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CALABI-YAU 3-FOLDS FROM FIBER PRODUCTS OF
RATIONAL QUASI-ELLIPTIC SURFACES

NATSUO SAITO

1. INTRODUCTION

Let X be a smooth projective variety over an algebraically closed
field k. We say X is a Calabi-Yau manifold if it satisfies Ky ~ 0
and H (X, £x) = 0. We construct some Calabi-Yau 3-folds over k of
characteristic p > 0, which have properties peculiar to positive charac-
teristic. Here the “peculiar properties” we intend are:

(1) Supersingularity. We define X is supersingular if the height of
the Artin-Mazur formal group ®*(X, G,,) is 00, i.e. ®3(X,G,,) =
G,. Supersingularity is one of the most interesting properties
in algebraic varieties in positive characteristic.

(2) Non-liftablity. We say that X is liftable to characteristic zero
if there exists a smooth projective morphism 2 -— SpecR,
where R is a discrete valuation ring, such that the closed fiber is
isomorphic to X, and the quotient field of R is of characteristic
zero. It is known that Deligne proved that all K3 surfaces are
liftable to characteristic zero. But in dimension 3, there exist
some non-liftable Calabi-Yau 3-folds which were constructed by
Hirokado [Hir99] and Schroer [Sch04].

(3) Having the non-smooth fibrational structure. Suppose X has a
fibrational morphism f : X — S from X to a smooth projective
variety S. In positive characteristic, general fiber of f might be
singular while the total space X is smooth.

QOur main theorems are as follows:

Theorem 1.1 (Characteristic 3). In characteristic 3, we have a non-
singular Calabi-Yau 3-fold X with the following properties:
(1) X is unirational, therefore supersingular.
(2) (bo,.--,be) =(1,0,20,6,20,0,1),(1,0,25,4,25,0,1),
(1,0,30,2,30,0,1),(1,0,35,0,35,0,1),
(1,0,41,0,41,0,1).
In particular, X does not lift to characteristic 0 if b3(X) = 0.
(3) X admits fibrations whose general fibers are
e non-normal rational surface, and
o supersingular K8 surface with an RDP of type A,.
Moreover, some erxamples we construct have another fibration
whose general fiber is
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o smooth supersingular K8 surface.

Theorem 1.2 (Characteristic 2). In characteristic 2, we have a non-
singular Calabi- Yau threefold X with the following properties:

(1) X s unirational, therefore supersingular.

(2) (bo,--.,bs) =(1,0,25,4,25,0,1),(1,0,36,2,36,0,1),
(1,0,47,0,47,0,1),(1,0,52,2,52,0,1),
(1,0,63,0,63,0,1).

In particular, X does not lift to characteristic 0 if bs(X) = 0.

(3) X admits fibrations whose genenal fibers are

e non-normal rational surface, and

e smooth supersingular K3 surface.
Moreover, some examples we construct have another fibration
whose general fiber is

o supersingular K3 surface with three RDPs of type A;.

For the details, see [HIS06] and [HIS].

Our method is based on the work by Schoen ([Sch88}). He con-
structed Calabi-Yau 3-folds as the fiber product of two rational elliptic
surfaces ¢; : ¥; — P! (¢ = 1,2) with sections:

Yi xp Y,

Y2
Y2

TN
N

One can see Y; xp1Ys2 € | — Ky, x,v,|, and we obtain a Calabi-Yau 3-fold
by a small resolution 7 : X — Y} Xm Y5 under some conditions about
singular fibers of ¢; and 5.

Now we consider the case when both Y; and Y, are quasi-elliptic
surfaces. A quasi-elliptic surface ¢ : Y — C is a nonsingular projective
surface Y with a morphism to a nonsingular curve C, such that ¢, 0y =
O¢ and a general fiber is a rational curve with an ordinary cusp. Quasi-
elliptic surfaces exist only in characteristic 2 and 3, enjoying properties
analogous to elliptic surfaces. Let ¥ be the closure of the nonsmooth
locus of Y, /7 inside Y. We call it the moving cusp of p : Y — C.

We try to find a crepant resolution of singularities 7 : X — Y} xp1 Yo,
using the complete classification of rational quasi-elliptic surfaces with
section up to isomorphism in p = 2, 3:

Theorem 1.3 ([It092],[Ito9%4]). A rational quasi-elliptic surface with
section ts given by one of the following:
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Type of

degenerate fibers Weierstrass form

p=3

(a) II* =13+t

(b) IV,IV* V=28t

(c) FourIV’s =ttt 42

p=2

(a) II* Y=z 4 ¢

(b) Iy v =2+ ttr+ 18

(c) I IrI v =2+ t’x

(d) TwoI§’s yv:=x+at’z+t* ack

(e) I3, twolll’s |y? =2+ (+ t)x

(f) I, fourl's |y? =23+ (¥ +at* + t)z, a €k
2

(g) Eight 1Il’s Y=+ B +at?+bt)z+t3,ack bek

where 11", IV and IV™ stand for the types of singular fibers in the sense
of Kodaira.

One of the main differences between Schoen’s Calabi-Yau 3-folds
and ours is the complexity of the singularities of Y| xp1 Y3. Since
Sing (Y xp Y2) comes from the non-smooth parts of ¢; and ¢, it
consists of irreducible curves isomorphic to P!. The calculation of a
resolution is very tedeous, especially in characteristic 2.

2. CONSTRUCTION IN CHARACTERISTIC 3

In this report, we treat mainly the case when the characteristic of
the base field is 3. In order to obtain smooth Calabi-Yau 3-folds, we
need the following conditions:

(1) We do not use quasi-elliptic surfaces of type (a) in Theorem 1.3
as Y] or Y.
(2) The singular fiber of type IV" on a quasi-elliptic surface, does
not meet any special fiber on the other one.
Thus the choices of two surfaces as Y; and Y; are three: (b)-(b), (b)-(c),
or (c)-(c). The configuration of the singularities of Y7 xp Y3 is as in
Figure 1. Note that the thick lines, which will be denoted by I', are
derived from the moving cusps of two quasi-elliptic surfaces.

Case (bb) Case (bc) Case (cc)
FIGURE 1



We have eight sub-cases under the condition (2):

(bb-1) the singular fiber of type IV meets the singular fiber of type IV,

(bb-2) the singular fiber of type IV does not meet the singular fiber of
type IV,

(bc-1) the singular fiber of type IV meets a singular fiber of type IV,

(bc-2) the singular fiber of type IV does not meet any singular fiber
of type IV,

(cc-1) four singular fibers of type IV meet singular fibers of type IV,

(cc-2) two singular fibers of type IV meet singular fiber of type IV,

(cc-3) one singular fiber of type IV meets singular fiber of type IV,

(cc-4) no singular fiber of type IV meets singular fibers of type IV.

For local calculation, we need the following proposition:

Proposition 2.1. Let ¢ : Y — C be a relatively minimal quast-elliptic
surface in characteristic 3. We take a point P on Y and any local
coordinate t on C at @(P).

(1) [BMT76] Suppose that P lies on the moving cusp X. If the fiber
overt = 0 is nonspecial, then in suitable formal coordinates x,y
onY at P, we have t = y* + .

(2) Suppose that P lies on the moving cusp L. If the fiber over
t = 0 15 of type IV, then in suitable formal coordinates x,y on
Y at P, we have t = zy? — z3.

(3) Suppose that the fiber over t = 0 s of type IV™. If P 15 an
intersection point of the component of multiplicity three and a
component of multiplicity two (resp. the moving cusp ¥), then
there exist formal coordinates x,y such that t = x3y® (resp.
t=x3(1 +y?). If P is on the component of multiplicity three
but outside the four points described above, then t = (1 + y)z°.

For example, take the case (bb-1). The singularities come from the
cusp of a general fiber and components of the singular fiber of type
IV* whose multiplicities are greater than one. At a general point on
T" which projects to both cusps of two general fibers of p; and ¢, we
have the equation z% + 3? + 23 + w? = 0, by Proposition 2.1 (1). Since
we are in characteristic 3, we obtain a local equation

©+yr+22=0
At a general point of the curve (expressed as the thick line in Figure
1) which comes from the moving cusp of ¥; and the component of
multiplicity three of the singular fiber in Y5, we have the equation
z* + % + 2*(1 + w?) = 0 by Proposition 2.1 (1) and (3). Hence we
obtain a local equation

2+ i+ w=0.
We can also determine other local equations of the singularities in a

similar way. Thus we have the structure diagram of the singularities
such as Figure 2.



(bb-1)

2ty +22=0
4y 4+ Bw=0
crt+y? 4+ Bt =0
¥+ y?+ 22w =0
2+ + vz + =0

¥ oo ||

FIGURE 2

Now we can resolve these singularities. Local calculation shows the
resolution is crepant. In (1) and (4), blowing up with the center of the
reduced singular locus {x = y = z = 0} gives a resolution. In (2), blow
up the reduced singular locus {x = y = z = 0}. There appears a one
dimensional singular locus which is locally a trivial deformation of a
rational double point of type A;. Blowing up this singular locus gives
a resolution. In (3), one can reduce to the case of type (2) after a blow-
up along {r = y = w = 0}. In (5), blow up {z = y = w = 0}, there
remain six ordinary double points. The inverse image of the origin is
P? and blowing up this P? gives a small resolution.
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Since Y7 Xp Y3 is a divisor of a nonsingular fourfold Y; x, Y5, all the
singularities of Y} xp1 Y2 are hypersurface singularities. In characteristic
zero, any isolated singularity in codimension two is generically a trivial
deformation of a rational double point if it has a crepant resolution
([Rei80, Corollary 1.14]). But in positive characteristic, this is not
always the case.

3. SUPERSINGULARITY AND TOPOLOGICAL INVARIANTS

Calabi-Yau 3-folds we constructed in the previous section have some
‘peculiar’ properties mentioned in the Introduction.
Supersingularity. Since the base change of a quasi-elliptic surface
¢ : Y — P! by the Frobenius morphism P! — P! is a non-normal
rational surface, X has the fibration f : X — P! induced from ¢; Xp1¢2.
Then the base change X := X xp1 P! of f by the Frobenius morphism
P! — P! is a rational threefold. Therefore X is purely inseparably
unirational, hence supersingular.

Non-liftability. Let Z be the normalization of the base change of
Y] xpr Y, by Frobenius morphism F' : P! — [P

X
Z )/1 X pl }/2
Y Y,
e
P! F P

We can calculate the topological Euler-Poincaré characteristic e(Z)
of Z, which is equal to e(Y] xp Y,). By argument of divisors on X, we
obtain also the Picard number p(X).

Proposition 3.1. The Calabi- Yau threefolds obtained in the previous
section have the follouing invariants.

(bb-1) | (bb-2) [ (be-1) | (bc-2) | (cc-1) | (ce-2) | (cc-3) | (cc-4)
e(X)| 72 60 60 48 84 60 48 36
p(X)| 35 | 30 | 30 | 25 | 41 | 30 | 5 | 20

As a corollary of the proposition above, we have b3(X) = 0 for the
cases (bb-1) and (cc-1), which implies non-liftability of X to charac-
teristic zero.

100



4. SUPERSINGULAR K3 FIBRATION

Since each Y; is a rational quasi-elliptic surface, it has a P!-fibration
7, : Y; — P!, We examine the fibration structures induced by 7; of
Calabi-Yau 3-folds we constructed in the previous sections.

l,

Yl Xp1 Yg

\
/

FIGURE 3

We denote by g : X — P! the composition morphism X 5 Y] xp

Y, "y, Bopt (cf. Figure 3). Let F, and F, be general fibers
of o : Yy —» P and 73 : Y7 — P!, respectively. By the canonical
bundle formula for Y;, we observe F,,.F;, = 2. This means that a

general fiber of the composition Y] xp1 Y5 P2 Y; &% P! is obtained

as the pull-back of Y, by a double cover ¢i|r, : P! — P!, which
is ramified at two points by Hurwitz formula. Thus taking a double
cover ¥ = {p1,11) : Y1 — P! x P!, we investigate the ramification
divisor R; of ¥;. Note that the configurations of degenerate fibers and
sections on rational quasi-elliptic surfaces of type (b) and (c) are given
in Theorem 1.3.

Here we illustrate the configuration of all the (—1)-curves and (—2)-
curves on Y] as the dual graph in the case (b). The structureof g : X —
P! depends on which curves are contained in the fibers of 71. Finding
such subgraphs in the dual graph, we can determine all the P-fibrations
on Y; which are essentially classified into two classes (cf. Figure 4).

For the left case in Figure 4, we can check that © is a component
of R;. Moreover, since L.F,, = 1 and F, .F; = 2 where ¥ is the
moving cusp of Y;, the double cover ; is also ramified along ¥£. We
can see that a general fiber of ¥} xp1 Y, — P! has two RDPs of type
A at the points that ramification divisor R; penetrates. Thus taking
a crepant resolution 7 : X — Y] Xp Y3, we obtain a smooth K3 surface
as a general fiber of g : X — P!, which is supersingular since it has a
quasi-elliptic fibration.
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Subgraphs emphasized stand for components in the fibers of 7.

FIGURE 4

On the other hand, for the right case in Figure 4, no fibers of ¢ :
Y; — P! has a component of R;. In this case, a general fiber of g :
X — P! has an RDP of type A,.

5. CHARACTERISTIC 2 CASE

We can also construct Calabi-Yau 3-folds with ‘peculiar’ properties
in characteristic 2. Methods are almost all the same as in characteristic
3, but local calculation is much more complicated. Here we only review
the result.

The pairs of quasi-elliptic surfaces we consider as Y; and Y2 to con-
struct smooth Calabi-Yau 3-folds are as follows:

(bb): (b) and (b), I} does not meet I3,
(bc): (b) and (c), I} meets III,

—~

(bd): (b) and (d), I does not meet I,
(be): (b) and (e), I} meets III,
(dd): (d) and (d), If does not meet I,

(de): (d) and (e), both I§ meet III's.

For these six cases, we can determine the singularities on Y7 xp1 Y5
and resolve them to obtain smooth Calabi-Yau 3-folds. By calculating
the topological invariants, one can see that Calabi-Yau’s of types (bb)
and (bc) are not liftable to characteristic zero.

Figure 5 gives the configuration of all the (—1)-curves and (—2)-
curves on Y; and the in the cases (b), (c), (d) and (e). The sub-
graphs emphasized stand for curves contained in the fibers of 77. Let
'Y; — 8§ — P! x P! be the Stein factorization of ;. Since we are in
characteristic 2, the double cover S — P! x P! might be inseparable.

Our results are as follows:

—~
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(b)

L
L]

FIGURE 5

e The case p(5) = 2.
In this case, S — P! x P! is inseparable, and a general fiber of
g: X — P! is a non-normal rational surface. These correspond
to the cases of the lowest columns in Figure 5.
o The case p(S) > 2 and 1 = @z (which occurs only when Y] is
of type (c) or (e)).
In this case, S — P! x P! is separable, and the ramification
locus corresponds to the irreducible component of III* or I
which intersects the moving cusp of Y]. In this case, a general
fiber of g : X — P! is a smooth supersingular K3 surface.
o The case p(S) > 2 and 11 # Pi5.
In this case, S — P! x P! is separable, and the ramification
locus corresponds to the moving cusp of Y}. In this case, a
general fiber of g : X — P! is
— a smooth supersingular K3 surface if Y; is of type (b) or
(d), and
~ a supersingular K3 surface with three RDPs of type A; if
Y1 is of type (e).

For the details, see [HIS].
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