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1 Introduction

At the Kinosaki Symposium (Oct. 2006), we have reported our recent results
on the following topics:

(i) Kummer sandwich theorem
(ii) Mordell-Weil Lattices (MWL) of some elliptic K3 with high rank.
   The first topic (i) has since been published (see [22]), and so we make
only a brief outline in g2, referring to the paper for the proof. For the second

topic (ii), the detailed version is still in preparation. After recailing basic

facts on MWL in S3, we treat a single special case:

                       E: y2 = x3 + t5 + ilti

which has the Mordell-Weil group E(Q(t)) of rank 16 (Q is the algebraic
closure of Q). In S4, we indicate how we determine the MWL together with
some explicit generators Pi, . . . , Pi6, and the splitting field of this MWL.

   Taking the opportunity of writing up this report in a semi-informal Pro-

ceedings of the Kinosaki Symposium, let me include a third topic:
(iii) Elliptic modular surface (EMS) of level 4 revisited.

In fact, it is this subject that has sparked my interest (more than 30 years
ago) in the K3 surfaces, as well as in algebraic geometry in char p År O. In

g5, I record some exciting developments I have experienced around that time
[-it may not be completely useless, I hope] and give an update of this old
subject ([13], [14], [15]) which will contain, to my surprise(!), something new.
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The main reason why this becomes possible is due to the method of MWL,
especially the height formula (see g3), established in [16] in the meantime.

   I thank Matthias Schtitt for helpfnl discussion and comments.

2 Kummer sandwich theorem
NVe fix a base field k which is algebraically closed and has char(k) l 2,3.
For the singular fibres of an elliptic surface, we follow Kodaira's notation [6],

cf. [24].

Theorem 1. Suppose X is any etliptic 'K3 surface ivith a section and with
two II'-fibres. Then there exist a unique Kummer 6urface S = Km(Ci Å~ C2?
of the product of two elliptic curves Ci, C2 and two commuting symplectic
involutions a,T E Aut(S) such that (i? the quotient surface S/ÅqaÅr is bira-

tional to X, and (ii? the quotient surface S/Åqcr,TÅr is birational to S itself

In particular, S dominates and is dominated by X, by the rational maps of
degree two:

                     ip:S-X, th:X-S. (1)
   The motivation to study those special K3 surfaces is as follows. It is well-
known that in the proof of the Torelli theorem (injectivity of the period map)

by Piateckii-ShapirffShafarevich [101 a special role is played by the Kummer

surfaces which are dense in the moduli space of polairized K3 surfaces. The
elliptic K3 surfaces with two II*-fibres are first constructed in Inose--Shioda
[5] (corresponding to the above vi ) and used for proving the surjectivity of

the period map in the case of singular K3 surfaces, which gives the complete
classification of such surfaces. This construction is extended by Morrison [9]

in a useful way. Another construction given by Inose [41 (corresponding to
the above ip) has recently been reconsidered by Kuwata [7] (cf. [18], [21]),

one reason being that it leads to elliptic K3 surfaces with high Mordell-Weil

rank (see g4). Thus these K3 surfaces, very special as they may be from the

moduli point of view, have various rich properties, which we think are still

worth studying today. Along the same line, an approach to the notion of
isogeny for K3 surfaces has been proposed in the case of singular K3 surfaces
in [4], [5]. The above theorem illustrates that an eliiptic K3 surface X with

two II'-fibres is "isogenous" to a Kummer surface S in a very concrete sense.

By the way, it is an open question to decide whether or not the existence of

a dominant rational map of K3 surfaces X . Y is symmetric with respect
to X, Y as in the case of abelian varieties.
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   Actually Theorem 1 can be made very explicit in terms of equations. Let
X be aA e}}iptic K3 sgrfaÅíe over tke T-}ine P} with two If"-fibres. TkeR;

Proposition 2. Every such X has the defining equation

               FÅíG: y2 rm `v3-3ax+(T+ ;- 25) (2)

for some constants a, ,S such that (a3,S2) is unigne y determined by X.

   Oll the other haRd, let S = Km(Ci Å~ cr2) be the Kummer surface of
the product of two elliptic curves Ci, C2. Let ji,J'2 denote their o'-invariauts.

(The 2'-invariant is "classicallÅrr" normalized so that o' -- 1 for the elliptic curve

y2 = x3 -x instead of j' -- 1728.) Let us write such an S as

                    .
                           S == S]'i,j2'

Proposition 3. The Kummer surface S = Sti,,j, admits an elliptic fibration
f : S - P,i which has two IV'-.tibres. Its defining equation is:

               Fg?G: y2 me x3-3ftx+(t2 -{- ;, -2s) (3)

where
                 dv=3p'ij2,6= (1-2",)(1-p',) (4)
(the choice of the cube root or square root arbitrary?.

Propesitien 4. The Kummer surfGce S rm S3•,"•, gdmits another eiliptic
.fibratie# f' : S -. PL with (at le{rsij Shree singuggr fi5res II",Ib',,Ib',, er

Ii', Io',IV'. if we normaliie the position of these fibres at the 3 points u me
oo, u =: Å}2 of the base curve PL, the defining eguation is given by

          FE9G: y2 == x3 -3a(u2 -4)2x -F (u- 25)(u2 -4)3 (s)

where a,fi gre the same gs befere.

   The map ip : S - X in Th.1 corresponds to the map F(2) -+ F(i) defined

by
                   (x, y, t) N (x, y, T), T = t2,

whi}e the map " : X . S correspoRds to the map F(i) - F(OÅr defued by

    (x,y,T) H (X, }'T, u),X ww x(T- ii})2, Y ww- y(T - ;)3,it :T+ E}•

The automorphisms a, r are realized as follows:

          ff : (x,y, t) e (x,y, -t), T ; (x,y, t) H (v, -y,l/t).

   We refer to i22] (cÅíi8]) for the preef akd the rest of amgwnents.
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3 Mordell-WeilLattices
To study the structure of the MWL (see [18]), we recall two general formulas

from the theory of Mordell-Weil lattices [16]. Suppose E is an elliptic curve

over K == k(C) (C/k any curve) such that the associated elliptic surface
f : S - C has at least one singular fibre. VSre identify the K-rational
points P E E(K) with the sections a : C - S and denote the image curve
Im(a) c S by the symbol (P).
   (1) Height formula: For any PE E(K), we have

            ÅqP, PÅr - 2x(S) +2(PO) -2 contr. (P), (6)

                                  v
where x(S) is the arithmetic genus of S and (PO) denotes the intersection
number of the section (P) and the zer}section (O) on the elliptic surface S

([l6, Th.8.2]). The term contr.(P) is a local contribution at v C C where
the fibre at v is reducible. Its value is determined by the type of reducible
fibre at v and t,he component hit by the section (P), and it is given by ([16,

(8.16)]).

   (2) Determinant formula: Let M be the Mordell-Weil lattice M =
E(K)/E(K)t.. Then, by [16, Th.8.7], we have

            det M/ IE(K)t. 12 -Å}det NS(S)/ det Vs (7)

where Vs denotes the trivial lattice of f : S - B. For the convenience of
the reader, we also write down the standard relation on the Picard number
p(S) = rk NS(S) and the MW-rank r = rk M (see [16, (5.10)]):

                     r=p(S)-rk Vs. (8)

4 Structure of MWL for some elliptic K3 with
    high rank
 .
We consider the base change of F(i) via T = tn:

              F:?G: y2 =x3-3ax+ (t" + ;. -26) (9)

For every O Åq n S 6, this equation defines an elliptic K3 surface. For
simplicity, we assume that k == Q and J'i l j'2. Then, by [7] or l18], the

Mordel}-Weil rank is given by the formula:

    rsc}-rkF$(k(t))-rkHom(c,,c,)+(%"-i) l:;-g' (io)
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   IR the follgwiRg, we look at tke strgcture gf #}ie MWL aRd give exp}icit
generators of k(t)-rational points in a special case: take dv = O,5 = O and let

n me 5:
                   E -= Fo15oÅr : y2 == x'3+t5 inihe iU,

This corresponds to the case: ]" i xx O,]' 2 ::-r 1, i.e.

Ci : y2 =x3 -1, C2 : y2 = v3 -x.

Since tkese el}iptic cgrves are Rot i$ogeRo"s iR char e, we kave Hom(Ci , C2) =
O and hence E(k(t)) has rank r = r8?8 - l6.

   Set
                 s=t+l, T:==t5, w=T+zl•

Then the elliptic cu!ve E is actually defined over k(w):

E:y2=x3+w,
akd we waltt tc study tke MW-greup E(k'(t)). Observe e}}at the field exten-
sion k(t)/k(zv) is a Galois extension with the Galois group G == Åqcr, 7År, where

we denote now by
                                        1                     a:t-Åqs'-t, r:t-+l

(with Åqs a primkive 5-th root of unityÅr. Thus C is the dihedra} group of order

iO, and the inteTmediate fields of k(t)/k(w) correspond to the subgroups of
C by Galois theory. In particular, k(T) corresponds to ÅqaÅr, while k(s) to Åq7År.

We have
                   E(K- (w)) - O, E( k• (T)) - O.

(The latter is actually a itontrivial consequence of r(iÅr == O in our situation.)

On the other hand, the MWL E(h(s)) is a }attice of rank 8, isomorphie to
the root lattiee Es, because E/k(s) defines a rational elliptic surface (RES)

eve: the s-lii}e, without reducible fibres:

E : y2 = x3 + 's5 - 5s3 + 5s,

and the structure of such a MWL is wellknown to be Es (see [16]). Moreover
this equation is a special case of the (Es)-model treated in [17], where the

!kethod to determine the k(s)-TatioRal peints is giveR.

   Now let M = E(k(t)) denote the MWL in question (note that E(k(t)) has
no torsion). The sublattice L = E(k(s)) is isomorphic to Es[21, the scaling
factor 2 being tke degree of the extei}siok k(t)/k(s) (see [l6, Prop.8.i2]).

Thuks we have
                        M v L g-Y Es[2].
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Now we consider thd action of a on M, and let L' -ww Lcr denote the image

of L in M. Then we claim that L n L' = O and L + L' spans a sublattice of
finite index in M. This is because we have k(s) A k(scr) :== k(w) by Galois

theory aRd E(k(w)) xe O.

Tkeerem 5. Let Ati me E(hfi(t)) be the MWL of the eSkptie cn?'zJe E/k(t) :
y2 = x3 + t5 + i/t5. Then M is an eyen integrag lattice of rank 16 such that

(i] detM == 5`, (ii?M =L+L', (iii? Let {Pi(s)(l wwÅq i S 8)} be a basts of
L = E(k(s)), then the 16 k(t)-rational points {Pi(t + 1/t), Pi(Cst + 1/Åqst)}

form a set of generators ofE(k(t)). (iv? The minimal norm (--minimal
height? ofM is 4, and the center density is equal to 1/52. (v? The number

of the minimal vectors (i.e. the kissing number of "O is at least 1200.

Proof (Outline) Set AIf' = L+ L'. This is the sublattiÅëe of IVf spanned by
the l6 peints above. 'Irhe determinant det .M' is equal to the height matTix

(ÅqR,,PjÅr) ef these 16 points. ComputiRg it usikg the height formu}a (6),
we figd tkat det M' ww 54. Lekiftg y 5e Åíhe index ef M' k M, we have
det M == 54/y2. The minimainorm of M is at least 4 by the height foTmula
and actually it is equa} to 4. Hence the center density of this l6-dimensional

lattice M is:
                         6(M) == y/52.

As is remarked in [18], if u År 1, it would violate the sphere packing bound
in dimension 16 ([21), and hence we have y= 1. This implies M= M', and

all the assertions follow. q.e.d.
   In cai rying ogt the above out}iRe, we have computed the explicit form of
Pi E L = g(k(s))(i Åq- 8År (cÅí il7]). Eeck of tkese points is a"rogt" gf tke

root }akice gs a[ltd takes the form:

             P ww (S, (s2 + as + b), t, (s3 + cs2 + ds + e))

for suitable constants u, a, b, c, d, e, where c, d, e aace determined by u, a, b. To

give an idea, Iet us write down one point explicitly. Let

              U mm -1665 - 990Vli - 784vXEi - 420Vig,

and let u= ue = Uili2. We let a == Au6,b : BU, where

               A nm 146g ÅÄ g43Vii - 653V5 - 377Vrs,

and
         B = 2041984 -l- ll78940Vll - 913203Vli; - 527238Viei.

This gives one of the points Pi, say Pi.
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Corollar y 6. The splitting field ofE/Q(s) (i.e. the smatlest extension ofQ
over which a set of generators ofE(k(s)) is defined? is given by

                    rce = Q(Vii, VEi, V:EII)(uo)

and the spgitting fiegd ef E/Q(t) is eguag te

                 rc ww rc,(Åq,) - Q(vg, v:T, Åq,,u,).

Remark Compare [25] for a different proof of Theorem 5(i). Note that the
sum in (ii) L + L' is not an orthogonal direct sum.

5 Elliptic modular surface of level 4 revisited

Let f ; S - C denote the el}iptic modular surface of }evel 2V År- 3 ([l31). It

is tke gRiveysa} fami}y of elliptic curves wiek level N--structgre, pa[{rametrized

by the elliptic modulair e xve C = CN ef ievel N. There are slRgu}ay fibres
of type IN ever the t(N) cusps in C, where t(N) =: i/2 • N2 }JI.IN(1 -p-2).

   Let E denote the gexxeric fibre of f; it is an elliptic curve defined over

K = k(C), the field of elliptic modular functions of level N. Here the base

field k is any field containing a primitive N-th root of unity, The MW-group
E(K) naturally contaims the group of N-torsion points which is isomorphic
to (Z/ArZ)e2. Thus we have N2 (disjoint) sections of f : S . C.
   Now, in char O, we have proven ([13]) that these. are the only sections.

Geometrica}ly this looks very natural. Indeed what else could appear as a
sectiolt of such a universal family over the modu}i space? So my iRitiaS gttess

was ehat tke same pheitomeRoR shoÅí{ld kold trae ig aRy ckar p År g Rot
dividing N.
   For N = 3, this is true. It is known to Igusa [31 thaÅí S is given by the

Hesse's normal form

                  E, x3 + y3 + z3 - 3txYZ rm O

and that E(k(t)) consists of the 9 base points of the linear pencil, the group

of 3-torsion points. Another proof based on MWL is this; in this case, S is
a rational elliptic surface with 4 sipgular fibres of type J3. Thus the trivial
}attice is A9` c Es, which imp}ies that E(k(t)) i$ isomorphic to the quotient

grcup (Z!3Z)ee2.

   FGr N = 4, S is axx elliptic K3 surfaee wkk 6 singu}aGr fibres of type f4,

which is defined by the equatioR:

                 .Il7:y2 = x(x-4t2)(x-(t2 --- 1)2). (11)
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This is derived frorn the Legendre equation with A mm (1/2(t + 1/t))2 ([14]),

by getting rid of the denominator in the coeficients.

   In char e, Åíhe Picard mimber p = rkNS(S) is at most equal to the Hodge
Rumbey p :{ hi,i by Lef$chetz-Hodge theer.v, alld the rank of tke trivial lattice

(geReyaeed by tke zer(År-$ectiok altd the gbre compoRent$) is eq=al tg the =pper

bound hi" = 2e. This implie$ that E(K) has ranig e and gÅr-( (Z/4Z)ts2. (The

same argument wQrks for any level ?V:) {
   In char p År O, however, we have only the weaker inequality p S b2 =
hi,i +2pg where b2 is the second Betti number and pg is the geometic genus of

the surface. For a K3 surface, we have pg = 1, b2 == 22. Nowadays everybody

knows that there are K3 with p = 22, called supersingular K3. But at the
time I worked on this problem (early 1970's)., the situation was different.
In connection with the arithmetic theory of surfaces, fue have determined
the zeta function of S (Ii3, Appendix]). Then the Tate conjecture Åqand the

Birch-SwiRRertgR-Dyer coajecture) sgggested tkat

   f20, r=C ifpil
P "=  i22, r=2 if pi3

mod 4,

med 4.
(12)

The former case is just as in char O, which is easily settled. The latter case

wag against my initial guess above suggested by the geometric idea, and I
tried for some time to disprove it (which would be a counterexample to the
Tate conjecture), of course in vain.

   About a year later, it occurred to me that, if it was impossible to disprove

it, maybe l sheuld try to fixxd some Rew ratioRai peints. Axxd I fouRd, in the

very special case p me 3, two indepeedent poiRts in E(K) modglo tersloR
(Il4, Prcp.8]). [I]keR I suÅëceeded ii]L fully proving (l2), by $howiRg that eur

surface S (the EMS of }evel 4) is a Kummer surface Kma(A) for explickly given
abe}ian surface A (see [15i; this is my report at the "Conference Manifo}ds-

Tokyo, 1973", where I learned from M.Artin that he and Swiimerton-Dyer
proved the Tate conjecture for elliptic K3 surfaces.) Then came Artin's
work [1] (1973), which introduced the notion of Artin invariant a with the
property that detNS(X) : p2a for X a supersingulanc K3 in char p; the
elliptic modular surface S of level 4 played a nontrivial role there and it was

shown to have a = 1 if pu iiii 3 mod 4. The most $triking feature of Artin's
theory is that supersingu}ax K3's have 9-dimei}sieiial moduli (which scunded

like a matheraatical allaiogge ef "sgpercoitductivity"!). Tke deve}epments
oR the subject after iÅí skould be we}}kkowk to most peepie aRd omitted (bgt

to mention a few, Rudakov-Shafaievich, Ogus, etc).
   Now let me present the update for EMS of level 4 in the supersingular

case:

il2
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Theorem 7. The Mordell-Weil lattice M = E(K)/E(K)t.. of the EMS
of level4 in char pu ww 3 mod4 is a rank 2 lattice with the height matrix
(P64 p94) In other werds, there e:zst two k(t)-ratzonaS po2nts Pi,P2 E

E(k(t)) wtth height p/4 snch that ÅqA, P2År = C, 2t}hich generate E(k(t)) med-

#gD tgrsien.

Proof By the determinant formula (7), we have det lllf == (p/4)2, since we
have IE(K)t..l =: 42, det NS(S) = p2 and det Vs mm 46 (6 singular fibres of

type I4). On the other hand, M is similar to the squaxe lattice Ze2; this

follows from the existeixce of order 4 automorphism of S acting faithfully on
this lattice. Thus we prove ,Theorem 7 (cf. the recent paper [23] where a
similar idea works).

   Examp}e (cÅíli4]) Let p == 3 altd let

         ,P, = ((i - i)(t - i)t2, (l + i) (t ÅÄ l)(t - i)(t wh l -i- i)t2)

where i = VTi e Fp2. Let P2 be the conjugate of A w.r.t. i - -i. Then
{Pi, P2} forms an orthogonal pair of rational points having height p/4.

   By the height formula (6), one can check

                               333                                                     3
          ÅqP,, P,År xe 2+2+2•O- 2il - Il -4-1 -- O-O = ll•

The local contribution contr.(Pi) is equal to 3/4 four v == oo,O,i, to 1 for
?] = -l, and to O for v me l, -i. Similarly for ÅqP2, P2År and ÅqPi, P2År. The other

peiRt P3 = (t`,-t3(t2 -l)) frem ll4] k&s height p/2 and fai}s te be a part of

tke grthggoga} basis of M, but still {Pi, P3} gekerates M, as expected tke!e.

   It will be an amusing exercise in char p te play a simi}ar game for other

supersingular prime p, say p = 7,11,.,.. This was impossible at the time
of [14], but now it should be possible. Theoretically the above Theorem 7
assures the existence of rational points with minimal height p/4, while the

height formula will afford the technique for actual computation.

   By the way, the height formula is useful even for the torsion points. In
fact, the intersection diagrram of al1 the N2 torsion sections and all the ir-

reducible components of singular fibres for the EMS of any level N can be
described in terms of a linear cede over the ring Z/NZ (see [l91).

   Kiia}}y }et u$ call the akeRtioR of interested readeTs to the recekt wgrk by
l.Sbimada Il2] aftd M.Schgtt [ll] cR the traiiscendekta} lattices cf siggglay

K3 surfaÅíes and the supersingular reductiefi }attices. Our resu}ts oR the EMS
of level 4 exp}ained here and seme other K3 in [20] give the concrete examples

of their theory.
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