G-Constellations and Resolutions of Quotient Singularities

Timothy Logvinenko January 20, 2006

1 Background

Consider an affine scheme $\mathbb{C}^n = \operatorname{Spec} R$, where by R we denote the ring $\mathbb{C}[x_1, \ldots, x_n]$. By X we denote the quotient space $\mathbb{C}^n/G = \operatorname{Spec} R^G$. By Y we denote a choice of a resolution of X.

The singular quotient space X is in a certain sense ([Muk03], Example 11.8) a coarse moduli space for the set-theoretical orbits of G in \mathbb{C}^n . A natural question to ask was whether we can refine a concept of an 'orbit of G in \mathbb{C}^n ' and state a moduli problem for it which yields a fine moduli space Y which resolves the singularities of X.

The first step was to equip an orbit with an appropriate scheme-theoretic structure:

Definition 1.1. A G-cluster is a G-invariant subscheme \mathcal{Z} of \mathbb{C}^n of dimension 0 whose ring $\Gamma(Z, \mathcal{O}_Z)$ is a regular representation of G.

E.g. any free orbit of G supports a unique G-cluster: the reduced induced closed subscheme structure. On the other hand, we find many different G-clusters supported at the fixed point orbit at the origin of \mathbb{C}^n .

Following the ideas of Nakamura, Reid introduced in [Rei97] the scheme G-Hilb , the fine moduli space of all G-clusters. It comes equipped with a Hilbert-Chow morphism G-Hilb $\mathbb{C}^n \to X$ which sends each G-cluster to its set-theoretic support. The main irreducible component of G-Hilb \mathbb{C}^n birational to X can be identified (e.g. [IN00], §2) with the scheme Hilb G0 introduced by Nakamura and Ito in [IN96]. They then proceeded to show that for G a finite subgroup of $SL_2(\mathbb{C})$, the scheme Hilb G0 is the unique crepant minimal resolution of \mathbb{C}^2/G .

Then Nakamura showed by explicit toric geometry computations [Nak00] that for G a finite abelian subgroup of $SL_3(\mathbb{C})$, the scheme Hilb ${}^G\mathbb{C}^3$ is a crepant resolution of \mathbb{C}^3/G . He conjectured that the same is true for the non-abelian case.

This conjecture was settled by Bridgeland, King and Reid in [BKR01]. They use derived category methods and establish a category equivalence $D(Y) \to D^G(\mathbb{C}^n)$ between the bounded derived categories of coherent sheaves on $Y = \text{Hilb }^G \mathbb{C}^n$ and of G-equivariant coherent sheaves on \mathbb{C}^n , respectively. Under a certain assumption on the dimension of the fibers of Y, which holds automatically when $n \leq 3$, they prove that the Fourier-Mukai transform which uses the structure sheaf of the universal G-cluster $\mathcal{U}_G \subset Y \times \mathbb{C}^n$ is the requisite equivalence. In particular, this shows that Y is a crepant resolution of X, proving Nakamura's conjecture. It is then further shown ([BKR01], §8) that in the case of n = 3, Hilb \mathbb{C}^G is the only component of G-Hilb \mathbb{C}^G , i.e. G-Hilb \mathbb{C}^G is connected. In dimension two this was proven by Ishii in [Ish02], while in dimensions four and higher it is known to be false.

For $n \geq 3$ crepant resolutions of \mathbb{C}^n/G , if they exist, are not necessarily unique. The question arose whether G-clusters can be generalised further, to obtain the other crepant resolutions by a moduli space construction. Subsequent research had shown that it was not necessary to give an orbit a subscheme structure - it is sufficient to equip an orbit with a coherent sheaf that looks like what we would expect of an image of a skyscraper sheaf of a point under a derived category equivalence as above. This generalisation was a concept of a G-constellation given by Craw in his thesis [Cra01]:

Definition 1.2. A G-constellation is a G-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^n , whose global sections $\Gamma(\mathbb{C}^n, \mathcal{F})$ form a regular representation of G.

Note that a priori a definition of G-constellation doesn't exclude sheaves supported at more than one orbit of G. However a gnat-family consists only of those supported at a single orbit.

Observe that, tautologically, the structure sheaf of any G-cluster is a G-constellation. In fact on a free orbit this all we get: the concepts of a G-constellation, a G-cluster and a set-theoretic orbit coincide where G acts freely. At the origin, however, there are many G-constellations which do not arise as structure sheaves of G-clusters. Too many in fact: the moduli space of all G-constellations is non-separated at the origin, suggesting that some sort of stability conditions are needed.

These came to us courtesy of a natural 1-to-1 correspondence existing between G-constellations and representations of the McKay quiver of G into the regular representation of G. This allows for the use of an earlier result of King [Kin94] on GIT construction of moduli spaces of quiver representations to introduce the stability conditions known as θ -stability on G-constellations and to construct for any given stability condition θ a moduli space M_{θ} of θ -stable G-constellations together with a projective morphism to X and a

universal θ -stable G-constellation \mathcal{U}_{θ} in $\operatorname{Coh} Y \times \mathbb{C}^n$. In a quiver-theoretic context, Kronheimer [Kro89] had already considered these moduli spaces and have studied the chamber structure in the space Π of stability parameters θ , where all values of θ in the same chamber yield the same M_{θ} . The methods of [BKR01] can be then extended to show that, under the same assumptions on the fiber dimensions of M_{θ} , the Fourier-Mukai transform $D(M_{\theta}) \to D^G(\mathbb{C}^n)$ is an equivalence of categories, which makes the main irreducible component of M_{θ} a crepant resolution of \mathbb{C}^n/G . In case of an abelian G, an explicit description of this coherent component is provided in toric terms by Craw, Maclagan and Thomas in [CMT05a], [CMT05b].

Craw in his thesis conjectured that when G is a finite subgroup of $SL_3(\mathbb{C})$ every crepant resolution projective over \mathbb{C}^3/G can be realised as a moduli space M_θ of θ -stable G-constellations for some chamber in Π . In the case of G being abelian, this was proved by Craw and Ishii in [CI04].

Thus one motivation for the study of families of G-constellations on a fixed resolution Y is an observation that, as evident from [CI04], there exist stability parameters θ for which the GIT construction yields isomorphic moduli spaces M_{θ} , but equips them with different tautological families of G-constellations \mathcal{U}_{θ} . Another is the desire to obtain for a given crepant resolution Y a direct construction of the derived McKay equivalence $D(Y) \xrightarrow{\sim} D^G(\mathbb{C}^n)$ as a Fourier-Mukai functor using an appropriate G-constellation family. Finally, the question of a moduli construction of non-projective (over X) crepant resolutions still remains open.

2 Gnat-Families

Rather than constructing a resolution as a moduli space of G-constellations, we take an arbitrary (not necessarily projective or crepant) resolution of X and study the flat families of G-constellations that it can parametrise.

We would like for a family of G-constellations to be a flat \mathcal{O}_Y -module, whose restriction to any point of Y would give us the respective G-constellation. From this point of view, it would be better to consider, instead of the whole G-constellation \mathcal{F} , just its space of global sections $\Gamma(\mathbb{C}^n, \mathcal{F})$. It is a vector space V with G and R actions, satisfying

$$g.(f.\mathbf{v}) = (g.f).(g.\mathbf{v}) \tag{2.1}$$

As \mathbb{C}^n is affine, functor $(\bullet) \otimes_R \mathcal{O}_{\mathbb{C}^n}$ recovers \mathcal{F} from $\Gamma(\mathbb{C}^n, \mathcal{F})$, and (2.1) defines the G-equivariant structure.

It is convinient to view such vector spaces as modules for the following non-commutative algebra:

Definition 2.1. A cross-product algebra $R \rtimes G$ is an algebra, which has the vector space structure of $R \otimes_{\mathbb{C}} \mathbb{C}[G]$ and the product defined by setting,

for all $g_1, g_2 \in G$ and $f_1, f_2 \in R$,

$$(f_1 \otimes g_1) \times (f_2 \otimes g_2) = (f_1(g_1.f_2)) \otimes (g_1g_2)$$
 (2.2)

Functors $\tilde{\bullet} = (\bullet) \otimes_R \mathcal{O}_{\mathbb{C}^n}$ and $\Gamma(\mathbb{C}^n, \bullet)$ give an equivalence between the categories of R \rtimes G-modules and of quasi-coherent G-equivariant sheaves on \mathbb{C}^n .

This is not a pure formalism - R \rtimes G is one of the non-commutative crepant resolutions of \mathbb{C}^n/G , a certain class of non-commutative algebras introduced by Michel van den Bergh in [dB02] as an analogue of a commutative crepant resolution for an arbitrary non-quotient Gorenstein singularity. For three-dimensional terminal singularities, van den Bergh shows ([dB02], Theorem 6.3.1) that if a non-commutative crepant resolution Q exists, then it is possible to construct commutative crepant resolutions as moduli spaces of certain stable Q-modules.

Under $\Gamma(\mathbb{C}^n, \bullet)$, to G-constellations correspond $R \rtimes G$ -modules, which are isomorphic, as representations of G, to the regular representation V_{reg} . By abuse of notation, we shall use the term G-constellations to also mean such $R \rtimes G$ -modules. This interpretation allows us to define a family of G-constellations as a locally-free sheaf on Y, instead of $Y \times \mathbb{C}^n$:

Definition 2.2. A family of G-constellations parametrised by Y is a sheaf \mathcal{F} of $(\mathbb{R} \rtimes \mathbb{G}) \otimes_{\mathbb{C}} \mathcal{O}_Y$ -modules on Y, locally free as an \mathcal{O}_Y -module, such that, for any point $\iota_p: p \to Y$, the fiber $\mathcal{F}_{|p} = \iota_p^* \mathcal{F}$ is a G-constellation.

We wish to develop a notion of a geometrically natural family, in which for any $p \in Y$ the G-constellation $\mathcal{F}_{|p}$ would be geometrically related to the G-orbit $q^{-1}\pi(p)$. For example, the G-constellation $\tilde{\mathcal{F}}_{|p}$, as a sheaf on \mathbb{C}^n , is supported on a finite union of G-orbits. We could ask, mimicking the moduli spaces M_{θ} of θ -stable G-constellations and their tautological families, for this support to be precisely $q^{-1}\pi(p)$.

This turns out to be enough to warranty a much wider range of naturality properties.

Definition 2.3. A generically natural family of G-constellations parametrised by Y (or a gnat-family, for short) is a family \mathcal{F} of G-constellations, such that for every $p \in Y$

$$\operatorname{Supp}_{\mathbb{C}^n}(\mathcal{F}_{|p}) = q^{-1}\pi(p)$$

Proposition 2.4. Let \mathcal{F} be a family of G-constellations parametrised by Y. Then the following are equivalent:

1. On any $U \subset Y$, such that πU consists of free orbits, \mathcal{F} is equivalent (locally isomorphic) to $\pi^*q_*\mathcal{O}_{\mathbb{C}^n}$.

2. There exists a $(R \rtimes G) \otimes_{\mathbb{C}} K(Y)$ -module isomorphism:

$$\mathcal{F}_{|p_Y} \xrightarrow{\sim} (\pi^* q_* \mathcal{O}_{\mathbb{C}^n})_{p_Y}$$

where p_Y is the generic point of Y.

3. There exists an $(R \rtimes G) \otimes_{\mathbb{C}} \mathcal{O}_Y$ -module embedding

$$F \hookrightarrow K(\mathbb{C}^n)$$

where \mathcal{O}_Y -module structure on $K(\mathbb{C}^n)$ is induced by the map $q:Y\to X$.

- 4. \mathcal{F} is a gnat-family.
- 5. The action of $(R \rtimes G) \otimes_{\mathbb{C}} \mathcal{O}_Y$ on \mathcal{F} descends to the action of $(R \rtimes G) \otimes_{R^G} \mathcal{O}_Y$, where the R^G -module structure on \mathcal{O}_Y is induced by the map $q: Y \to X$.

Sketch. Implications $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5$ are quite straightforward. The interesting one is $5 \Rightarrow 1$.

Consider a natural algebra homomorphism

$$\Psi: (\mathbf{R} \rtimes \mathbf{G}) \otimes_{\mathbf{R}^{\mathbf{G}}} \mathcal{O}_{Y} \to \mathcal{E}nd_{\mathcal{O}_{Y}}(\mathcal{F})$$

LHS is isomorphic to $\pi^* \operatorname{\mathcal{E}nd}_{\mathcal{O}_X}(q_*\mathcal{O}_{\mathbb{C}^n})$. Over U, as q is flat over πU , LHS is further isomorphic to $\operatorname{\mathcal{E}nd}_{\mathcal{O}_Y}(\pi^*q_*\mathcal{O}_{\mathbb{C}^n})$. Thus we have

$$\Psi': \mathcal{E}nd_{\mathcal{O}_U}(\pi^*q_*\mathcal{O}_{\mathbb{C}^n}) o \mathcal{E}nd_{\mathcal{O}_U}(\mathcal{F})$$

It is a homomorphism of (split) Azumaya algebras of the same constant rank, which is an isomorphism on the centers. Hence Ψ' must be an isomorphism itself. Then, by Skolem-Noether theorem, Ψ' must locally be induced by isomorphisms $\pi^*q_*\mathcal{O}_{\mathbb{C}^n} \to \mathcal{F}$.

3 G-divisors

Since G is abelian, any family \mathcal{F} of G-constellations on Y splits into invertible eigensheaves: $\mathcal{F} = \bigoplus_{\chi \in G^{\vee}} \mathcal{F}_{\chi}$. If \mathcal{F} is also a gnat-family, then it can be embedded into $K(\mathbb{C}^n)$. Now, generally, on a scheme S an invertible sheaf embedded into K(S) defines a Cartier divisor on S.

Therefore, just as the group $K_G^*(\mathbb{C}^n)^*$ of the invertible G-homogeneous elements of $K(\mathbb{C}^n)$ extends $K^*(Y)$:

$$1 \to K^*(Y) \to K_G^*(\mathbb{C}^n) \xrightarrow{\rho} G^{\vee} \to 1 \tag{3.1}$$

we extend the group of Cartier divisors on Y as follows:

Definition 3.1. A rational function $f \in K^*(\mathbb{C}^n)$ is said to be G-homogeneous (of weight χ), if there exists a character $\chi \in G^{\vee}$ such that

$$g.f = \chi(g)f \quad \forall g \in G$$

Definition 3.2. A G-Cartier divisor on Y is a global section of the sheaf of multiplicative groups $K_G^*(\mathbb{C}^n)/\mathcal{O}_Y^*$, where the sheaf $K_G^*(\mathbb{C}^n)$ is the constant sheaf on Y of the G-homogeneous elements of $K(\mathbb{C}^n)$ and the sheaf \mathcal{O}_Y^* is the sheaf of invertible regular functions on Y.

Similar to the ordinary Cartier divisors, a G-Cartier divisor can be specifed by a set of pairs (U_i, f_i) , where U_i are an open cover of Y and f_i are G-homogenous rational functions on \mathbb{C}^n , such that for any i and j, f_i/f_j defines an invertible regular function on $U_i \cap U_j$.

As with ordinary Cartier divisors, we say that a G-Cartier divisor is principal if it lies in the image of the natural map $K_G^*(\mathbb{C}^n) \to K_G^*(\mathbb{C}^n)/\mathcal{O}_Y^*$ and call two divisors linearly equivalent if their difference is principal.

Thus, we obtain a short exact sequence of abelian groups:

$$1 \to \operatorname{Car}(Y) \to G\operatorname{-Car}(Y) \xrightarrow{\rho} G^{\vee} \to 1 \tag{3.2}$$

We call an image of a Cartier divisor D under the map ρ its weight and say that D is a $\rho(D)$ -Cartier divisor.

The construction of the invertible subsheaf $\mathcal{L}(D)$ of K(Y) corresponding to a Cartier divisor D, extends naturally to a construction of an invertible subsheaf $\mathcal{L}(D)$ of $K_G^*(\mathbb{C}^n)$ corresponding to a G-Cartier divisor D.

Proposition 3.3. The map $D \to \mathcal{L}(D)$ gives an isomorphism between G-Car Y and the group of invertible G-subsheaves of $K(\mathbb{C}^n)$. Furthermore, it descends to an isomorphism of the group G-Cl of G-Cartier divisors up to linear equivalence and the group G-Pic of invertible G-sheaves on Y.

We now seek to define a matching notion of a G-Weil divisor. The key notion is: valuations at prime divisors of Y define a unique group homomorphism val_K from $K^*(Y)$ to $\operatorname{Div} Y$, the group of Weil divisors. Looking at the short exact sequence (3.1), we see that val_K must extend uniquely to a homomorphism val_{K_G} from $K_G^*(\mathbb{C}^n)$ to \mathbb{Q} - $\operatorname{Div} Y$, as G^{\vee} is finite and \mathbb{Q} is injective. We further obtain a quotient homomorphism $val_{G^{\vee}}$ from G^{\vee} to \mathbb{Q}/\mathbb{Z} - $\operatorname{Div} Y$.

The short exact sequence (3.2) now becomes a commutative diagram:

$$1 \longrightarrow \operatorname{Car} Y \longrightarrow G \operatorname{-} \operatorname{Car} Y \xrightarrow{\rho} G^{\vee} \longrightarrow 1$$

$$val_{K} \downarrow \qquad val_{K_{G}} \downarrow \qquad val_{G^{\vee}} \downarrow$$

$$0 \longrightarrow \operatorname{Div} Y \longrightarrow \mathbb{Q} \operatorname{-} \operatorname{Div} Y \longrightarrow \mathbb{Q} / \mathbb{Z} \operatorname{-} \operatorname{Div} Y \longrightarrow 0$$

$$(3.3)$$

Aiming to have a short exact sequence similar to (3.2), we now define the group G-Div Y of G-Weil divisors to be the subgroup of \mathbb{Q} -Div Y, which consists of the pre-images of $val_{G^{\vee}}(G^{\vee}) \subset \mathbb{Q}/\mathbb{Z}$ -Div Y.

We call a G-Weil divisor principal if it is an image of a single function $f \in K_G^*(\mathbb{C}^n)$ under val_{K^G} , call two G-Weil divisors linearly equivalent if their difference is principal and call a divisor $\sum q_i D_i$ effective if all $q_i \geq 0$.

We now have a following commutative diagram:

$$1 \longrightarrow \operatorname{Car} Y \longrightarrow G\operatorname{-Car} Y \xrightarrow{\rho} G^{\vee} \longrightarrow 1$$

$$val_{K} \downarrow \qquad val_{K_{G}} \downarrow \qquad val_{G^{\vee}} \downarrow$$

$$0 \longrightarrow \operatorname{Div} Y \longrightarrow G\operatorname{-Div} Y \longrightarrow val_{G^{\vee}}(G^{\vee}) \longrightarrow 0$$

$$(3.4)$$

A priori there is no reason for val_{K_G} in (3.4) to be an isomorphism. Indeed, although all the definitions above make sense for a general scheme Y birational to X, simply assuming Y to be smooth is not enough to warranty G-Cartier and G-Weil divisors to be isomorphic or even well-behaved. For an example let Y be the smooth locus of X. It can be shown, that while val_K is an isomorphism, val_{K_G} is not even injective as G-Car Y has torsion. And val_{G^\vee} is the zero map, thus G-Div Y is just Div Y.

Proposition 3.4. If Y is smooth and proper over X, then val_K , val_{K_G} and $val_{G^{\vee}}$ in (3.4) are all isomorphisms.

4 Classification of the gnat-Families

Given a gnat-family $\mathcal{F} = \oplus \mathcal{F}_{\chi}$, we can embed it into $K(\mathbb{C}^n)$. An image of \mathcal{F}_{χ} under such an embedding is an invertible subsheaf of $K_G^*(\mathbb{C}^n)$ and therefore the embedding defines a unique G-Weil divisor set $\{D_\chi\}_{\chi \in G^{\vee}}$ on Y such that the image of \mathcal{F} in $K(\mathbb{C}^n)$ is $\oplus \mathcal{L}(-D_{\chi})$.

Conversely, given a G-divisor set $\{D_\chi\}_{\chi\in G^\vee}$ such that each D_χ is a χ -Weil divisor, we could ask when is $\oplus \mathcal{L}(-D_\chi)$ a gnat-family.

Proposition 4.1. Let $\{D_\chi\}_{\chi\in G^\vee}$ be as above. Then $\oplus \mathcal{L}(-D_\chi)$ is a gnatfamily if and only if for any G-homogeneous $f\in R$ and any $\chi\in G^\vee$ we have

$$D_{\chi} + (f) - D_{\chi\rho(f)} \ge 0 \tag{4.1}$$

where $\rho(f) \in G^{\vee}$ is the weight of f.

NB: Observe that the condition (4.1) is equivalent to a set of |G| inequalities for each prime Weil divisor, and that these sets are all independent of each other.

We call G-divisor sets $\{D_{\chi}\}_{\chi \in G^{\vee}}$ which satisfy (4.1) the reductor sets. Recall that in moduli problems it is a standard practice to consider the families up to equivalence, that is up to a local isomorphism. **Theorem 4.1.** The isomorphism classes of gnat-families on Y are in a one-to-one correspondence with the linear equivalence classes of the reductor sets $\{D_\chi\}$. The equivalence classes of gnat-families on Y are in a one-to-one correspondence with the reductor sets $\{D_\chi\}$, in which $D_{\chi_0} = 0$.

We say that a reductor set $\{D_\chi\}$ is normalised, if $D_{\chi_0}=0$.

Proposition 4.2 (Canonical family). Define the divisor set $\{D_{\chi}\}$ by

$$D_{\chi} = \sum_{P} v(P, \chi)P$$

Then $\{D_X\}$ is a normalised reductor set. Moreover, the corresponding family $\oplus \mathcal{L}(-D_X)$ is the pushdown to Y of the structure sheaf of the normalization of the reduced fibre product $Y \times_X \mathbb{C}^n$.

Proposition 4.3 (Maximal shift family). Define the divisor set $\{M_{\chi}\}$ by

$$M_{\chi} = \sum_{P} \min_{f \in R_{\chi}} v_{P}(f) \ P$$

Then $\{M_\chi\}$ is a normalised reductor set.

NB: It can be shown that, for any $\chi \in G^{\vee}$, the coefficient of M_{χ} at a prime Weil divisor P is non-zero if and only if P is exceptional or the image of P in X is the branch divisor of the quotient map $\mathbb{C}^n \to X$. Therefore, for each $\chi \in G^{\vee}$, the coefficient of M_{χ} is non-zero at only finitely many prime divisors in Y.

Proposition 4.4. Let $\{D_{\chi}\}$ be any normalised reductor set. Then

$$-M_{\chi^{-1}} \le D_{\chi} \le M_{\chi}$$

for any $\chi \in G^{\vee}$.

Corollary 4.5. The number of equivalence classes of gnat-families is finite.

We summarise our results in the following theorem:

Theorem 4.2 (Classification of gnat-families). Let G be a finite abelian subgroup of $GL_n(\mathbb{C})$, X the quotient of \mathbb{C}^n by the action of G, Y nonsingular and $\pi: Y \to X$ a proper birational map. Then isomorphism classes of gnat-families on Y are in 1-to-1 correspondence with linear equivalence classes of G-divisor sets $\{D_\chi\}_{\chi\in G^\vee}$, each D_χ a χ -Weil divisor, which satisfy the inequalities

$$D_{\chi} + (f) - D_{\chi_0(f)} \ge 0 \quad \forall \ \chi \in G^{\vee}, G\text{-homogeneous } f \in R$$

Such a divisor set $\{D_{\chi}\}$ corresponds then to a gnat-family $\bigoplus \mathcal{L}(-D_{\chi})$.

This correspondence descends to a 1-to-1 correspondence between equivalence classes of gnat-families and sets $\{D_\chi\}$ as above and with $D_{\chi_0} = 0$. Furthermore, each divisor D_χ in such a set satisfies inequality

$$-M_{\chi^{-1}} \le D_\chi \le M_\chi$$

where $\{M_{\chi}\}$ is a fixed divisor set defined by

$$M_{\chi} = \sum_{P} (\min_{f \in R_{\chi}} v_{P}(f)) P$$

As a consequence, the number of equivalence classes of gnat-families is finite.

References

- [BKR01] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535–554.
- [CI04] A. Craw and A. Ishii, Flops of G Hilb and equivalences of derived category by variation of GIT quotient, Duke Math J. 124 (2004), no. 2, 259–307.
- [CMT05a] A. Craw, D. Maclagan, and R.R. Thomas, Moduli of McKay quiver representations I: the coherent component, preprint, (2005).
- [CMT05b] _____, Moduli of McKay quiver representations II: Grobner basis techniques, preprint, (2005).
- [Cra01] A. Craw, The McKay correspondence and representations of the McKay quiver, Ph.D. thesis, University of Warwick, 2001.
- [dB02] Michel Van den Bergh, *Non-commutative crepant resolutions*, The Legacy of Niels Hendrik Abel, Springer, 2002, pp. 749–770.
- [IN96] Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan. Acad. 72 (1996), 135–138.
- [IN00] Y. Ito and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topology 39 (2000), no. 6, 1155– 1191.
- [Ish02] Akira Ishii, On the McKay correspondence for a finite small subgroup of $GL(2,\mathbb{C})$, J. Reine Angew. Math **549** (2002), 221–233.
- [Kin94] A. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford 45 (1994), 515–530.

- [Kro89] P. Kronheimer, The construction of ALE spaces as hyper-Kahler quotients, J. Diff. Geom. 29 (1989), 665–683.
- [Muk03] S. Mukai, An introduction to invariants and moduli, Cambridge University Press, 2003.
- [Nak00] I. Nakamura, Hilbert schemes of abelian group orbits, J. Alg. Geom. 10 (2000), 775–779.
- [Rei97] M. Reid, Mckay correspondence, preprint math.AG/9702016, (1997).