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1 Background
Consider an aMne scheme Cn me Spec R, where by R we denote the ring
ÅqCIxi,•••,=7}l• By X we denote Åíke qgotlent space Åë#/G = Spec Rg. By Y

we denote a choice of a resolution of X.

Y Åën,

     X

   The singular quotient space X is in a certain sense ([Muk03], Example
li.8) a coarse moduli space for the set-theeretica} orbits of G in Åë". A
xakiral qgestiok to ask was whether we caR refixe & ceRcept of aR ;orblÅí of

G in C"' and state a moduli problem for it which yields a fine moduli space
Y which resolves the singularities of X.
   The first step was to equip arm orbit with an appropriate $cheme-theoretic

strucÅíure:

Definition l.1. A G-cluster is a G-invariant subscheme Z of Åën of di-
mension O whose ring r(Z, Oz) is a regular representation of G.

   E.g. any free orbit of G supports a unique a-cluster: the reduced induced

c}osed subscheme structure. Oii the other hand, we find many differeRt G-
clg$ters supporte(l attke fixe(i l}eiRt, of}]}k ttt tke erigiR of Åë't.

   Following the ideas of Nakamura, Reid introduced in [Rei97] the scheme
G-Hilb , the fine moduli space of all G-clusters. It come$ equipped with
a Hilbert-Chow morphism G-Hilb C" - X which sends each G-cluster to
its $et-theoretic support. rlihe main irredueible cemponent of G-Hilb C'L
biratiokal to X cak be ideRtlfied (e.g. [INggl, S2) wieh the $cheme Hilb G ÅqCn

introduced by Nakamura and Ito in [IN96]. They then proceeded to show
that for G a finit,e subgroup of SL2((C), the scheme Hilb G (C" is the unique

crepant minimal resolution of C2/C.
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Then N札kamurashowed by explicit toric gのon

that for Ga五niteabelia工isubgroup of SL3(C)う thesche1工ie託ilbGむ3is a 
crep則1tre自olutionof IC3 /G. He conjectured that the sa阻eis true for the 
non-abelian case. 
This conjecture wa日settledby Bridgeland, King and Reid in [BKROl］事
They use derived category methods and establish a category equivalence 

D(Y）→ DG (en) between the bounded derived categories of coherent sheaves 
on Y 口 HilbGεn and of G-equivariant coherent sheaves onむ久respectively.
Under a certain assumption on the dimension of the fibers of Yうwhichholds 

automatically when n三3う theyprove that the Fourier-Mukai transform 
which uses the structure sheaf of the universal G-cluster Ua C Y×en is the 
requisite equivalence. In particular, this shows that Y is a crepant resolution 
of XぅprovingN akam旧 a’sconjecture. It is then further shown ([BKROl], 
§8) tl削 inthe case of n = 3, Hilb G <C3 is the only component of G-Hilb IC3, 
i.e. G-Hilb IC3 is connected. In dimension two this was proven by Ishii in 

[Ish02], while in dimensions four and higher it is known to be false. 

For n之3crepant resolutions of en /Gうifthey existう札renot necessarily 
unique. The question arose whether G-clusterぉcanbe generalised furtherうto
obtain the other crepant resolutions by a moduli space construction. Sub-

sequent research had shown that it was not necessary to give an orもita 

subscheme日tructure-it is su伍cientto equip an orbit with a coherent sheaf 
that looks like what we would expect of an image of a skyscraper sheaf of 

乱pointunder a derived category equivalence as above. This generalisation 

was a concept of a G-constellation given by Craw in his thesis [CraOl]: 

Definition 1.2. A G-constellation is a G聞equivariantcoherent sheaf F 
onぴ， whoseglぬalsections r（むn,F) form a regular representation of G. 

Note that a priori a definition of G-constellation doesn't exclude sheaves 

日upportedat more than one orbit of G. However a gnat-family consists only 

of those supported at a single orbit. 

Observe that, tautologicallyう thestructure sheaf of any G暢clusteris乱
G-constellation. In fact on a free orbit this all we get: the concepts of a 

G-constellationヲaG-cluster札nda set-theoretic orbit coincide where G act日
freely. At the ori♂in, however, there are many G-constellations which do not 

arise as structure sheaves of G-clusters. Too many in fact: the moduli space 
of all G-constellations is non岨separatedat the originラsuggestingthat some 

sort of stability conditions are needed. 
These came to us courtesy of a natural 1-to・1correspondence existing 

between Gべ：onstellationsand representations of the McK吋fquiver of G into 
the regular representation of G. This allows for the use of an earlier result of 

Ki時［Ki凶4]on GIT construction。fmoduli spaces of quiver representation日
to introduce the stability conditions known as f)・stabilityon G-constellations 

and to con日tructfor any given stability condition f) a moduli日paceMe of 
B-stable Gベ；onstellationstogether with a projective morphism to X and a 
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universal B-stable G-constellation Ue in Coh Y×εη. In a quiver-theoretic 
contextぅ Kronheimer[Kro89] l凶dalready considered these moduli spaces 

and have studied the chamber structure in the space II of M札bilitypara日1-

eters e, where all values of e in the same chamber yield the same f'vfe・The
methods of [BK設01]can be then extended to show thatぅunderthe same 

assumptions on the五berdimensions of l'vf eぅ theFourier-Mukai transform 
D(Me）→ DG ( <Cn) is an equivalence of categoriesぅwhichmakes the main 
irreducible component of Me札 crepantresolution of en／机 Incase of an 
abelian Gうanexplicit description of this coherent component is provided in 

toric terms by CrawラMadaganand Thomas in [CMT05a］ち［CMT05b].
Craw in his thesis co吋ecturedthat 預rhenG is a五nitesubgroup of SL3 ( <C) 
every crepant resolution projective over <C3 /G can be realised as a modu 
spaceλ18 of B-stable G-constell川.ionsfor sorn的chamberin日‘ Inthe case of 
G bei時 abelia孔 thiswas proved by Craw and Ishii in [CI04]. 
Thus one motivation for the study of f制niliesof G-constellations on 

a fixed resolution Y is an observation thatぅasevide回 from[CI04], there 
exist stability parameters e for which the GIT construction yields isomor-
phic moduli spaces Mf!ぅbutequips them with di百erenttautological fam側

ili仰のfG-constellations U8. Another is the desire to obtain for a given 

crepant resolution Y a direct construction of the derived McKay equhゆ
たおceD(Y) -.'.::'.+ DG(<Cn) as a Fourier－誌ukaifunctor using総 appropri説。
G叩constellationfamily. Finally, the question of a moduli construction of 

non-projective (over X) crepant resolutions still remains open. 

2 Gnat-Families 

Rather than con日tructinga resolution as a moduli space of G-constellations, 

Wのtakean arbitrary (not neces自arilyprojective or crepant) resolution of X 

and study the flat families of G蜘constellationぉthatit can parametrise. 
We would like for a family of G-constellations to be a flat Oy-rnoduleラ

whose restriction to any point of Y would give us the respective G-constellation. 

From this point of viewうitwould be better to consider, instead of the whole 

G-constellation Fうjustits space of global sections r(<Cnう:F).It is a vector 
space V with G and R actionsうsatisfying

g.(f.v) = (g.J).(g.v) (2.1) 

As en is affi附ぅ functor（・） RR Oen recovers :F from f(<Cぺ:F）うand(2.1) 
defines the G-equivariant structure. 

It is convinient to view such vector spaces as modules for the following 

non-commutative algebra: 

Definition 2.1. A cross-product algebra R刈 Gis an algebra, which has 

tl同 vectorspace日tr恥 tureof R恥 <C[G]a凶 theproduct 伽finedby settingぅ
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for all g1，の εGand Jiうんだ Rう

(!1②91）×（ん⑧92)= (f1(g1.f2)) 16! (g192) (2.2) 

Functors i = （・） 0R Oen and r(CCぺ・） give an equivalence between the 
categories of R ><1 G-modules and of quasi-coherent G-equivariant sheaves on 
ccn. 
This is not a pure formalism -R A G is one of the nonぺ：ommutative
crepαnt resolutions of ccn I Gヲacertain class of non-commutative algebras 
introduced by Michel van den Bergh in [dB02] as an analogue of a cornrnuta-
tive crepant resolution for an arbitrary non-quotient Gorenstein singularity. 

For three-dimensional terminal singularities, van den Bergh shows ([dB02］う
Theorem 6.3.1) that if乱non脚comrr

it is possible to construct commutative crepant resolutions as moduli spac側
of certain stable Q-modules. 

Under qccn，・）う toG-constellations correspond R ><1 G-modt出払 which
are isomorphicヲ制 representationsof G, to the regular representation v;.eg・ 
By abuse of notation、weshall use the term G-constellations to also mean 
such R ><1 G-modules. This interpretation allows us to define a family of 
G-constellations as a locally-free sheaf on Y, instead of Y×ccn: 

De白nition2.2. A family of G町 constellationspar叩 etrisedby Y is 

a sheaf F of (R ><JG) Rc Oy-modules on Yラlocallyfree as総 Oy-module,
such tl凶ぅ forany point lp : p→ Yぅthefiber FIP = l;F is a Gべ：onstellation.

We wish to develop a notion of a geometrically natur札Ifamily, in which 

for any p E Y the G-constellation FIP would be geometrically related to 

the G伽orbitq一切（p). For exampleぅtheG-constellation Jもう制 asheaf on 
cぺissupported on a finite union of G-orbits. We could askラmimickingthe 
moduli spaces Me ofかstableG-constellations and their tautological familiesう
for this support to be precisely q-1π（p). 
This turns out to be enough to warranty a much wider range of naturality 
properties. 

Definition 2.3. A generically natural family of G-constellations parametrised 

by Y (or a gnatイamilyラforshort) is a family F of G-constellationsうsuch
that for every p E Y 

Suppcn (F1p）口 q lrr(p) 

Proposition 2.4. Let F be a family of G-constellations parametrised切Y.
Thεnthεfallowing ar.吃埼ui：℃α＞lent:

1. On αny U C Y, such that rrU consists of free orbits, F is equivalent 

{locally isomorphic) to rr*q*Ocn. 
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2. The問 existsa (R浦町RcK(Y〕－moduleisomorphism: 

FIPY与（π＊q*Ocn)py 

where py is the generic point of Y. 

3. There existsαn (R ><l G) Rc Oy -module embedding 

Fι→K（ぴ〉

where Oy-module structure on K ( C勺 isinduced by the mαp q :Y→ 
x. 

4. Fisαgnαt-family. 

5. Theαction of (R河 G)@cOyon F descends to theαction of (R ><l G）⑧RG Oy, 
where the R0 -module structure on Oy is induced bν the mαp q: y→ 
x. 

Sketch. Implications l功 2：：：今 3：：：今 4＝今 5are quite straightforward. The 

interesting one is 5斗 1.

Consider a natural algebra homomorphism 

世：（R河 G）②RG Oy →εndoy (:F) 

LHS is isomorphic to 7r* £ ndox ( q*Ocn). Over Uぅ削 qis fiat overπUヲLHS
is further isomorphic to £ ndoy （π可＊Ocπ）.Thus we h札,ve

IJJ' : £ ndou （π＊q*Ocη）→ ＆ndou(:F) 

It is a homomorphism of (split) Azuma ya algebras of the same constant rankヲ
which is an isomorphism on the centers.豆enceIJJ' must be an isomorphism 
itself. Then, by Skolem-Noether theor・en1，をfmust locally be induced by 

isomorphismsπ可＊Oen吋 :F.
口

3 G-divisors 

Since G is abelian, any family F of G-constellation日onY splits into invert-
ible eige邸 heaves:F口 8)xEcvFx・ If Fis also a gnatイamilyラthenit can be 

embedded into K（む勺． Now, generallyぅona scheme S an invertible sheaf 
embedded into K ( S）ゐfinesa Cartier divisor on S. 
Therefore, just as the group kる（むね）本 ofthe invertible G-homoge配 ous
elements of K (en) extends k本（Y):

1…→Kホ（Y）→K(;(<C'.n）ムav…→ 1 (3.1) 

we extend the group of Cartier divisors on Y as follows: 
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Definition 3.1. A rational function f E K*(<Cn) is said to be G時homogeneous

(of weight x), if there exists a character χECγsuch that 

g.f zχ（g)J v gεG 

Definition 3.2. A G蜘Cartierdivisor on Y is乱 global肥 ctionof the 
sheaf of multiplicative groups K(;(Cn)/Oトwherethe sheaf K(;(<Cn) is the 
constant sheaf on Y of the G-homogeneous elements of K (en) and the sheaf 
Oy is the sheaf of invertible regular functions on Y. 

Similar to the ordinary Cartier divisors, a G-Cartier divisor can be 

specifed by a set of pairs （日＇fi),where ui are an open cover of y and 
fi are G-homogenous rational functions on Cπう suchthat for any i and j, 

五／ん defines仙 invertibleregular function on ui門的．
As with ordinary Cartier divisorsぅ wesay that a G-Cartier divisor is 

principal if it lies in the image of the natural map K(;(<Cn）吋 K（；（ぴ）／0予
and call two divisors linearly equivalent if their difference is principal. 

Thus, we obtain a short exact sequence of abelian groups: 

1 －吋 Car(Y）叫 G-Car(Y）ム cv－→ 1 (3.2) 

We call an image of a Cartier divisor D under the mapρits weight and 
say that D is a p(D)-Cartier divisor. 
The construction of the invertible subsheaf乙（D)of K(Y) corresponding 
to a Cartier divisor D, extends naturally to a construction of an invertible 
subsheaf £(D) of K(;(<C勺correspondi碍 toa G-Cartier divisor D. 

Proposition 3.3. Themαp D→ι（D) givesαn isomoゅhismbetween G-
Car Y and the group of inv州 bleG引 ibsheavesof K(<Cn). Furthermore, it 

descends toαn isomorphism of thεgroup G-Cl of G”Cαrtier divisors up to 

linear equivαlenceαnd the group G-Pie of invertible G-sheαves on Y. 

We now seek to define a matching notion of a GみN"eildivisor. The key 
notion is: w弘luationsat prime divisors of Y define a unique group homo-
morphi 

at the short eχact sequence (3.1）う wesee that uαlK must extend uniquely to 
a homomorphis訟切なοfromK（；（び） to Q-DivYヲascv is finite and金is
injective. We further obtain a quotient homomorphism vαlav from cv to 
Q／払DivY.
The short exact sequence (3.2) now becomes a commutative diagram: 

1 一一~carY 一一.－ G-Car Y ＿＿！！＿一一.－cv一一一一＿＿，...1 (3.3) 

ぺ四IKGl 叩 lavl 
0ーザDivYー→Q-DivY－→Q/Z-DivYー→O
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Aiming to have a sl川 texact sequence similar to (3.2）う wenow defin 
the group G-Div Y of G怖明lcildivisors to be the subgr‘oup of Q-Div Yラwhich

consists of the pre-images of uαlcv (av) c Q/'ll曲DivY.
We call a G-Weil divisor principal if it is an imageぱ asingle function 

fε K(; (en) under叩 lga , call two G 
their di茸erenceis principal and call a divisor乞qiDie庇cctiveif all qiと0.
We now have a following commutative diagram: 

1一一→C拭 Y……引G-CarY一三一一＿，...av－…一一→1 (3.4) 

叫吋叩 叩I
O一→Di、rγ…一...，..G-DivY一→りαlcv(Gv）一→O

A priori there is no re削 onfor 叩 lg0in （ ~~.4) to be an isomorpl由ism.

Indeed, although all the definitions above make sen目的fora general scheme Y 

birational to Xヲsimply削叩mingY to be smooth is n川 enoughto warranty 
G旬Cartierand G-Weil divisors to be isomorphic or even well-behaved. For 

an example let Y be the smooth locus of X. It can be shownう thatwhile 

valg is aロiso訟 orphismぅvalg0is not even injective as G-Car Y has torsion. 

And valcv is the zero map, thus G-Div Y is just Div Y. 

Proposition 3.4. If Y is smooth αnd proper over X, then vαl ｝（＇ りα［gGαnd

valcv in (3.4）αreαll isorno叩hisrns.

4 Classification of the gnat-Families 

Given a gnat-family F 口 ffi:Fxぅwecan embed it into K(<Cn). An image 
of Fx under such an errぬeddingis an invertible subs恥afof K(;(<Cη） and 
therefore the embedd 

Y such that the image of :F in K （む托） is ffiζ（一Dx)・
Conversely, given a G-divisor set {DxhεG＇ノsuchthat白 eachDx is a x-
Weil divisorぅwecould ask when is e乙（－Dx)a gnatイ削nily.
Proposition 4.1. Let { Dx｝χεav beαsαbove. Th仰の£（ Dx) isαgnat-
fαmilνザαndonlyザforαny G-homogeneous f E Rαndαnyχεav we 
hαりE

Dx十（！） -Dxp(f）三0

幼 εreρ(f）εavis the weight of f. 

( 4.1) 

NB: Observe that the condition ( 4.1) is equivale拭 toa set of IGI inequal-

ities for each prime Weil divisor, and that these sets are all independent of 

each other. 

We call G-divisor sets { Dx }xεav which satisfy (4.1) the reduc七orsets. 
Recall that in moduli problems it is a standard practice to consider the 

families up to equivalenc仏 thatis up to a local isomorphism. 
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Theorem 4.1. The isomorphism clαsses of gnat-families on Yαre in a one-

to-one correspo＇おむねcewith the linear eq也知alenceclαsses of the reductor sets 

{Dx}・ The equivalence classes of gnat-families on Y are inα0悦初－one
correspo叫 encet此hthe T巴ductorsets { Dxトinwhich Dxo = 0. 

We say that a reductor set {Dx} is normalised, if Dxo = 0. 

Proposition 4.2 (Canonical family). Define the divisor set {Dx} bν 

Dx＝乞吠川P
p 

Then { Dx} is a normalised reductor sεt. Moriεoveγ，the coγTεspondi勾 fαamil y 
＠ι（…Dχ） is thεp11shdowη to Y of thεstructu 
of the reduced fibre product Y×X Cη． 

Proposition 4.3 (Maximal shift family). Define the di附 orset{Mx}by 

Mx＝乞庶vp(f)p 
p • A 

Then i立x}is a norτnalised red也伽Tset. 

NB: It can be shown that, for anyχεcvラthecoe伍cientof Mx at a 
prime Weil divisor P is non-zero if and only if P is exceptional or the image 
of P in X is the branch divisor of the quotient m叩 en－→X. Thereforeうfor
each χεGヘthecoe話cientof Jvf x is non-zero at only註nitely訟 anypri誌e
divisors in Y. 

Proposition 4.4. Let { Dx} beαny normalised Tεdi五ctorset.訪問

-M  .. -1 < D < M x'- X- X 

forαnyχεcv. 

Corollary 4.5. The number of equivalence classes of gnαt-fiαmilies is finite. 

We summarise our results in the following theorem: 

Theorem 4.2 (Cl附 sificationof gnat-families). Let G beαβniteαbeliαn 
subgroup ofGLn(C), X the quotient ofCn by the action of G .. Y nonsingulαT 

andη ：Y→ X a proper birational map. Then isomorphism clαsses of gnat-
fαmilies on Y αre in 1-to-l correspondence with lineαr equivαlence clαsses 

of G-di討sorsets {DxhEcv, each Dxαχ－ Weil di仇sor，おhichsatisfy the 
inequαlities 

Dx十（！） -Dxp(f）三o'<:/ xεcvラG-homogeneousf E R 

Such αdi附 orset { Dx} corresponds then toαgnat-Jiαmily E9 £( Dx). 
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This correspondence descends toαl-to-1 correspondence between equiv-

alence clαsses of gnat-Jiαmiliesαηd sets {Dx} asαboveαnd with Dx0 = 0. 
Furthermore, eαch divisorρx in such αset satisfi仰iineq1tαlitν 

-M.，ーi< Dv < Mν 
－ー，‘ー尾

悦 ere{Mx} is a fixed divisor set defined by 

Mx= l二（控vp(!))P
p ' A 

As a consequence, the number of equi叩 lenceclasses of gnat-families is手間te.
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