for a general point (u, y).

Proof. The differentials of T is given by the matrix

                     (? dY,ldY, g)

(upper row is a list of the differeRtials by u, lowey is the differeRtials

by yi). We find the separabi!ity of T by this matrix and, because T is

generically one-to-one, birationality of T.

  On the other hand, the intersection of a projective tangent space

with A3 (whose first element is not O) is the plane x3 = uP. This

coincides with the intersection of n(uxP2) with A3. 0

  Explanation. The plane PZ c P3 spanned by pg,pi,p2 moves iR

P3 by u. Y c P2 moves in conformity to the plane Pg , and constructs

X, Then, for almost all point x G X the tangent space T.X coincides

with the plane PZ containing x. We can check easily the inseparability

of n, hence the moving of P2 is special to positive characteristic.

  Because the construction of X in the proof is pamameteric, calculation

of the defining poiynomial of X is comparatively easy.

Example 3.3. In the setting of the proof, letp= 2 and letY c P2

be the plane cu7we given by Yo3 + Yi3 + Y23 = O. Then the defining

polynomial X is

          x6 + y6 + z6 + xz4w + x2z2w2 + x3w3.

Remark 3.4. The prooffor the general cg;$e is giyen in (31. The base

space Ai which moves pro2'ectiye planes and the how of the mewing {ps}

are more free and formulated to some extent.
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  ,Frurthermore, we can also construct varieties whose generalfcbers are

two or more Ys for the suitable moving {pi}.

4. SUPPLEMENT

  The idea for the construction in the proof of main theorem is based

on "circular surfaces" ([6],[7]). Circular surfaces are given by moving

circles continuously, and have been studied in differential geometry.

Recently, they are studied from the modern viewpoint of real singular-

ity theory ([7]). Circles are Ys in our setting. The speaker also found

another new Gauss fiber structures by this idea ([4]).

  Gauss maps on curves or smooth varieties are detailed in [10]. By

the Zak's theorem (Remark 1.4), varieties with positive dimensional

Gauss fibers are singular. Prof. H. Kaji told the speaker the following

problem about one year ago: Construct varieties whose general Gauss

fibers are not finite unions of linear spaces and singularities are as

small as possible. However, a satisfactory answer has not been given.

For example, the existence of normal surfaces whose Gauss fibers are

plane smooth conics is unknown. The importance of this problem will
.

mcrease.
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