Projective manifolds with hyperplane sections being five－sheeted covers of projective space＊

Yasuharu Amitani（Waseda University）
E－mail：amitani＠toki．waseda．jp

Abstract

Here we consider the classification problem of smooth complex projective varieties con－ taining a finite branched covering of \mathbb{P}^{n} as a very ample divisor．In this talk，we first introduce the problem and its background．After that，we present a classification result （Main Theorem）in case where the degree of the finite covering is five，and mention the keys of the proof．

1 Introduction and Main Theorem

（1．1）Let X be a smooth complex projective（ $n+1$ ）－fold and L a very ample line bundle on it．We consider the following condition：
$(*)_{d}$ There exists a smooth member $A \in|L|$ such that there exists a finite morphism $\pi: A \rightarrow \mathbb{P}^{n}$ of degree d ．
（1．2）We immediately find that the following are examples of (X, L) ：
Examples（Obvious pairs）．$\left(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(d)\right)$ and $\left(H_{d}^{n+1}, \mathcal{O}_{H_{d}^{n+1}}(1)\right)$ ， where $H_{d}^{n+1} \subset \mathbb{P}^{n+2}$ is a smooth hypersurface of degree d ，and π is a projection from a point．

So，what kind of＂non－obvious＂pairs show up？This natural question underlies our study．
（1．3）Classical results on surfaces with hyperelliptic curves as hyperplane sections（e．g．［Cas］）and their revision made in the eighties（［Ser］，［SV］） called the attention to the problem of classifying pairs (X, L) with $(*)_{d}$ ． The problem has been considered by several authors：

[^0]- In the case of $(n, d)=(1,2)$, F. Serrano [Ser], A. J. Sommese-A. Van de Ven [SV] classified the pairs (X, L) with $(*)_{d}$ independently.
- In the case of $(n, d)=(1,3), \mathrm{M} . \mathrm{L}$. Fania [Fan] studied the structure of the pairs (X, L) by using the adjunction mapping.
- In cases where (i) ($n \geq 2, d=2$) and (ii) ($n \geq 4, d=3$), the pairs (X, L) are classified by A. Lanteri-M. Palleschi-A. J. Sommese (L-P-S for short) in [LPS1] and [LPS2].
(1.4) We want to classify the polarized pairs (X, L) for all n and d. But it seems to be a difficult problem.

In what follows, we assume that $n>d$. Then we have the following diagram:

where $i: A \hookrightarrow X$ denotes the inclusion map. Here we obtain that

- π^{*} is an isomorphism by virtue of a Barth-type theorem by R. Lazarsfeld ([Laz, Proposition 3.1]); and
- i^{*} is an also isomorphism by the Lefschetz hyperplane section theorem.

Thus we see that there exists a unique line bundle $\mathcal{H} \in \operatorname{Pic}(X)$ such that $\mathcal{H}_{A}=\pi^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)$. And one can easily show that each of the above three line bundles is an ample generator of each of the above Picard groups.
(1.5) For $d \in\{2,3\}$, the pairs (X, L) with $(*)_{d}$ are classified by L-P-S as mentioned in (1.3). The result on the degree $d=2$ case says that there are no pairs (X, L) except the obvious ones. And, in the degree 3 case, the "non-obvious" pair is only one:

Theorem 1 (Lanteri-Palleschi-Sommese). Let X be a projective manifold of dimension $n+1$ and L a very ample line bundle on X satisfying $(*)_{d}$.
(1) [LPS1] If $n>d=2$, then (X, L) is one of the following:
(i) $\left(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(2)\right)$; or (ii) $\left(\mathbb{Q}^{n+1}, \mathcal{O}_{\mathbb{Q}^{n+1}}(1)\right)$.
(2) [LPS2] If $n>d=3$, then (X, L) is one of the following:
(i) $\quad\left(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(3)\right) ; \quad$ (ii) $\quad\left(H_{3}^{n+1}, \mathcal{O}_{H_{3}^{n+1}}(1)\right) ; \quad$ or (iii) $\quad(Y, 3 \mathcal{L})$, where (Y, \mathcal{L}) is a Del Pezzo manifold of degree one.

Note. (i) Definition. For a polarized manifold (Y, \mathcal{L}) of $\operatorname{dim} Y=n+1$,
(Y, \mathcal{L}) : a Del Pezzo manifold of degree one
$\stackrel{\text { def }}{\Longleftrightarrow}-K_{Y}=n \mathcal{L}$ and the degree $d(Y, \mathcal{L}):=\mathcal{L}^{n+1}=1$.
(ii) In (2), the very ampleness of $3 \mathcal{L}$ is also proved by L-P-S.
(1.6) It is natural to ask what kind of "non-obvious" pairs appear as the degree of the covering π is getting large. So we obtained a classification of the pairs (X, L) with $(*)_{d}$ in the degree 5 case. In fact, no less than two "non-obvious" pairs newly show up as stated below: (4) and (5).

Main Theorem. Let X be a projective manifold of dimension $n+1>$ 6. Then there exists a very ample line bundle L on X that satisfies the condition $(*)_{d=5}$ if and only if (X, L) is one of the following:
(1) $\left(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(5)\right)$;
(2) $\left(H_{5}^{n+1}, \mathcal{O}_{H_{5}^{n+1}}(1)\right)$;
(3) $(Y, 5 \mathcal{L})$;
(4) $\left(V_{10}, \mathcal{O}_{V_{10}}(5)\right)$, where V_{10} is a smooth weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}\left(5,2,1^{n+1}\right)$; or
(5) $\left(W_{20}, \mathcal{O}_{W_{20}}(5)\right)$, where W_{20} is a smooth weighted hypersurface of degree 20 in $\mathbb{P}\left(5,4,1^{n+1}\right)$.

Notation. Here $\mathbb{P}\left(e_{0}, \ldots, e_{N}\right)$ denotes a weighted projective space Proj $\mathbb{C}\left[X_{0}, \ldots, X_{N}\right]$ with weights $\mathrm{wt}\left(X_{i}\right)=e_{i}$ for each $0 \leq i \leq N$. And, for instance, we abbreviate $\mathbb{P}(5,2, \underbrace{1, \ldots, 1}_{m})$ to $\mathbb{P}\left(5,2,1^{m}\right)$.
(1.7) A new problem arising in our degree 5 case is to determine the structure of a certain polarized manifold (X, \mathcal{H}) with invariants

$$
\Delta(X, \mathcal{H})=d(X, \mathcal{H})=1
$$

where $\Delta(X, \mathcal{H})$, said to be the Δ-genus of (X, \mathcal{H}), is defined by $\operatorname{dim} X+$ $\mathcal{H}^{\operatorname{dim} X}-h^{0}(X, \mathcal{H})$.

In general, the polarized manifolds with these invariants are classified by T. Fujita [Fuj1] in case where the sectional genus

$$
g(X, \mathcal{H}):=1+\frac{1}{2}\left(K_{X}+n \mathcal{H}\right) \cdot \mathcal{H}^{n} \leq 2 .
$$

In case where the sectional genus ≥ 3, the classification problem of the polarized manifolds with $\Delta(X, \mathcal{H})=d(X, \mathcal{H})=1$ is yet to be studied and developed for no less than about two decades.

In the degree 3 case, it follows from the arguments as in [LPS2] that $g(X, \mathcal{H})=1$. Therefore one has only to apply the Fujita's classification in [Fuj1] in order to obtain the classification described above.

In contrast, in our degree 5 case, we have to treat the case where $g(X, \mathcal{H})=6$. In fact, we can determine the structure of a new polarized manifold which does not appear in the Fujita's classification ((5) in Main Theorem), successfully.

2 The Keys of the Proof of Main Theorem

(2.1) The following are the keys of the proof.
(A) To prove the very ampleness of the line bundle $\mathcal{O}_{W_{20}}(5)$ in Main Theorem (5) ('if' part).
(B) To determine the structure of a certain polarized manifold (X, \mathcal{H}) with $\Delta(X, \mathcal{H})=d(X, \mathcal{H})=1$ and $g(X, \mathcal{H})=6$ ('only if' part).
(2.2) What is the important is the following:

Fact 1. For a polarized manifold (M, \mathcal{L}),

$$
\Delta(M, \mathcal{L})=d(M, \mathcal{L})=1 \Longrightarrow \mathrm{Bs}|\mathcal{L}| \text { consists of a single point. }
$$

For the proof, we refer to $[$ Fuj1, (13.6)]. In what follows, we put $p:=\mathrm{Bs}|\mathcal{L}|$.
(2.3) We take a coordinate system of $W_{20} \subset \mathbb{P}\left(5,4,1^{n+1}\right),\left\{x, y, z_{0}, \ldots, z_{n}\right\}$, where $\operatorname{wt}\left(x, y, z_{i}\right)=(5,4,1)$ for each $0 \leq i \leq n$. Then it is shown that the following form a basis of $H^{0}\left(W_{20}, \mathcal{O}_{W_{20}}(5)\right)$:

$$
x, y z_{0}, \ldots, y z_{n}, z_{j_{1}} \cdots z_{j_{5}}, \text { where } 0 \leq j_{1} \leq \cdots \leq j_{5} \leq n .
$$

(2.4) We get the conclusion with the next steps:
(A1) We show that $\mathrm{Bs}\left|\mathcal{O}_{W_{20}}(5)\right|=\emptyset$;
(A2) We claim that the morphism $\varphi: W_{20} \rightarrow \mathbb{P}\left(\left|\mathcal{O}_{W_{20}}(5)\right|\right)$ associated to $\mathcal{O}_{W_{20}}(5)$ is injective; and
(A3) We prove that the linear system $\left|\mathcal{O}_{W_{20}}(5)\right|$ separates the tangent vectors.
(2.5) We use the following fact:

Fact 2 (A. Laface). Let (M, \mathcal{L}) be a polarized manifold with $\mathcal{L} \geq 0$. Assume that the graded ring $R(M, \mathcal{L}):=\bigoplus_{l=0}^{\infty} H^{0}(M, l \mathcal{L})$ is generated in degrees $\leq r$. Then the rational map associated to $r \mathcal{L}$

$$
\varphi_{r \mathcal{L}}: M \backslash \mathrm{Bs}|\mathcal{L}| \longrightarrow \mathbb{P}(|r \mathcal{L}|)
$$

gives an embedding.
For the proof, see [Laf, Theorem 2.2].
From $\Delta\left(W_{20}, \mathcal{O}_{W_{20}}(1)\right)=d\left(W_{20}, \mathcal{O}_{W_{20}}(1)\right)=1$, it suffices to prove that φ gives an embedding at p.
(2.6) (A1): Since W_{20} does not meet the singular locus of $\mathbb{P}\left(5,4,1^{n+1}\right)$, we have

$$
W_{20} \supset \operatorname{Bs}\left|\mathcal{O}_{W_{20}}(5)\right|=(x=0) \cap\left(\bigcap_{0 \leq i \leq n}\left(z_{i}=0\right)\right)=\emptyset .
$$

(2.7) (A2): For any $q \in W_{20}$ satisfying $\varphi(p)=\varphi(q)$, we obtain that $z_{i}(q)=0$ for all $0 \leq i \leq n$. Hence, by (2.2), we see that

$$
q \in \bigcap_{0 \leq i \leq n}\left(z_{i}=0\right)=\operatorname{Bs}\left|\mathcal{O}_{W_{20}}(1)\right|=\{p\} .
$$

(2.8) (A3): To prove is that for any non-zero tangent vector $\tau \in T_{p}\left(W_{20}\right)$ there exists a section $\sigma \in H^{0}\left(\mathcal{O}_{W_{20}}(5)\right)$ satisfying the following conditions

$$
\sigma(p)=0 \text { and } d \sigma(\tau) \neq 0
$$

We claim that $\sigma_{i}:=y z_{i}$ satisfies the above conditions for some $0 \leq i \leq n$. The former condition holds because $z_{i}(p)=0$ for all $0 \leq i \leq n$. We prove that the latter holds by contradiction. Suppose that there exists an nonzero $\tau \in T_{p}\left(W_{20}\right)$ such that $d \sigma_{i}(\tau)=0$ for all i. Since $d \sigma_{i}(\tau)=y(p) d z_{i}(\tau)$ and $y(p) \neq 0$, we see that $d z_{i}(\tau)=0$ for each i. Therefore we obtain

$$
\tau \in T_{p}(\Gamma), \text { where } \Gamma:=\bigcap_{1 \leq i \leq n}\left(z_{i}=0\right) \subset W_{20}
$$

Furthermore, since $d z_{0}(\tau)=0$, we obtain that $\Gamma \cdot \mathcal{O}_{W_{20}}(1) \geq 2$, which contradicts $\mathcal{O}_{W_{20}}(1)^{n+1}=1$. Thus (A3) is proved.

Part (B)

(2.9) The aim of Part (B) is to determine the structure of the polarized manifold (X, \mathcal{H}) with the following condition:

$$
h^{0}\left(A, \mathcal{H}_{A}\right)=n+1 \text { and } g(X, \mathcal{H})=6 .
$$

Here we want to prove the following:
Theorem 2. We have

$$
(X, \mathcal{H}) \cong\left(W_{20}, \mathcal{O}_{W_{20}}(1)\right)
$$

(2.10) The next lemma follows from typical calculations. What is the important in the proof of Theorem 2 is the very ampleness of $5 \mathcal{H}$.

Lemma 1. We have (1) $L=5 \mathcal{H}$; (2) $d(X, \mathcal{H})=1$; and (3) $h^{0}(X, \mathcal{H})=$ $n+1$, therefore $\Delta(X, \mathcal{H})=1$.

Remark. Let $V_{i}(1 \leq i \leq n)$ be a general member of $|\mathcal{H}|$. Set

$$
S:=\bigcap_{1 \leq i \leq n-1} V_{i} \subset X, \text { and put } C:=S \cap V_{n} \subset X
$$

Then, in fact, we can show that S and C are smooth. Moreover, we obtain that $h^{0}\left(\mathcal{H}_{S}\right)=2$ and $h^{0}\left(\mathcal{H}_{C}\right)=1$. But we omit the proof here
(2.11) We proceed with the following steps.
(B1) We show that $R\left(C, \mathcal{H}_{C}\right) \cong \mathbb{C}[x, y, z] /\left(F_{20}\right)$, where

- $\mathrm{wt}(x, y, z)=(5,4,1)$; and
- F_{20} is some irreducible homogeneous polynomial of degree 20 in $\mathbb{C}[x, y, z]$.
(B2) We claim that the restriction map $\rho: R\left(S, \mathcal{H}_{S}\right) \rightarrow R\left(C, \mathcal{H}_{C}\right)$ is surjective.

Indeed, (B1) and (B2) imply the assertion by the following reason: We see that $\left(S, \mathcal{H}_{S}\right)$ is a weighted hypersurface of degree 20 in $\mathbb{P}\left(5,4,1^{2}\right)$. Combining this and a result by S. Mori [Mor, Proposition 3.10], we obtain that (X, \mathcal{H}) is a weighted hypersurface of degree 20 in $\mathbb{P}\left(5,4,1^{n+1}\right)$. Thus the assertion holds.

From now on, we explain the idea for the proof of (B1) and (B2).
(2.12) Outline of the proof of (B1): First we will find generators of the graded algebra $R\left(C, \mathcal{H}_{C}\right)$ by calculating each $h^{0}\left(l \mathcal{H}_{C}\right)$. Using the adjunction formula, we obtain that $g(C)=6$. And it follows from the RiemannRoch theorem for curves that

$$
h^{0}\left(l \mathcal{H}_{C}\right)-h^{0}\left((10-l) \mathcal{H}_{C}\right)=l-5 \text { for all } l \geq 0 .
$$

For $l \geq 11$, we immediately have $h^{0}\left(l \mathcal{H}_{C}\right)=l-5$ due to the Kodaira vanishing theorem. For $0 \leq l \leq 10$, one can compute the values $h^{0}\left(l \mathcal{H}_{C}\right)$ as follows:

l	$h^{0}\left(l \mathcal{H}_{C}\right)$	l	$h^{0}\left(l \mathcal{H}_{C}\right)$
1	1	6	3
2	1	7	3
3	1	8	4
4	2	9	5
5	3	10	6

In fact, the keys of the computation of $h^{0}\left(l \mathcal{H}_{C}\right)$ are $d(X, \mathcal{H})=1$ and the very ampleness of $L=5 \mathcal{H}$. We see that the image of C by the morphism associated to $5 \mathcal{H}_{C}$ is a smooth plane quintic curve. Therefore we have $h^{0}\left(5 \mathcal{H}_{C}\right)=3$. Furthermore, it is well-known that a smooth plane quintic curve has neither g_{2}^{1} nor g_{3}^{1}. Thus it follows that $h^{0}\left(2 \mathcal{H}_{C}\right)=h^{0}\left(3 \mathcal{H}_{C}\right)=1$.

We also see that $h^{0}\left(4 \mathcal{H}_{C}\right)=2$ by using $\operatorname{deg} \mathcal{H}_{C}=1$. In this way, we obtain the above table.

Now let z be a basis of $H^{0}\left(\mathcal{H}_{C}\right)$. Choose $y \in H^{0}\left(4 \mathcal{H}_{C}\right)$ such that $H^{0}\left(4 \mathcal{H}_{C}\right)=\left\langle z^{4}, y\right\rangle$. Moreover, choose $x \in H^{0}\left(5 \mathcal{H}_{C}\right)$ such that $H^{0}\left(5 \mathcal{H}_{C}\right)=$ $\left\langle z^{5}, y z, x\right\rangle$. It is proved that the sections x, y, z are generators of $R\left(C, \mathcal{H}_{C}\right)$ by using the following fact:

Fact 3. For any integer $l \geq 12$, the equation $5 i+4 j=l$ has at least one solution (i, j) of non-negative integers.

Next, we find the relations among the generators. We see that there exists a unique relation F_{20} of degree 20 comparing the values of each $h^{0}\left(l \mathcal{H}_{C}\right)$ and the numbers of pieces of the monomials in each $H^{0}\left(l \mathcal{H}_{C}\right)$. Moreover, we see that the relation is written as

$$
F_{20}=x^{4}+y^{5}+z \phi_{19}(x, y, z)
$$

after we replace x and y by suitable scalar multiples, where $\phi_{19}(x, y, z)$ is a homogeneous polynomial in x, y, z of degree 19. And we can also show that F_{20} is irreducible in $\mathbb{C}[x, y, z]$ by easy calculations. Taking account of this and $\operatorname{dim} \mathbb{C}[x, y, z]=3$, we see that the relations are generated by F_{20}, which proves (B1).
(2.13) Notation. Let $\mathbf{s}=\left\{s_{0}, \ldots, s_{N}\right\}$ be a minimal set of generators of $R\left(S, \mathcal{H}_{S}\right)$. And write

$$
R\left(S, \mathcal{H}_{S}\right)=\mathbb{C}\left[s_{0}, \ldots, s_{N}\right] / I_{\mathrm{s}} \text { with some homogeneous ideal } I_{\mathrm{s}}
$$

(2.14) Outline of the proof of (B2): It suffices to prove that $R\left(S, \mathcal{H}_{S}\right)$ is a Cohen-Macaulay ring because it is fulfilled that $H^{1}\left(l \mathcal{H}_{S}\right)=0$ for all $l \in \mathbb{Z}$. From now on, we find a regular sequence of length 3 contained in $R\left(S, \mathcal{H}_{S}\right)_{+}:=\bigoplus_{i>0} H^{0}\left(S, l \mathcal{H}_{S}\right)$. In fact, by recalling that $h^{0}\left(\mathcal{H}_{S}\right)=2$, we have $H^{0}\left(\mathcal{H}_{S}\right)=\langle s, t\rangle$ with $\rho(t)=z$ and $(s)_{0}=C$. Then we can show that a sequence s, t is $R\left(S, \mathcal{H}_{S}\right)$-regular. But we omit the proof here.

Now by using the very ampleness of $L=5 \mathcal{H}$, we can prove the following.
Lemma 2. The restriction map $\rho_{5}: H^{0}\left(5 \mathcal{H}_{S}\right) \longrightarrow H^{0}\left(5 \mathcal{H}_{C}\right)$ is surjective.

Here we choose a section $u \in H^{0}\left(5 \mathcal{H}_{S}\right)$ such that $\rho_{5}(u)=x$. What we want to prove is that u is $R\left(S, \mathcal{H}_{S}\right) /(s, t)$-regular. The following is important:

Lemma 3. The ideal I_{s} has no generators in degrees ≤ 5.
For the proof, we refer to [Ami, Lemma 6.5].
Now, by (2.2), we find that $p=\operatorname{Proj}\left(R\left(S, \mathcal{H}_{S}\right) /(s, t)\right)$ is an integral scheme. Hence $\left(R\left(S, \mathcal{H}_{S}\right) /(s, t)\right)_{+}$has no zero-divisors. Furthermore, due to Lemma 3, we get the conclusion.

References

[Ami] Amitani, Y.: Projective manifolds with hyperplane sections being five-sheeted covers of projective space. Preprint, April 4th, 2005.
[Cas] Castelnuovo, G.: Sulle superficie algebriche le cui sezioni piane sone curve iperellittiche. Rend. Circ. Mat. Palermo 4, (1890), 7388.
[Fan] Fania, M. L.: Trigonal hyperplane sections of projective surfaces. Manuscripta Math., 68 (1990), 17-34.
[Fuj1] Fujita, T.: On the structure of polarized manifolds of total deficiency one, III. J. Math. Soc. Japan 36 (1984), 75-89.
[Fuj2] Fujita, T.: Classification theories of polarized varieties. London Math. Soc. Lecture Notes Series, Vol. 155, Cambridge Univ. Press, Cambridge, 1990.
[Laf] Laface, A.: A very ampleness result. Matematiche 52, No. 2 (1997), 431-442.
[LPS1] Lanteri, A., Palleschi, M., and Sommese, A. J.: Double covers of \mathbb{P}^{n} as very ample divisors. Nagoya Math. J. 137 (1995), 1-32.
[LPS2] Lanteri, A., Palleschi, M., and Sommese, A. J.: On triple covers of \mathbb{P}^{n} as very ample divisors. Classification of Algebraic Varieties, Proc. L'Aquila, 1992 Contemp. Math. Vol. 162, Amer. Math. Soc., 1994, 277-292.
[Laz] Lazarsfeld, R.: A Barth-type theorem for branched coverings of projective space. Math. Ann., 249 (1980), 153-162.
[Mor] Mori, S.: On a generalization of complete intersections. J. Math. Kyoto Univ., 15-3 (1975), 619-646.
[Ser] Serrano, F.: The adjunction mapping and hyperelliptic divisors on a surface. J. Reine Angew. Math., 381 (1987), 90-109.
[SV] Sommese, A. J., and Van de Ven, A.: On the adjunction mapping. Math. Ann., 278 (1987), 593-603.

[^0]: ＊January 12th， 2006.

