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1 Background

Consider an affine scheme C" = Spec R, where by R we denote the ring
Clz1,...,zn]. By X we denote the quotient space C"/G = Spec R®. By Y
we denote a choice of a resolution of X.

Y C n
\X /
X

The singular quotient space X is in a certain sense ([Muk03], Example
11.8) a coarse moduli space for the set-theoretical orbits of G in C". A
natural question to ask was whether we can refine a concept of an ‘orbit of
G in C™ and state a moduli problem for it which yields a fine moduli space
Y which resolves the singularities of X.

The first step was to equip an orbit with an appropriate scheme-theoretic
structure:

Definition 1.1. A G-cluster is a G-invariant subscheme Z of C" of di-
mension 0 whose ring I'(Z, Oz) is a regular representation of G.

E.g. any free orbit of G supports a unique G-cluster: the reduced induced
closed subscheme structure. On the other hand, we find many different G-
clusters supported at the fixed point orbit at the origin of C".

Following the ideas of Nakamura, Reid introduced in [Rei97] the scheme
G-Hilb , the fine moduli space of all G-clusters. It comes equipped with
a Hilbert-Chow morphism G-Hilb C* — X which sends each G-cluster to
its set-theoretic support. The main irreducible component of G-Hilb C”"
birational to X can be identified (e.g. [IN0O], §2) with the scheme Hilb ¢ C*
introduced by Nakamura and Ito in [IN96]. They then proceeded to show
that for G a finite subgroup of SLo(C), the scheme Hilb & C" is the unique
crepant minimal resolution of C?/G.
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Then Nakamura showed by explicit toric geometry computations [Nak00]
that for G a finite abelian subgroup of SL3(C), the scheme Hilb ¢ C? is a
crepant resolution of C3/G. He conjectured that the same is true for the
non-abelian case.

This conjecture was settled by Bridgeland, King and Reid in [BKRO1].
They use derived category methods and establish a category equivalence
D(Y) — D%(C") between the bounded derived categories of coherent sheaves
onY = Hilb € C" and of G-equivariant coherent sheaves on C*, respectively.
Under a certain assumption on the dimension of the fibers of Y, which holds
automatically when n < 3, they prove that the Fourier-Mukai transform
which uses the structure sheaf of the universal G-cluster Ug C Y x C™ is the
requisite equivalence. In particular, this shows that ¥ is a crepant resolution
of X, proving Nakamura’s conjecture. It is then further shown ([BKRO1],
§8) that in the case of n = 3, Hilb G 3 is the only component of G-Hilb C?,
i.e. G-Hilb C3 is connected. In dimension two this was proven by Ishii in
[Ish02], while in dimensions four and higher it is known to be false.

For n > 3 crepant resolutions of C"/G, if they exist, are not necessarily
unique. The question arose whether G-clusters can be generalised further, to
obtain the other crepant resolutions by a moduli space construction. Sub-
sequent research had shown that it was not necessary to give an orbit a
subscheme structure - it is sufficient to equip an orbit with a coherent sheaf
that looks like what we would expect of an image of a skyscraper sheaf of
a point under a derived category equivalence as above. This generalisation
was a concept of a G-constellation given by Craw in his thesis [Cra01]:

Definition 1.2. A G-constellation is a G-equivariant coherent sheaf F
on C", whose global sections I'(C", F) form a regular representation of G.

Note that a priori a definition of G-constellation doesn’t exclude sheaves
supported at more than one orbit of G. However a gnat-family consists only
of those supported at a single orbit.

Observe that, tautologically, the structure sheaf of any G-cluster is a
G-constellation. In fact on a free orbit this all we get: the concepts of a
G-constellation, a G-cluster and a set-theoretic orbit coincide where GG acts
freely. At the origin, however, there are many G-constellations which do not
arise as structure sheaves of GG-clusters. Too many in fact: the moduli space
of all G-constellations is non-separated at the origin, suggesting that some
sort of stability conditions are needed.

These came to us courtesy of a natural 1-to-1 correspondence existing
between G-constellations and representations of the McKay quiver of GG into
the regular representation of G. This allows for the use of an earlier result of
King [Kin94] on GIT construction of moduli spaces of quiver representations
to introduce the stability conditions known as #-stability on G-constellations
and to construct for any given stability condition # a moduli space My of
#-stable G-constellations together with a projective morphism to X and a
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universal f-stable G-constellation Uy in CohY x C". In a quiver-theoretic
context, Kronheimer [Kro89] had already considered these moduli spaces
and have studied the chamber structure in the space IT of stability param-
eters 6, where all values of € in the same chamber yield the same Mjy. The
methods of [BKRO1] can be then extended to show that, under the same
assumptions on the fiber dimensions of My, the Fourier-Mukai transform
D(My) — D%(C™) is an equivalence of categories, which makes the main
irreducible component of My a crepant resolution of C*/G. In case of an
abelian G, an explicit description of this coherent component is provided in
toric terms by Craw, Maclagan and Thomas in [CMT05a], [CMT05b].

Craw in his thesis conjectured that when G is a finite subgroup of SL3(C)
every crepant resolution projective over C3/G can be realised as a moduli
space My of 8-stable G-constellations for some chamber in I1. In the case of
G being abelian, this was proved by Craw and Ishii in [CI04].

Thus one motivation for the study of families of G-constellations on
a fixed resolution Y is an observation that, as evident from [CI04], there
exist stability parameters 6 for which the GIT construction yields isomor-
phic moduli spaces My, but equips them with different tautological fam-
ilies of G-constellations Uy. Another is the desire to obtain for a given
crepant resolution Y a direct construction of the derived McKay equiva-
lence D(Y) = DY(C™) as a Fourier-Mukai functor using an appropriate
G-constellation family. Finally, the question of a moduli construction of
non-projective (over X) crepant resolutions still remains open.

2 Gnat-Families

Rather than constructing a resolution as a moduli space of G-constellations,
we take an arbitrary (not necessarily projective or crepant) resolution of X
and study the flat families of G-constellations that it can parametrise.

We would like for a family of G-constellations to be a flat Oy-module,
whose restriction to any point of Y would give us the respective G-constellation.
From this point of view, it would be better to consider, instead of the whole
G-constellation F, just its space of global sections I'(C™, F). It is a vector
space V with G and R actions, satisfying

g-(f-v)=(g-f)-(g-v) (2.1)

As C" is affine, functor (e) @ Ocn recovers F from I'(C™, F), and (2.1)
defines the G-equivariant structure.

It is convinient to view such vector spaces as modules for the following
non-commutative algebra:

Definition 2.1. A cross-product algebra R x G is an algebra, which has
the vector space structure of R ®¢ C[G] and the product defined by setting,
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for all g1,92 € G and f1, f2 € R,

(fi®g1) x (fa®g2) = (f1(g1-f2)) ® (9192) (2.2)

Functors & = (¢) ®p Ocn and T'(C", e) give an equivalence between the
categories of R x G-modules and of quasi-coherent G-equivariant sheaves on
Ccn.

This is not a pure formalism - R % G is one of the non-commutative
crepant resolutions of C"/G, a certain class of non-commutative algebras
introduced by Michel van den Bergh in [dB02] as an analogue of a commuta-
tive crepant resolution for an arbitrary non-quotient Gorenstein singularity.
For three-dimensional terminal singularities, van den Bergh shows ([dB02],
Theorem 6.3.1) that if a non-commutative crepant resolution ) exists, then
it is possible to construct commutative crepant resolutions as moduli spaces
of certain stable (J-modules.

Under I'(C", »), to G-constellations correspond R x G-modules, which
are isomorphic, as representations of G, to the regular representation Vieg.
By abuse of notation, we shall use the term G-constellations to also mean
such R »x G-modules. This interpretation allows us to define a family of
G-constellations as a locally-free sheaf on Y, instead of ¥ x C™:

Definition 2.2. A family of G-constellations parametrised by Y is
a sheaf F of (R x G) ®¢ Oy-modules on Y, locally free as an Oy-module,
such that, for any point ¢ : p — Y, the fiber 7}, = 1, F is a G-constellation.

We wish to develop a notion of a geometrically natural family, in which
for any p € Y the G-constellation F|, would be geometrically related to
the G-orbit ¢~!n(p) . For example, the G-constellation .7-:|p, as a sheaf on
C™, is supported on a finite union of G-orbits. We could ask, mimicking the
moduli spaces My of §-stable G-constellations and their tautological families,
for this support to be precisely ¢~ = (p).

This turns out to be enough to warranty a much wider range of naturality
properties.

Definition 2.3. A generically natural family of G-constellations parametrised
by Y (or a gnat-family, for short) is a family F of G-constellations, such
that for every p €Y

Suppen (Fp) = ¢~ 7 (p)

Proposition 2.4. Let F be a family of G-constellations parametrised by Y.
Then the following are equivalent:

1. On any U C Y, such that U consists of free orbits, F is equivalent
(locally isomorphic) to 7*q.Ocn.
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2. There ezists a (R x G) ®@c K(Y')-module isomorphism:
Flpy — (1"¢:0cn)py
where py is the generic point of Y.
3. There ezists an (R x G) @c Oy -module embedding
F — K(C")

where Oy -module structure on K(C™) is induced by the map ¢ : Y —
X.

4. F is a gnat-family.

5. The action of (R ¥ G)®cOy on F descends to the action of (R x G) ®pge Oy,

where the RC-module structure on Oy is induced by the map q: Y —
X.

Sketch. Implications 1 = 2 = 3 = 4 = 5 are quite straightforward. The
interesting one is 5 = 1.
Consider a natural algebra homomorphism

U: RxG)®Qpe Oy — Endo, (F)

LHS is isomorphic to 7* Endp, (¢+Ocn). Over U, as q is flat over 7U, LHS
is further isomorphic to Endp, (7*¢+Ocr). Thus we have

V' : Endoy, (7" Ocn) — Endo, (F)

It is a homomorphism of (split) Azumaya algebras of the same constant rank,
which is an isomorphism on the centers. Hence ¥ must be an isomorphism
itself. Then, by Skolem-Noether theorem, ¥’ must locally be induced by
isomorphisms 7*q,O¢n — F.

O

3 (G-divisors

Since G is abelian, any family F of G-constellations on Y splits into invert-
ible eigensheaves: F = @yeqvFy. If F is also a gnat-family, then it can be
embedded into K(C"). Now, generally, on a scheme S an invertible sheaf
embedded into K (S) defines a Cartier divisor on S.

Therefore, just as the group K5(C™)* of the invertible G-homogeneous
elements of K{C") extends K*(Y):

1— K*(Y) - K&(CH L 6V -1 (3.1)

we extend the group of Cartier divisors on Y as follows:
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Definition 3.1. A rational function f € K*(C") is said to be G-homogeneous
(of weight x), if there exists a character y € G such that

g-f=x(g)f Vged

Definition 3.2. A G-Cartier divisor on Y is a global section of the
sheaf of multiplicative groups K%(C")/O%, where the sheaf K[,(C™) is the
constant sheaf on Y of the G-homogeneous elements of K(C") and the sheaf
O3 is the sheaf of invertible regular functions on Y.

Similar to the ordinary Cartier divisors, a G-Cartier divisor can be
specifed by a set of pairs (Uj, f;), where U; are an open cover of Y and
fi are G-homogenous rational functions on C", such that for any ¢ and j,
fi/ f; defines an invertible regular function on U; N Uj.

As with ordinary Cartier divisors, we say that a G-Cartier divisor is
principal if it lies in the image of the natural map K5(C") — K (C")/O5
and call two divisors linearly equivalent if their difference is principal.

Thus, we obtain a short exact sequence of abelian groups:

1— Car(Y) — G-Car(Y) & GV — 1 (3.2)

We call an image of a Cartier divisor D under the map p its weight and
say that D is a p(D)-Cartier divisor.

The construction of the invertible subsheaf £(D) of K(Y") corresponding
to a Cartier divisor D, extends naturally to a construction of an invertible
subsheaf L(D) of K}(C") corresponding to a G-Cartier divisor D.

Proposition 3.3. The map D — L(D) gives an isomorphism between G-
CarY and the group of invertible G-subsheaves of K(C™). Furthermore, it
descends to an isomorphism of the group G-Cl of G-Cartier divisors up to
linear equivalence and the group G-Pic of invertible G-sheaves on Y.

We now seek to define a matching notion of a G-Weil divisor. The key
notion is: valuations at prime divisors of Y define a unique group homo-
morphism valg from K*(Y) to DivY, the group of Weil divisors. Looking
at the short exact sequence (3.1), we see that valg must extend uniquely to
a homomorphism valg,, from K} (C") to Q-DivY, as GV is finite and Q is
injective. We further obtain a quotient homomorphism valgv from GV to
Q/Z-DivY.

The short exact sequence (3.2) now becomes a commutative diagram:

1—> CarY — G-CarY —~ GV 1 (3.3)

v&gl{l vatKG l valgy l

0—DivY — Q-DivY —— Q/Z~DivY —0
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Aiming to have a short exact sequence similar to (3.2), we now define
the group G-DivY of G-Weil divisors to be the subgroup of Q-DivY, which
consists of the pre-images of valgv(GY) C Q/Z-DivY.

We call a G-Weil divisor principal if it is an image of a single function
f € K&(C") under valye, call two G-Weil divisors linearly equivalent if
their difference is principal and call a divisor Y ¢;D; effective if all ¢; > 0.

We now have a following commutative diagram:

valg

1— CTY — > G-CarY —2 GY 1 (3.4)

valKG j valegv i

0 — DivY — G-DivY —> valgv (GY) —0

A priori there is no reason for wvalg, in (3.4) to be an isomorphism.
Indeed, although all the definitions above make sense for a general scheme Y
birational to X, simply assuming Y to be smooth is not enough to warranty
G-Cartier and G-Weil divisors to be isomorphic or even well-behaved. For
an example let Y be the smooth locus of X. It can be shown, that while
valg is an isomorphism, valg,, is not even injective as G-CarY has torsion.
And valgv is the zero map, thus G-DivY is just DivY.

Proposition 3.4. IfY is smooth and proper over X, then valg, valg. and
valgv in (3.4) are all isomorphisms.

4 Classification of the gnat-Families

Given a gnat-family F = @F,, we can embed it into K(C"). An image
of F) under such an embedding is an invertible subsheaf of K3 (C") and
therefore the embedding defines a unique G-Weil divisor set {Dy },eqv on
Y such that the image of F in K(C") is &L(—D,).

Conversely, given a G-divisor set {Dy} eqv such that each D, is a x-
WEeil divisor, we could ask when is @L(—-Dy) a gnat-family.

Proposition 4.1. Let {Dy}ycqv be as above. Then GL(—Dy) is a gnat-
family if and only if for any G-homogeneous f € R and any x € G we
have

where p(f) € GV is the weight of f.

NB: Observe that the condition (4.1) is equivalent to a set of |G| inequal-
ities for each prime Weil divisor, and that these sets are all independent of
each other.

We call G-divisor sets {Dy }yeqv which satisfy (4.1) the reductor sets.

Recall that in moduli problems it is a standard practice to consider the
families up to equivalence, that is up to a local isomorphism.
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Theorem 4.1. The isomorphism classes of gnat-families on'Y are in a one-
to-one correspondence with the linear equivalence classes of the reductor sets
{Dy}. The equivalence classes of gnat-families on' Y are in a one-to-one
correspondence with the reductor sets {Dy}, in which D,, = 0.

We say that a reductor set {D,} is normalised, if D,, = 0.

Proposition 4.2 (Canonical family). Define the divisor set {D,} by

Dy=> v(Px)P
P

Then {Dy} is a normalised reductor set. Moreover, the corresponding family
BL(—Dy) is the pushdown to Y of the structure sheaf of the normalization
of the reduced fibre product Y x x C™.

Proposition 4.3 (Maximal shift family). Define the divisor set {M,} by
M, = min v P
X ; fER,, P(f)

Then {M, } is a normalised reductor set.

NB: It can be shown that, for any x € GV, the coefficient of M, at a
prime Weil divisor P is non-zero if and ounly if P is exceptional or the image
of P in X is the branch divisor of the quotient map C* — X. Therefore, for
each x € G, the coefficient of M, is non-zero at only finitely many prime
divisors in Y.

Proposition 4.4. Let {D,} be any normalised reductor set. Then
M, -1 < Dy, < M,
for any x € GV.
Corollary 4.5. The number of equivalence classes of gnat-families is finite.
We summarise our results in the following theorem:

Theorem 4.2 (Classification of gnat-families). Let G be a finite abelian
subgroup of GL,(C), X the quotient of C" by the action of G, Y nonsingular
and7: Y — X a proper birational map. Then isomorphism classes of gnat-
families on' 'Y are in 1-to-1 correspondence with linear equivalence classes
of G-divisor sets {Dy}yeqv, each Dy a x-Weil divisor, which satisfy the
inequalities

Dy + (f) = Dypp) 20 ¥V x € GY,G-homogeneous f € R

Such a divisor set {D,} corresponds then to a gnat-family @ L(—D,).
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This correspondence descends to a 1-to-1 correspondence between equiv-
alence classes of gnat-families and sets {Dy} as above and with Dy, = 0.
Furthermore, each divisor D, in such a set satisfies inequality

—M, -1 < Dy < My

where {M,} is a fized divisor set defined by

My =3 (min vp(f))P
P X

As a consequence, the number of equivalence classes of gnat-families is finite.
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