
Fundamentalgroups and Diophantine geometry

MinhyoRg

January 17,

Kim

2007

   Consider the strategy of studying a point x on a curve X (defined over Q) by associating to it a

macro$eopic gegmetric objecÅí. Thefe are at }easXhree imaportaRt examples that ceme to mixxd:
   (1) The Abel-jacobi map that associates te x a line handle O(x - b).
   (2) The Kodaira--Parshin construction that associates to x a curve C. (running in a family
pararnetrized by X).
   (3) The Frey-Hellegouarch construction that associates an elliptic curve to a point on a Fermat

curve.
   [I'here is an obvious sense iR ve'hick example (l) is much more caRonicai than the ad hoc methods
gf (2) a[kd (3). gewever, (O has Rever beeit geBeTal}y applicable tg fiRitene$s theerems ey the problem

of determining points oxx hyperbo}ic curves.
   The Abel-Jacobi map in the incarnation above is atgebraic, as is important for Diophantiiie ap-
plicatioris. Over the complex numbers, there is also an analytic description, whereby points of X
parametrize extensions in the category of inixed Hodge structures:

                   rcij : x H lO-H2 (X(Åë), Z).H, (X(C), {x, b};Z)-rfZ--"{Årl

In fact, from this analytic perspective, ffain [5] constructad a lift of Kij to a higher Albanese map:

                               .B :x -. [pB(x(C);b,x)1

Here, I'B(X(Åë);b,x) is the set of unipotent patbs frombte x:

                             PB(X(C);b,x) == isomX(Fb, Fx)

where Fx is the fiber functor

                               F. : Vn(X(C),Q) N VectQ

that associates to a local system L its stalk at x:

                                      ÅíH Åíx-

Thus, the PB(X(C);b,x) for varying x runs through a Åëlassifying space for torsors under the pro-

unipotent fundamental group
                             uB(x(c),b) ,= PB(X(C);b,b)

where the objects live in a suitable eategory of non-abetian mived Hedge structures I61.

   {]his censtructieft in tke realm eÅí Archimedeai} aRa}ysi$ has a Refi-ArchimedeaR aRa}ogue over Qp

that gives rise te a map
                            Kdrlcr : x " cpdrlcr(x(zp); b, x)]

going from Zp points of X to classifying $paces for torsors under the De Rharnlerystalline fundamental

group
                                  udr/er (x Q Q,, b).
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   Globally, there is also a topotogical analogue

                            Ketlgiob : x N [petlgiob(.Jl ; b, x)l

that takes global poiRts x E X(R), w}}ere = Zil/S] i$ some ring of S-iRtegers, tc tgTsors ullder tke
unipotent 6tale fundamental group
                                  uetlgtob(.Åí,b).

Recall that a motivic thGory of such pro-unipotent fumdamental groups was outlined by Deligne [1].
   The eventual result of this discussion is a diagrarn:

                                x(R) - x(z.)

Ket,glob Kdrfe.r

                                       D o lo(h)                              Il} (r, Uet) - udr!FO

[l]he ebjects }R ehe bot#om row aye pr(Åra}gebraic var2eties o'ver mpp that c}asslfy torsors in sukab}e
categories. The bottom horizontal map comes from (easy) localization and (diMcult) non-abelian
p-adic Hodye theor!s ([31, [12]) which realizes the congruence between p-adie arithmetic tepo!ogy and
p-adic analysis. ffventualiy, we have axx ambiexxt pro-algebraic variety Udr/Ffi and sttbsets ImlX(Zp)]

and Im[Elr;(r, Ufit)] that have the property of contaming the image of the global points in their
iRterseetioxx:

                       Jm[X(R)] c Im[X(z,)] n lm[N} (r, uet)]

   T, he effort to use this iRtersectioR to gain coRtrol of the global points is described iR the papers i2],

[8], [9i, (1lj, and liOl. The guiding principle that emerges is that the program outlined by Grothendieck

in [4] should be viewed as a nonabelian analogue of the conjecture of Birch and Swinnerton-dyer [71.
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