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Tropical hypersurfaces and degeneration of projective
toric varieties

Takeshi Kajiwara

Abstract

We show a one-to-one correspondence between tropical hypersurfaces in tropical
affine spaces and a certain degenerations of projective toric varieties with some
additional structures, called log structures.

Introduction

Tropical geometry is a sort of geometry to investigate the image of algebraic varieties
under rank-one valuations. So it is natural to use the min-plus algebra or tropical semiring
R with tropical addition ¢ and tropical multiplication &:

a®b:=min(a,b), a®b:=a+b

This geometry is applied to several situations, e.g., counting of algebraic curves in the
projective plane [7], limits of complex curves, a study of real algebraic curves and amoeba
[8].

We now apply tropical geometry to study degeneration of algebraic varieties. The
purpose of this paper is to show a one-to-one correspondence between tropical hypersur-
faces in tropical affine spaces, which are associated to hypersurfaces in algebraic tori, and
log stable toric varieties of toric type, which are a certain degeneration of projective toric
varieties (Theorems 2.3 and 2.5).

The notion of log stable toric varieties is inspired by the Mumford construction of
degenerating abelian varieties [2], [9], and stable toric varieties introduced by Alexeev [1].

The author is grateful to the organizers of Kinosaki algebraic geometry symposium
for this opportunity.

1 Review of tropical geometry

In this section, we briefly recall tropical geometry.

Let K be an algebraically closed field with an additive valuation vg: K* — R. We
assume that vg (K ™) is dense in R.

Let M be a free Z-module of rank r, and N := Homgz(M, Z) the set of homomorphisms
from M to Z. We set Mg := M ®z R and Ng := N ®z R = Homz (M, R). Let us denote
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1 REVIEW OF TROPICAL GEOMETRY 2

by T = (K*)" an algebraic torus Hom(M, K*) with the character group M. We write
m € M as ™ when m is regarded as a character of T. Note that a point p: M — K>
of T defined by 2™ — 2™(p) gives the point v, := vg o p: M — R of Ng by composing p
with vg. The map defined by p — v, is denoted by vy: T — Npg.

1.1 Example We give some examples for algebraically closed valuation fields (K, vg).

(1) The field of formal Puiseux series over an algebraically closed field & of character-
istic zero is an algebraically closure K of the field of formal Laurent series k({¢)). We can
extend the additive valuation v with v(f) = 1 to K uniquely. It is known that K is the
union of k((t/™))’s for n > 1. This algebraically closed field K is denoted by k((t9)).

(2) Let k{t®] = k[{t*;a € R}] be the group ring over a field k associated to the
additive group R of real numbers. We can show that the map vy: k[t®] < {0} — R;
>4 Cat® — min{a;c, # 0} can be extended to a non-Archimedean additive valuation
v: k(t®)* — R of the fractional field k(t®) of k[t®20]. Let us take the algebraic closure K
of k(t*), and an extension ¥: K* — R* of the valuation v. It is well-known that such an
extension exists. For example, see [3, Chapitre VI] for the detail. This is an example of
an algebraically closed valuation field K with v(K*) = R.

(3) An algebraic closure K of alocal field Ko, such as Qp, F,((¢)) has a unique extension
of the valuation of Kj.

(4) In the case K = C, we can take an Archimedean additive valuation vk such as
Vi (2) = —log|z| for z € C*.

1.2 Definition For a closed subvariety V' of T', we define the tropical variety V¥°P as-
sociated to V' as the closure of vy(V) C Np with respect to the FEuclidean topology of
Ng =R".

In general, computing the points of V is difficult, but computing those of V¥ ig
rather easier by the following alternative definition. We show the equivalence of these
definitions in Proposition 1.4.

1.3 Definition For an ideal I of the Laurent polynomial ring K[|, the tropical variety
V() defined by [ is

VY"P(]) := {v € Ng; for every Z apz™ € I~ {0}, there exist two
meM
distinct elements my, my € M such that vk {am, ) +v(m1) = vi(am,) + v(ma)
< vg(any) + v(m) for each m € AM}.

We show the following proposition, which implies the equivalence of the above defini-
tions of tropical varieties.

1.4 Proposition Let vg: K* — R be non-Archimedean, and suppose that there exists
t € K* with vg(t) = 1. If a closed subvariety V of T is defined by an ideal I of K[M],
then we have VP = V™P([) [12, Theorem 2.1].
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2 TROPICAL HYPERSURFACES AND LOG STABLE TORIC VARIETIES 3

2 Tropical hypersurfaces and log stable toric varieties

We show a one-to-one correspondence between the tropical hypersurfaces associated
to ones in an algebraic tori and log stable toric varieties.

We first recall log stable toric varieties, and polarized ones. Throughout the rest of
this article, let S be a standard log point (Speck, k* @ N), and T an algebraic torus of
dimension r.

2.1 Definition (1) A log stable toric variety over S of dimension r is an r-dimensional
log smooth variety over S whose underlying scheme is a stable toric variety in the sense
of Alexeev [1], and satisfies that the support of M5 /p*M% coincides with the union of
{r — 1)-dimensional T-orbits. Here p denotes the structure morphism X — 5. We also
call such a log variety a log STV for short.

(2) A log STV (X, My) is of toric type if H°(X,M¥)/H°(X.0%) is free of rank
dim X + 1.

Throughout the rest of this article, we consider only log STVs of toric type. So log
STVs mean log STVs of toric type from now on.
We next define marked polarized STVs.

2.2 Definition Let X be a log STV over S, and p: X — S the structure morphism of
X.

(1) A polarization on X is a global section [ of M /O% that goes to a linear equivalence
class of an ample line bundle on X in H*(X,0%). A log polarized stable toric variety, log
PSTV for short, is a log STV with its polarization.

(2) Let M be a free Z-module of rank 7, and M the image of H°(X, M) in H(X, M8 /p*M¥)
by the projection. A log STV over S with characters M is a pair of a log PSTV (X,I)
over S and an isomorphism : M — 3.

(3) Let M be a free Z-module of rank r, and A an integral polytope in Mg. A log
A-PSTV over S is a pair of a log PSTV (X, 1) over S with character 2: M — M satisfying
that, (: ® R)(A) is the convex hull of

{x™ € M;x™ = x™ for a lift ™ € H°(X, Mx/0%) of X"}

in lzer.

(4) A marking of an integral polytope A is a subset @@ of A M M whose convex hull
coincides A. A marking of a log A-PSTV (X, 1,1) is a pair of a marking @ of A and a
section p: Q) — HY (X, M¥)/H®(X,0%). A marked PSTV over S is a A-PSTV with
a marking.

(5) For a marking @ of an integral polytope A, two markings (@, i), (Q, ') on a log
A-PSTV are equivalent if p € W/ H°(S,M%/0%).

We now explain the log STV over a log point associated to a tropical hypersurface in
Ng.
Let V be the tropical hypersurface in Ng defined by f = 3" an,a™ € K[M] whose
Newton polytope is of dimension r = rank N, ie., V = X, Here X; denotes the
hypersurface in G,,, ® N defined by f = 0. We define the toric variety X; over A! which
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is associated to the following fan ¥; in Ng & R: For each m € M with a,, # 0, we define
a cone o, to be a set

Om = {(v,1) € Ng®R;1 >0, and (m,v) + vk (an) < (M, v) +lvk(a,) for all m" € M}.

It easily follows that {om;an # 0} forms a fan, denoted by ¥;. By a natural projection
Ne @R — R, we can consider X 7 as a variety over the toric variety A' associated to the
ray R>g. We endow X s and A! with canonical log structures and consider them as fs log
schemes, also denoted by X 5 and A'. Tt is straightforward to see that the fiber X Fxa10
of X s at the origin O, denoted by Xy, is a log STV over the standard log point whose
underlying point is O.

Conversely, we construct a hypersurface from a log STV X over the standard log
point S. We first remark that H°(X, M58 /0%) is a free Z-module generated by the set of
irreducible components Xj, ..., X, of X and generically normal T-orbits of codimension
one in X. Let w; € N := Hom(M,Z) be the projection M — Z corresponding to an
irreducible component X; of X. For each T-orbit Z of X, we define a cone o7 in NR
as the cone over the convex hull of {w; € N;Z N X; # 0} in Ng. [t is easy to see
that {0z;Z is a T-orbit} forms a rational fan in ]VR, denoted by Xx. We now define
the tropical hypersurface Vx in Ng associated to X as the polyhedral decomposition
induced by NgNY.x. Here we identify Ng with its image via the injective homomorphism
Ng = Hom{M,R) — Ng = Hom(M R) induced by the projection M — M.

Comparing these two definitions of £; and X x, we can conclude the following theorem.

2.3 Theorem We have a one-to-one correspondence between the set of tropical hyper-
surfaces in Ng and that of log STVs with characters M.

The correspondence in the theorem is analogous to one between fans and toric varieties.
So we can think of tropical hypersurfaces in Ng as defining polyhedral decompositions of
log STVs.

We next discuss a marked or polarized version of the above correspondence.

2.4 Definition (1) For a convex piecewise affine linear function ¢ on Ng, we define the
support of ¢ as the convex hull of {¢, — ©-(0); o is a maximal locus where ¢ is an affine
linear function ¢,.} in Mg.

(2) For a polytope A in Mg, a tropical A-hypersurface in Ng is a pair (V,¢) of a
tropical hypersurface V and a convex piecewise affine linear function ¢ with support A
that defines V, i.e., V := {v € Ng; p is not linear on any neighborhood of v}.

From now on, we consider tropical A-hypersurfaces for integral polytopes A. We
denote by Az := AN M the set of integral points in A.

Let (V,¢) be a tropical A-hypersurface in Ng. We define the canonical form ea, of
¢ as a Laurent polynomial ZmeAz timz™. Here l,, := min{l € Z;(m,l) € P,} — min{l €
Z;(m/,l) € P,,m' € Az}, and

P, = {(m,k); (m,v) + kl > lp((1/)v) for all (v,l) € Ng & Ry}

in Mg ® R. Then we have the log A-PSTV associated to V and the marking {m; t'mz™
in the boundary of P,} — {t™x™} ¢ HO(X,M?®/0%).
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On the other hand, let A be an integral polytope, and X a marked log A-PSTV over
k. After replacing an equivalent marking of X, we assume that the marking of X is of
form {t*"z™;m € Az, a, > 0, and a,,y = 0 for some m’'}. Then we have the tropical
A-hypersurface (Vx,¢x) associated to X, where gy := max{(m, =) + ap-;m € Az}.
We now state a marking version of the previous theorem.

2.5 Theorem For an r-dimensional integral polytope A in Mg, we have a one-to-one
correspondence between the set of tropical A-hypersurfaces with canonical form in Ng and
that of equivalence classes of marked A-PSTVs over k.

Proof. The proof is very straightforward. For a marked log A-PSTV X, we can easily
show ¢ x can = Zmé A, £ in the notation above the theorem. So X is the marked log
A-PSTV associated to (Vx, ox).

On the other hand, for a A-tropical hypersurface (V, ), the canonical form @, =
D ome As tim x™ defines a piecewise affine linear function Fean := max{{m, =)+, -:m € Az},
By definition of canonical forms, we can verify that the tropical A-hypersurface V is the
one defined by @ean. So V is also the tropical A-hypersurface associated to the marked
log A-PSTV Xy, and ¢ gives a marking of Xy as explained above. O

3 Examples

Applying the results in the previous section, we study a certain degenerations of toric
pairs in terms of tropical geometry.

A hypersurface V in an r-dimensional algebraic torus T’ = G,, ® N is naturally con-
sidered as an ample divisor D on the projective toric variety X associated to the Newton
polytope of a defining equation f of V. So we have a toric pair (X, D).

This toric pair is also naturally considered as a marked log PSTV endowed with
canonical log structure and marking induced by the defining equation f of V.

On the other hand, all tropical hypersurfaces in Ng come from hypersurfaces in T’ by
definition. Hence we showed relationships between tropical hypersurfaces and log PSTVs
in the previous section.

We now classify log PSTVs, which are some degenerations of toric pairs, by using
classification of tropical hypersurfaces This is closely related to one of regular (or coherent)
subdivisions of integral polytopes.

We first get the following proposition by Theorem 2.5 and triangulation of an integral
polytope.

3.1 Proposition The number of irreducible components of a log A-PSTV over a standard
log point is at most r!-times the volume of A, in other words, the self-intersection number
of the ample divisor belonging to A.

Proof. Since the volume of an integral polytope which has no integral points except for
its vertices is at least 1/r!, the number of simplices in a triangulation of A is at most
rl-times the volume of A, which is equal to the self-intersection number of an ample
divisor belonging to A. The theorem in the previous section implies that each polytope
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of a regular subdivision of A corresponds to an irreducible component of the underlying
scheme of a log A-PSTV. The proposition follows from this correspondence. O

3.2 Corollary In the 2-dimensional case, the mazimal number of irreducible components
of a log A-PSTV is the self-intersection number of an ample divisor belonging to A.
Moreover, if a log A-PSTV has the maximum number of irreducible components, then
every irreducible component is isomorphic to P2, and its polarization is of degree 1.

Proof. In the 2-dimensional case, each integral simplex which has no integral points except
for its vertices has the volume 1/2. So the corollary follows from the proposition. The
rest of assertions are clear. O

3.3 Example Let £ be an algebraically closed field with characteristic 0, and K the field
of formal Puiseux series over k. Let A, be the convex hull of {(0,0),(n,0),(0,n)} in
My = R? for n > 0. The toric variety associated to A, is the projective plane P2. We
consider a certain degenerations of P? over K, which we call tropical degenerations of P?.

In the case n = 1, a tropical degeneration of P? is trivial, i.e., P? extends to P? over k.

In the case n = 2, we can easily see that there exist 7 types of configurations of
tropical degenerations of P? which corresponds to regular subdivisions of A, up to the
permutations of the vertices. From now on, we consider all subdivisions of A,, modulo
the permutation of its vertices.

In the case n = 3, we have 618 types of configurations of tropical degenerations of P?
up to projective transformation [6]. We remark that every integral subdivision of Aj is
regular [6, Theorem 4.2].

In the case n = 4, we have 874854 subdivisions of A4 up to the permutations of
vertices. Among them, 873479 subdivisions are regular, and the others are not regular
[6, Theorem 5.4]. We can show that every non-regular subdivision is coarser than the
maximal subdivision A’ below.
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