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   This is a report on my recent work on Arnold multiplicit•y of divisors on rational homo-
geneous spaces, and more generally on Fano manifo}ds. Full details will appear elsewhere.

   Let Y be a complex manifold and y - Y be a poi:'it. For an effective divisor D on Y,
the Arno}d mu}t•ip}iciby' psy(PÅr of D at -y is defu}ed b.y

              pa,(D) ;= inf{m År O : lfl-ÅÄ• is locally integrable at y.}

where f denotes the local defining function of D at y. 'I['his is a very important local
igvaria,Rt of tke Åqliviser. ks ifiverse pa,iD) ls cal}e(l t}ie lgg caRgnic.al thresho}d of D at •y.

When dimY = 1, psy(D) coincides with the multiplicity multy(D). In general, we have the
fo}lowigg ineqRalities;
                       Md"i.t"(y)) S pt,(D) S mult,(D)

   O. ne of t,he motivation for the current work is the following result of EJin and Lazarsfeld

IEL, 3.5].

Theorem 1 Let (A,O) be a principally polari2ed abelian variety. Then for any positive
inSegeT k and D E lk-el,

                           k(D) Sk for each c E A.

   A principa}ly po}arized abe!iaik variety is, among others, a homogeReeus projective
variety with a natural choice of a iine bundle. It, is natural to ask whether an analogue of

Theorem 1 holds for other homogeneous projective varieties. Our main result is

Theorem 2 Let G/P be a rational homo.qeneo•us space of Picard number 1 and let L be the
ample geuerator of the Picard group ofG/P. Then, for an,y positive integer k and D etkLI,

                         pa.(D) g k; for each x es G/P.

   For Grassmaimians, Tkeorea} 2 was preved iik IHw]. The proof in [Hw] used Kapranov's
work on the derived category of coherent sheaves on Grassmannians and vanishing theorems
cf Nadel a. xd Demai}}y. Tkis arggi\}eRt was mode}led oR that ef IEL], wi}ic5 gsed Mttkai's
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work on the derived category of coherent sheaves on A and Nadel's vanishing theorem. This 
method seems刊 ryhard to generalize to arbitrary G / P. The method we use for Theorem 
2 is completely di百erent.It is motivated by another problem. To explain this, let us recall 

the following well-known conjecture on the multiplicity of pluri-anti-canonical divisors on 
Fano manifolds. 

Conjecture Let X hαFαno mαηザoldof Picard number Iαnd zεX beαgeneral point. 
Then for αny pas耐veinteger Kαnd DεI kKxlヲ

multx(D）三 2kdimX.

The bound in Conjecture is optimal and it is achieved when X is a hyperquadric and 
D is a multiple of a singular hyperplane section. The best known result on Conjecture is 
田町ntiallythe following bound proved in [Ca], [KMM] a吋［Na].

Theorem 3 Let X beαFαno manザoldof Pieαrd number Iαnd xεX  beαgeneral point. 
Then for αny positive integer kαnd Dε 1-kKxl, 

multx(D）三 k(dimX）・（dimX+ 1). 

It is natural to剖 ka similar question for the Arnold multiplicity ん（D).Surprisinglyぅ
in this caseぅonecan prove the following optimal result. 

Theorem 4 Let X beαFano manザoldof Pieαrd number lαnd zεX beαgeneral point. 
Then forαny pos的問 integerk and Dε 1-kKxl, 

μx(D）三k(dimX+ 1). 

Moreover，ザtheequαlity holds for some k and D, then X is the projective spαce. 

Both Theorem 2 and Theorem 4 are simple consequences of Theorem 5 below. Recall 
that a rational curve Con a compact complex manifold X is free if, under the normalization 

f: P1 → C c Xうthepull-back J*Tx of the tangent bundle of X is nef. 

Theorem 5 Let X beαFαno manザoldof Picard number lαnd CCX  beαfree rationαl 
curve. Then there existsαZαriski dense open subset U C X determined by C such ti川 for
αny effective dii is or D on X and zε U, 

μx(D）三C・D.

For Theorem 2うnotethat on G / P there exists a free rational c町 veC satisfying C・L=l
(e.g. [Ko, V.1.15]). Thus Theorem 2 follows from Theorem 5 and the homogeneity of X. 
For Theorem 4うrecallfrom [Ko, IV.2.10] that there exists a free rational curve C satisfying 
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C・(-Kx）三dimX + 1. This gives the inequality in Theorem 4. On the other hand, if X 
is different from the projective space, [C対SJsays that there exists a free rational curve C 

with C ・ (-Kx) ~ dimX. Thus the equality in Theorem 4 cannot hold. 

Proof of Theorem 5 is motivated by the approach of Nadel [Na] in his proof of Theorem 
3. The essential point of Nadel's proof was the following result on the behavior of the 

multiplicities along a free rational curve, which he called the product theorem. 

Theorem 6 Let X Kα compact compl口 mαnifold and C C X beαfree rationαl cu問 e.

For αny effective divisor D on X andαny two points x, x' E三C

I multx(D）…multx'(D) I壬C・D.

Motivated by this, we study the behavior of Arnold multiplicities along a free rational 

curve and get the following. 

Theorem 7 Let X be αcompαct comp！口 manif old and C C X hα介eerational curve. 
Forαny effect附 divisorD on X, eith甘ん（D)~ C・D for eαchぉεC,or μx(D) = μx'(D) 
for any two points 丸x'EC. 

To 日明 how Theorem 7 give日Theorem 5, let RatCurvesn(X) be the space of rational 

cu何回 onXラfollowing[KoぅII.2].Let κbe a compone批 ofRateむ vesn(X)to which C 
belongs. By [Ko, IV.4.14] appliば tothe family P 1×κ→ ιthere exists an open set 
W c X x X such that if (x1, x2）εlV, then x1 and x2 can be connected by a connected 
chain of free rational curves belonging to hこ.Then we choose UこX as a Zariski open 
subset in the image of the projection of W to the first factor. Suppose there exi日tsa point 

x1 E U with μx1 (D) > C ・ D. We can choose a point X2 .;_ D such that x1 and x2 can be 
connected by a connected chain of free raもionalcurves belonging toζApplying Theorem 

7 repeatedly, we get 0 = p,x2 ( D）はん1(D) > C ・ D, a contradiction. 

The proof of Theorem 7 uses the following Lemma ＇ぬichis a special case of [Vi, Prop. 

5.19]. 

Lemma Let T beαcomplex mαnifoldαnd D beαn effective divisor in T×P 1 s1tch that for 

αgeneral point t E TァDhas intersection number d切ththe curve { t｝×P1. Then forαny 
t。εT,either μx(D）三dfor tαch zε ｛t。｝× P1,or μx(D) = fl'x'(D) for αny two points 
x,x＇ε｛t。｝× P1.
In fact, let Homfree(P1, X) be the space of free morphisms and F : P1×Homfree(P1, X）→ 

X be the evaluation n川 phism,as in [Ko, II.3.5.4］.日y[Ko, Il.3.5.4], Hom！陀e(P1,X)
is no部 i時 ularand F is a smoo治郎）rphism. This implies, by [La, 9.5必］， for each 
u E P1×Homfree, 

ftu(F* D) = μ判的（D).

Thus Theorem 7 is a direct consequence of Lemma applied to T = Hom free (P 1, X). 
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