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Dual varieties, ramification,

and Betti numbers of projective varieties

F. L. ZAK

INTRODUCTION

A nondegenerate nonsingular complex projective algebraic variety X™ C PV has many well under-
stood numerical invariants, such as dimension n, codimension a = N — n, degree d, classes u; (cf.
below) etc. However, except for the dimension, these invariants depend on embedding and do not
characterize X as an abstract variety. Viewed as an abstract variety, X has other numerical invariants,
such as products of Chern classes (e.g. the selfintersection (K% ), where Kx is the canonical class of X).
However, the most important numerical invariants of the abstract variety X are probably its Hodge

T
numbers A”?(X) and Betti numbers b;(X) = Z A*™29(X). Thus it is reasonable to ask what are the
=0
possible values of “abstract” numerical invariqants for a given projective variety X and in particular
what are the restrictions on topology imposed by being contained in a given projective space with given
invariants?

The case n = 1, N = 2 is classical and easy. If g is the genus of X and b; = 2¢ is the first Betti
number, then b, = (d — 1)(d — 2), so that the “abstract” invariants are determined by the projective
ones (this is no surprise since it is clear that all nonsingular plane curves are diffeomorphic to each
other). These important formulas which seem obvious to us are actually quite deep (especially the
relationship between the genus and the first Betti number) and are due to Riemann.

The situation is similar in the case when N = n+1, i.e. for hypersurfaces of arbitrary dimension (for
the Betti numbers one can use the same argument while the claim for the Hodge numbers follows from
the one for the Betti numbers and semicontinuity). But already the case of space curves is much more
complicated. For example, there exist two types of nonsingular curves of degree four on a nonsingular
quadric in P3, viz. a rational curve of type (3,1) and an elliptic one of type (2,2). The case of space
curves was settled by Halphen in the paper [Hal] bringing him (together with Noether) the Steiner
prize from the Berlin Academy of Sciences. Roughly speaking, Halphen proved that if X C P® is a
curve of degree d and m is the minimum of the degrees of surfaces containing X, then b (X) does not

exceed — + - - -, where dots stand for a linear function in d, and, under certain assumptions, described

m
the curves of maximal genus for given d and m. In particular, from Halphen’s results it follows that
2

the first Betti number of a nonsingular space curve does not exceed — + ---, i.e. is, roughly, at least
twice less than that of plane curves of the same degree, and the curves with maximal Betti number
lie on a quadric. A modern treatment and refinement of Halphen’s theory was given by Gruson and
Peskine [G-P] and Harris [Har].
In the case when X C P¥ is a nondegenerate nonsingular curve of arbitrary codimension a = N — 1,
2

Castelnuovo proved (cf. [Castl] and [Cast2]) that by (X) < % +--- and classified the curves for which

b, attains maximal value for given d and a; it turns out that such a curve has to lie on a surface of
(minimal) degree N — 1 in PV (an exposition of Castelnuovo’s theory can be found in [G-H, Ch. 2, §3
and Ch. 4, §3]; of course, the bounds in Halphen’s and Castelnuovo’s theories are quite explicit, but
for the sake of introduction we are satisfied with their leading terms).

Castelnuovo’s beautiful theory was generalized in many directions, but the only generalization to
varieties of dimension larger than one I know of is due to Harris [Har2]. To wit, Harris gives a sharp
bound for the geometric genus p, = ™Y of an arbitrary nondegenerate variety X C PV and classifies
the varieties on the boundary. Harris’ s result is as powerful as Castelnuovo’s one and is deduced from
it by induction. However, the geometric genus for higher dimensional varieties does not play a role
comparable to that of genus of curves. Therefore it is desirable to prove Castelnuovo type theorems
for other Hodge and Betti numbers of varieties of arbitrary dimension.
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Castelnuovo bound for curves can be interpreted in several different ways. We presented it as a
bound for the first Betti number b,, but one may also think of it as a bound for r;, where r; is
the degree of the ramification divisor of a general projection of X onto P! (by the Riemann-Hurwitz
formula, r; = 2¢ + 2d — 2). Alternatively, one can think of Castelnuovo’s bound as a bound for d*,
where d* = p is the class of the curve X, i.e. the degree of the dual hypersurface X* ¢ PV* (it is
immediate that d* = ry). \

Castelnuovo bounds for vy and u; generalize to the higher dimensional case, but there they yield
different bounds. Comparing them and using bounds for Betti numbers in terms of classes, we will
finally get a bound for Betti numbers in terms of dimension, codimension, and degree.

Bounding Betti numbers of algebraic varieties has been a popular pursuit for the last century and
a half, and here we only mention some landmarks important for the development of this topic. We
already described bounds for the genus of complex projective curves. Most subsequent papers on Betti
numbers dealt primarily with real varieties; results for complex varieties were derived from these by
forgetting the complex structure, which, of course, resulted in loss of information. First general results
on topology of real algebraic varieties were obtained by Harnack [Harn] who proved that the number of

ovals (i.e. the first Betti number b; which in this setup equals bp) of a nonsingular real plane algebraic

(d-1){d-2)

curve of degree d does not exceed + 1. Considerable progress in the study of Betti

numbers was made by Petrovskii and Oleinik [Ol} who, however, like Harnack, considered only the case
of hypersurfaces. Milnor [Mil2] and Thom [Th] independently and almost simultaneously obtained
bounds for the total Betti number b = 3_, b; valid for algebraic varieties of arbitrary codimension, both
real and complex ones. Milnor “deforms” an arbitrary real affine variety V which can be defined by
equations of degree < k to a smooth affine hypersurface of degree < 2k and uses an Oleinik type bound
for hypersurfaces to give a bound for the total Betti number of V in terms of k£ and the dimension of
the ambient affine space. Bounds for complex algebraic varieties are obtained as a consequence of the
bounds in the real affine case; to obtain them Milnor considers separately the real and imaginary parts
of coordinates and equations, which results in further loss of sharpness. The projective case is reduced
to the affine one. Using the inequality k < d (and thus passing from the degrees of equations to the
degree of variety), one can rewrite Milnor-Thom'’s inequality for real projective varieties in the form
b(Xg) < c¢-d¥*! and for complex projective varieties in the form b(Xc¢) < ¢ - d?V+2 where ¢ = ¢(V)
is a constant depending on the dimension of the ambient PV = (X). As Milnor himself pointed out,
these estimates are “presumably rather crude” and “certainly not best possible”. Recently Laszlo and
Viterbo [L-V] combined some bounds for Chern classes of complex manifolds with Smith theory to
obtain a bound of the form b < ¢-d™*!, where n = dim X and ¢ = ¢{n), valid both for complex and
real projective varieties (in the latest case only for homology with coefficients in Z/2Z). Unfortunately,
their bound also fails to be sharp, and so there is no question of describing varieties on the boundary.
The motivation behind [Mil2], [L-V] and other papers on a similar topic was that total Betti number
measures “complexity” of variety, so that bounding this number and exploring varieties on the boundary
will give a bound of complexity and an idea of what the “most complex” varieties look like. However,
as we will see, varieties with big Betti number (the so called Castelnuovo varieties are actually very
simple from the point of view of algebraic geometry.

In this paper we give sharp (or asymptotically sharp) bounds for the total Betti number (with
arbitrary coeflicients) of nonsingular complex projective varieties and explain where to look for varieties
on the boundary. These bounds generalize Castelnuovo bound for curves and strengthen the bounds
for the total Betti number mentioned above. We also get bounds for the individual Betti numbers, but
these are sharp (or asymptotically sharp) only in the case of middle homology.

As we already pointed out, we derive bounds for Betti numbers from bounds for classes of complex
projective varieties (cf. below). This can be done in two ways, viz. using Lefschetz theory or adapting
Morse theory to study projective varieties. The first method works over an arbitrary algebraically
closed field, but yields somewhat weaker results. Here we use the second method. While classical
Morse theory deals with compact manifolds, here we consider its relative version over a projective line.
This allows us to study Lefschetz pencils and to develop what we call Morse-Lefschetz theory.

In the first section we show how the classical invariants called classes can be used to bound or
even compute important topological invariants of nonsingular affine or projective algebraic varieties.
If X C PV is an n-dimensional projective variety, then the n-th class or simply the class g, = pn(X)
is defined as the degree d* of the dual variety X* C PV * (called codegree) provided that X* is a
hypersurface in PV and zero otherwise (we recall that X* is the locus of tangent hyperplanes to X,
i.e. the hyperplanes containing the projective tangent space Tx ; at a nonsingular point z € X). For
the purpose of this introduction (and even the paper as a whole), one can define the i-th class p;(X),
0 < i < n as the class of the intersection of X with a general linear subspace of codimension n — i in
PN . In particular, yg is equal to the degree d of X irlld 41 is the class of a general curve section C of X
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which by the Riemann-Hurwitz formula equals 2g¢ + 2d ~ 2. It turns out that when X is nonsingular
onehas by = bon—; S ps+ pi-atpig+..., i <nande=(n+1uo—~npy +(n—ljus ~ -, where e
is the Euler-Poincaré characteristic of X. We get even more simple bounds and formulas for the Betti
numbers and Euler characteristic of a nonsingular affine variety in terms of the classes of its projective
closure. Our results give a better understanding of and strengthen Lefschetz’s theorems.

The results of the first section reduce the problem of bounding the Betti numbers of a nonsingular
projective variety X to that of bounding the classes of X. Classes and, particularly, the codegree
are themselves important invariants of projective varieties. For example, while varieties of codegree
one and two are, respectively, linear spaces and quadrics, classification of varieties of codegree three is
already deep and nontrivial (cf. [Za, Ch. IV, Theorem 5.2]) and classification of varieties of codegree
four has not yet been completed. In [Za2] we prove various sharp lower bounds for d* and classify the
varieties on the boundary. However, to bound the Betti numbers from above we need upper bounds for
classes. In the second section we give upper bounds for classes in terms of degrees of selfintersections
of ramification divisors. The ramification divisor R C X of a general linear projection p: X —P" is a
handy tool to explore the geometry of X, often more convenient than the canonical class K (one has
R~ K+ (n+1)H, where H is a hyperplane section) because it is ample [Za, Chapter I, Corollary 2.14}
and even very ample [Ein]. Put n = deg R* = (R*H"%). Using the Hodge mdex theorem we show

T
that the subsequent quotients —— form a nonincreasing sequence, i.e. — > 2 R , and so
) Ti-1 s T Tn—i’
e i
7 < “{%T presy . Clearly, for n > 1 the number r, is stable under passing to a general hyperplane
7
0

section, and thus is bounded by Castelnuovo’s theorem for curves. On the other hand, we show that
the i-th class is bounded by r;, viz. y; < r;. Thus the results of section 2 yield an upper bound for
the classes in terms of dimension, codimension and degree. We also obtain a universal sharp bound for
classes in terms of dimension and degree; this bound does not involve codimension. Finally, in section 2
we get a sharp bound for the classes of varieties of given dimension n and codimension a defined by
equations whose degree does not exceed d.

Combining the bounds for classes obtained in section 2 with the bounds for Betti numbers from
section 1, in section 3 we get bounds for Betti numbers in terms of dimension n, codimension a, and
degree d. The easiest application is that hypersurfaces have the maximal Betti number among all
varieties of given dimension and degree. We also obtain a bound for Betti numbers of varieties of given
dimension n and codimension a defined by equations whose degree does not exceed d.

In section 4 we explain where to look for varieties with maximal invariants (be it ramification degree,
class or Betti numbers) and obtain sharp bounds for these invariants (at least for varieties of sufficiently
large degree). Furthermore, we discuss some generalizations (of special importance is the extension of
our results to Chern and Hodge numbers) and open problems.

While giving precise statements and explaining our approach from different points of view (par-
ticularly in the first three chapters), in this paper we do not give proofs; detailed proofs will appear
elsewhere.

NOTATIONS AND CONVENTIONS

Throughout the paper we consider nondegenerate varieties, that is, varieties spanning the ambient
linear space. Thus X denotes a nondegenerate n-dimensional projective variety in PV, Lo, C PV the
hyperplane “at infinity”, Xo = Lo N X. For a nondegenerate variety X™ C PV, we denote by a its
codimension: a = codim X = N — n. We denote by X;, 0 < i < n the section of X by a general linear
subspace L; C PV codim L; = n — 4, so that X; is a nondegenerate projective variety of dimension i.
Sometimes we also denote X,..; by X’ and X,,_» by X”. The affine variety X \ X, will be usually
denoted by V. For a variety Y we denote by SmY (resp. SingY the set of smooth (resp. singular)
points of Y. For a real variety X (resp. V), the set of its real points will be sometimes denoted by Xg
(resp. Vx and the set of complex points by X¢ (resp. V¢).

We use standard notations and conventions for homology, relative homology, and cohomology. As
for Betti numbers, we usually state our results for b;(M) = b;(M,F) = dim H;(M,F), where F is a
field. However, since we deduce statements for Betti numbers from those for cell complexes, usually
our bounds are actually stronger. To wit, let Hi{(M,Z) = Z% & (Z/mZ)" & - - - @ (Z/m,Z)?, where
my,...,m; are distinct powers of prime numbers, be a primary decomposition. Then our bounds are
usually valid if we put b; = Z;=0 B;. We denote by b= b(M) = }_, b; the total Betti number and by
e=e(M) =Y ,(~1)'b;(M,Q) the Euler-Poincaré characteristic of M.

1. MORSE-LEFSCHETZ THEORY FOR COMPLEX ALGEBRAIC VARIETIES

Lefschetz’s book [Lef] on the topology of comp‘llezx projective varieties appeared even earlier than
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the paper in which Morse laid foundations of what is now called Morse theory. One of the main issues
dealt with in this book was to compare the topology of a nonsingular complex projective variety with
that of its general hyperplane section {cf. [Lam] for a modern exposition of the Lefschetz theory). In
particular, Lefschetz expressed the class of variety in terms of Betti numbers of its linear sections (cf.
[Lef, Ch. V, Th. XII] or [Lam, (3.5.3)] (although usually attributed to Lefschetz, this was actually done
by Alexander in [Al] in terms of the multidimensional Zeuthen-Segre invariant introduced by Segre
in [Seg]; cf. Historical Remark 1.12 (i) below). We go the other way round and give bounds for the
Betti numbers in terms of classes of (linear sections of) the variety. These bounds can be obtained by
developing Lefschetz (or Alexander) type arguments. However, we prefer using a refinement of Morse
theory which yields more detailed information and applies to homology with arbitrary coefficients.
The idea of using Morse theory to prove Lefschetz theorems is by no means new (it was probably first
suggested by Thom and realized by Andreotti and Frankel and Bott), but using a relative version of
Morse theory we will be able to link in a very natural way topological properties of varieties to classical
projective invariants defined in terms of dual varieties. The point is that while Andreotti and Frankel
and others applied Morse theory to the function defined by the distance to a fixed point of the ambient
space {which does not seem very natural in the projective setting) we follow Lefschetz in using the good
old method of fibering our variety by means of a general pencil of hyperplane sections. That explains
our usage of the term “Morse-Lefschetz Theory”. We will not give details of our refinement of Morse
theory, but rather discuss some of its applications in the context of complex algebraic varieties.

We start with recalling some definitions. Let X C PV be an n-dimensional complex projective
variety. The hyperplanes in PY are parametrized by the dual projective space PY”. For a point
a € PN" we denote by L, C PV the corresponding hyperplane in PY. For a point z € X, we
denote by Tx . C PV the (embedded projective) tangent subspace to X at z; if z € Sm X, then
dimTx ; = dim X = n. A hyperplane a € PV* is said to be tangent to X at z if Lo D Tx 5.

Definition 1.1. The subvariety

Px C X xP¥',  Px={{z,a)|zeSmX,Las D Ixs},

where bar denotes projective closure, is called the conormal variety of X in PV, and its image X*
under the projection of PV x PN* onto the second factor is called the dual variety of X.

Thus X* is the locus of hyperplanes that are tangent to X at a nonsingular point. Furthermore,
since the fiber of Px over € Sm X is the (N — n — 1)-dimensional linear subspace of PV" dual to
Tx z,one has n* = dim X* < dimPy = N — 1. The number def X = N —n* — 1 is called the defect
of X;if def X > 0, then X is called defective.

Definition 1.2. Denote by d = deg X the degree of X and by d* = codeg X = deg X* the degree of

X, i.e. the number of common points of X* and a general (def X + 1)-dimensional linear subspace in
. d* def X =0
PN Then d* is called the cod d = pn = ' " the class of X.
en d* is called the codegree and g = {0, def X > 0 e class o
Let 0 < i < n, and let X; be a general i-dimensional linear section of X. The class of X, is called
the i-th class of X and is denoted by g, (the i-th class is also called the (n — 1)-th rank of X)}. Thus
Ln =uistheclassofX, po=d=degX and y; =0iff def X; = 0, ie. iff i > n — def X.

1
The number p; = Z Lj, is called the i-th cumulative class (resp. the i-th reduced cumulative class)

=0
n n—def X
of X, and the number p = p,, = ij = Z ft; the total class of X.
=0 j=0
1t is clear that p;(X) = pi(Xn—1) = -+ = p:(X;), and in particular p(X) = pn(X) + pu(Xn-1)-

Furthermore, p; can be interpreted as the degree of the i-dimensional polar locus P; = P,(L) = {z €
X |dmTx.NL >i-1}, where L C P¥ is a general linear subspace of codimension n — i + 2, and

can be computed as an intersection on the conormal variety: p; = / h"'ih'N"n+l_l, where h and
Px

k' denote the liftings on Py of the classes of hyperplane sections of X and X* respectively.

The notions of dual variety and classes were introduced and studied by Poncelet and Pliicker in the

e of plane curves and by Cayley, Salmon and Zeuthen in the case of surfaces. We refer to {Tev] for

~position of the theory of dual varieties in characteristic zero. Foundations of a general theory of
-arieties and classes were laid by Severi and developed by Todd, cf. [Pi] or [K1].

lowing results strengthen Lefschetz’s theorems (cf. [Mil, Theorems 7.1, 7.2 and 7.3]). They
seen as striking counterpaxts of the mai{%theorem of Morse theory (cf. [Mil, Theorem 5.2]),
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where compact manifold M is replaced by nonsingular complex affine vartety V = X \ X, and the
critical points of index ¢ of a Morse function on M correspond to the singular points of intersections
of V; = X; \ X with the hyperplanes from a general pencil containing L.

Theorem 1.3. Suppose that V' is smooth. Then V has homotopy type of a cell complex with at most
wi-= pi(X) cells of dimension ¢, ¢ = 0,...,n. Thus b (V) < pi, ¢ = 0,...,n (so that, in particular,
b;(V) =0 fori>n—def X) and (V) < pu(X).
If, moreover, both X and X are smooth, then V has homotopy type of a cell complez with exactly
n
fi = pi(X) cells of dimensiond, i=0,...,n and e(V) = D _(~1)':(X).
i=0
Remark 1.4.

(1) The bound in Theorem 1.3 is not sharp. For example, since V' is connected, bo(V) =1 < pg,
and so b (V) <y —po+1 and (V) < p— 2up + 2.

(ii) As was pointed out by Lé Diing Trang, the formula for the Euler-Poincaré characteristic in the
second part of Theorem 1.3 can be deduced from the formulas for the local Euler obstructions
obtained in [L-T].

Theorem 1.5. Let V = X \ X, be a nonsingular n-dimensional affine variety, and let j: X, — X
be the natural inclusion. Let j;: Hi(X,Z) — Hi(X),Z be the corresponding homology map. Then
(i) Fori < mn —1, j; is an isomorphism;
(ii} jn-1 is an epimorphism with dim (Ker j,—1) < pin — vy < pin.
Suppose furthermore that X and X, are nonsingular, and let

If furthermore F = C (or, more generally, F is a field of characteristic zero) and let j¥ : Hi(Xoo,F) —
H;(X),F, where F is a field of characteristic zero. Then

(iii) Fori > n, j¥ is a monomorphism with dim (Coker jf) < ton—i-
Corollary 1.6. Let V = X \ X, be a nonsingular affine n-dimensional variety. Then

bi(X)  =b(X) fori<n-—1,
bn—l(Xoo) — Hn Sbn—l(X) < bn—l(Xoo)7
bi(Xoo) = pzn—ic1 Sbi(X) < bi(Xoo) + p2n—i(X) fori>n.

Remarks 1.7.
(i) The nonsingularity assumption is essential for the validity of Claim (iii) in Theorem 1.5. For

example, let X = v, (P*) C P(""")"1 be a Veronese variety, and let X, be its reducible
hyperplane section (e.g. a section corresponding to a iunion of m hyperplanes in P*). Then
bgn_g(Xoo) >1 (eg = m) while bzn_g(X) = bgn_z(lpm) =1.

(i1) The bounds in Corollary 1.6 are not sharp. For example, it is easy to show that dim (Ker j,—1) <
-”2—" (cf. e.g. [Za3, Remark 2.10(ii)]. On the other hand, Remark 1.4 shows that the last upper

bound in Corollary 1.6 fails to be sharp by po — 1 for ¢ = 2n — 1,2n (furthermore, by the
Riemann-Hurwitz formula, byn—1(X) < 81(X1) = p1 — 2(po — 1))-

Corollary 1.8. In the assumptions of Corollary 1.5 one has:

B(X) < b(Xoo) + bt — 2(pip — 1) < b(Xoo) + p(X).

Corollary 1.9. Let X™ C PV be a nonsingular projective variety. Then

n

B(X) < 3 (w(Xe) =200 = 1) = Y (n =i+ Dpss = (n+ 1) (o — 2)
= = def X
=Y (n—i+ D — (n+1)(uo - 2).

i=1

Corollary 1.9 is also a consequence of the followg%g
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Theorem 1.10. Let Let X C PY be a nonsingular projective variety. Then

(3]
bl(X) = bZn*i(X) S Z“i——ﬂc - (“0 e 1)7 1 S n,

k=0
b1{X) = bon—1(X) = py ~ 2o — 1),
n ] n—def X )
eX)=d (-)'(n—i+Dpi= Y (~Din—i+1p.
=0 =0

Remark 1.11. The expression of bounds for Betti numbers in Theorem 1.10 as a sum of shifted classes
reflects Lefschetz’s primitive decomposition. It would be nice to infer Theorem 1.10 from a projec-
tive counterpart of Theorem 1.3. Such a result would strengthen Lefschetz’s hard theorem just as
Theorem 1.3 strengthens Lefschetz’s weak theorem.

Historical Remarks 1.12.

)

(if)

Given basic nature and simplicity of the formulas in Theorem 1.10, one might expect that they
should have been known in classical algebraic geometry. Studying the literature we found that
this is indeed the case, albeit implicitly, with regard to the Euler-Poincaré characteristic.

For curves, the Riemann-Hurwitz formula shows that b, = p; —2u0+2 < pyande = 2—b; =
240 — w1 in accordance with Theorem 1.10.

The case of surfaces is more interesting. The role of Euler-Poincaré characteristic ¢ was
classically played by the Zeuthen-Segre invariant I defined by the formula I = 6 — o — 4p,
where, for a (general) pencil of curves, ¢ is the number of nodal curves, ¢ is the number of
base points, and p is the genus of a generic curve (cf. [SR, Ch. IX, §7.1]). This number was
shown to be independent of the choice of pencil of curves. By methods anticipating those
of modern Lefschetz theory, Alexander proved (in two different ways) the equality = e ~ 4
(cf. [Al, §2 and §3]. In our setup, i.e. for a Lefschetz pencil, using the formula for the genus
of a general hyperplane section given in the preceding paragraph, one has, in our notations,
I = po—po—4p = p2— po— 2(1 —2u0 +2) = us — 21y + 39 — 4. By Alexander’s
interpretation of I, this classical formula {cf. e.g. formula {5) in [S-R, Ch. IX, §7}) can be
rewritten as e = 3up — 211 + pig, which is a special case of Theorem 1.10 for n = 2. Furthermore,
by Lefschetz’s theorem {cf. Corollary 1.5) and the formula for curves in the preceding paragraph,
b3 = bl < 2p = [y -2}40+2 < py and b2 = €+2b1 —-2< /12—2#1 +3H0+2([t1 —2,&0-{*2)"‘2 =
Mo — po + 2 < pe, which again is a special case of Theorem 1.10. It is amusing to observe that
the now obvious formula by = I+ 4(pg — p,) +2 (where pg and p, are respectively the geometric
and arithmetic genus of our surface), was obtained only by Alexander [Al] who corrected an
erroneous formula by = I 4 2(p, ~ p,) + 2 due to Poincaré and published in 1906.

In [Seg. §11] C. Segre introduced a generalization I] of the invariant I to varieties of arbitrary
dimension by using (in our notation) a recurrent formula I'7, = pp—211,..1—IL,_o, [Iy = py—1,
I, = py — 2p9 + 2 (thus II, = I+ 1; normalization chosen by Segre is such that the invariants
1L, vanish for all linear spaces). Computing by induction, one can show that

I, =(-1* (Zn:(n —i+ 1 —n— 1)

=0
= (=" (pn = 2pn-1+ -+ (=1)"npy + (-D™(n + 1) (o + 1)) .

On the other hand, using Alexander’s method, one can verify that Il, = (-1)"*(e — n — 1)
(Alexander himself used a different generalization I, of I defined by the same recurrent formula,
but basing on a different value Iy = Iy + 1, which does not make much difference). Putting
together the above two formulas, one gets the equality e(X) = (n+ Dpo ~npy + - -+ (1) itn
from Theorem 1.10.

We do not know of any classical bounds for the Betti numbers in terms of classes similar to
those in Theorem 1.10.
One can view the formulas for the Euler-Poincaré characteristic in Theorems 1.3 and 1.10 as
generalizations of Hopf’s celebrated formula for the number of singularities of a vector field to
the setup of projective algebraic geometry.

45
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2. BOUNDS FOR PROJECTIVE INVARIANTS

Theorem 2.1. Let X C PV be a nonsingular projective variety of dimension n, and let R be an
ample divisor on X. Denote by H a hyperplane section of X, and let d = (H™) be the degree of X
and r; = (R*H™") the degree of R’ (so that, in particular, ro = d, ry = deg R and 7, = r = (R")).

. i . . .n T2 n
Then the subsequent quotients - form a nonincreasing sequence, i.e. — > — > --- > , and
Ti-1 To 71 Tn-1
2 i—j+1 i i
re_ T, T T .
D e O R Ji-—j S"'S'i_-l-'f:diil’lslsn‘
Ti-2 Ti1 To

Remarks 2.2.

(i) Let X3 be the section of X by a general linear subspace of codimension k in PY, 0 < k < n.
Then it is clear that (X)) = r(Xy), 0<i<n—k.

(ii) The bounds in Theorem 2.1 are sharp. In fact, it is clear that if R ~ aH for some a > 0, then
r; =a'd, i=0,...,n and all the inequalities in Theorem 2.1 turn into equalities.

(iii) The bound in Theorem 2.1 is much better than a general one given in [Fu, Example 8.4.7] (viz.
r; < rid™™%), but, unlike Fulton’s bound, our bound does not hold if we replace i copies of R by
1 divisors Ry, ..., R; that are not equivalent to each other. To see this it suffices to consider the
nonsingular quadric X C P* and two ample divisors Ry ~ £y + 28, By ~ 26y +£3, d; = deg R; =
3,1 =1,2, where ¢, and £, ({1 - £2) = 1 are two generators. Then d(R; - R2) =10 > dyd2 = 9.

(iv) In the proof of Theorem 2.1 we do not make full use of the assumption that H is a hyperplane
section. For example, the theorem stays true if we only assume that d = (H") > 0 and (some
multiple of} H does not have base points.

(v) It seems that the hypothesis that X is nonsingular can be substantially weakened. We deduce
Theorem 2.1 from the Hodge index theorem and, replacing, if necessary, R by its multiple
and X by the intersection of n — 2 general divisors from |R|, one can reduce the problem to
the case when X is a surface (in which case an algebraic proof of the Hodge index theorem
was given by B. Segre, J. Bronowski, A. Grothendieck, and O. Zariski). Thus it seems that
Theorem 2.1 should be true if X is nonsingular in codimension two. Also, under some mild
assumptions, the theorem holds in the case when R is a Weil (and not necessarily a Cartier)
divisor. On the other hand, Ch. Peskine told me that the Hodge index theorem for surfaces can
be deduced from Castelnuovo’s bound for (possibly singular and nonreduced) curves, and so
the relationship between this theorem and bounds for classes considered in this section might
turn out to be deeper than it looks. In fact, I recently found that both (a very general form of)
Hodge index theorem and Castelnuovo inequality are consequences of a general theory yielding
an upper bound for the dimension of the ambient space of primitive families of intersecting
linear subspaces.

(vi) After proving Theorem 2.1 Ilearned that various versions of it have been repeatedly rediscovered
by various authors under different guises; cf. [Laz, 1.6.A] for a thorough discussion and, more
specifically, {Laz, Corollary 1.6.3] for an equivalent statement).

The following example illustrates Theorem 2.1 in a very simple case.

Example 2.3. Let X = @ C P* be a nonsingular quadric, let ¢, and ¢, be its generators and

2 2
let B ~ a1£, + azfy. Then (R?) = 2aa, < M = with equality holding if and only if

. 2 d
) =az =a,ie. R~aH.
The next example plays a crucial role in the present paper.

Example 2.4. Let X C PV be a nondegenerate n-dimensional variety, let L C PY dimL=N-n-1
be a general linear subspace, and let pz: X — P" be the projection with center L. Then p; is a finite
map of degree d = deg X, and we denote by Ry C X its (apparent) ramification locus

Bo={zeSmX|Tx.NL+#0o},

where Sm X = X \ Sing X is the locus of nonsingular points of X and Tx . denotes the tangent space
to X at z. It is clear that Ry is a (Weil) divisor in X and that, as L varies, the corresponding
divisors Ry, are rationally equivalent to each other and there are no points in Sm X common to all
Ry. If, furthermore, X is smooth, then it is easy to determine the ambient linear system |Rp|. To wit,
Kpr» = O(—(n+1)), and if w is a rational rank n differential form on P", then (p} (w)) ~ —(n+1)H+ Ry,
where H is the divisor of a hyperplane section of X, and so

IBel = |Kx £ (n+ DH|
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(here Kpn (resp. Kx) denotes the canonical class of P* (resp. X)). In this case the linear system [Ry]
is ample (cf. [Za, Chapter I, Corollary 2.14]) and even very ample on X (cf. [Ein]). Thus it is natural
to call the number (R}) ramification degree (i.e. the degree with respect to the embedding defined by
ramification divisor). By definition, if X; = X NPY~"*¢ ig the i-dimensional section of X by a general
linear subspace PY~"** > L, then Rr(X,) = Rr(X) nP¥="** and (RL(Xy)') = (RLH™) = n;
:2
{cf. Remark 2.2(i)). Theorem 1.1 applies to R = Ry and yields r; = (REH™ %) < 2;-1«“1' Let
C = X, C PN~ be a general curve section of X, so that r; = r1(X) = r;(C). Suppose that C is
nonsingular, and let 7 be the genus of C. Then deg C = deg X = d and, by the above, 71 (X)) = r (C) =
deg Kx + 2H = 27 — 2 + 24 (this is just the Riemann-Hurwitz formula). Furthermore, 7 < €(d,a),
where @ = N — n = codim X = codimC and

d-e){d—a+e-2)
2a '
is the Castelnuovo bound (cf. e.g. [{G-H, p. 252]. The function

_(@-Hd-a+t-2)

C{d,a) = e=d {(moda), 1<e<a

t
#(t) -
. . a a _(d=-§-1)
attains maximal value for t = 3 +1and ¢ (5 + 1) = Thus
d—2 - 1)
cd,a) < U222
2a
d—2 -1y d+ 852)2
r1=27r-2+2d§(—2)—+2d..2=u}_)
a a
SPVCE DAY
TiSdi_l Sd(T .

Corollary 2.5. Let X C PV be a nondegenerate nonsingular n-dimensional variety of codimension
a =N —n and degree d, let B = Ry, ~ Kx + (n+ 1)H (cf. Ezample 2.4), and let 1 < i < n. Then

) ) i 1 L4 - 2
ri = (RPH"™%) < o < d <%+§) . Furthermore, if d > ‘(a_S_ZL

presi 1 (which is always true provided

. d i
that a < 12), thenr; < d (a + 1) .
Corollary 2.6. Let X C PN be a nondegenerate nonsingular n-dimensional variety of degree d, codi-

mension ¢ = N — n and sectional genus 7, let Kx be the canonical class of X, let R = Ry ~
Kx+(n+1)H, andletry =degKx =2r +2d — 2.

(i) One has:
i i ppnei T i 1 — d(n + 1))
deg (K ) = (KxH )ﬁd(*—di—n—l) :w(l di(—l )
(2r — (n~ 1)d - 2)? d 1 i )
= - — = < %‘/m .
e <d a+4 n}, 1<i<n

If, moreover, d > u which is always true provided that a < 12), then deg(K%) <
g G\ x

d 1
d(——), 1<i<n.
a

(i) Suppose that m < Q—%‘E +1. Then KL H P <0 forall1 <i<n.

(i) Ifr < @_-21_)3 + 1 {resp. 7 < m%lﬁ + 1), then no positive multiple of the canonical class Kx
can be a positive divisor, so that either Kx =0 or Py, = Pp(X) = {{mKx) =0 for allm > 0
(resp. P =0 for allm > 0). Ifr > K"—?EﬁLl (resp. m > 9—1212 +1), then no negative multiple
of the cenonical class can be a positive divisor, so that either Kx = 0 or l(—mKx) = 0 for
m > 0 (resp. l(-mKx) =0 for m > 0); in particular, ~Kx cannot be ample.

(iv) Suppose that d < an + 2. Then X satisfies the assumption of (i), so that, in particular, no
multiple of the canonical class Kx can be a positive divisor. Furthermore, if d < an + 1, then
P, = Pp(X) =0 for allm > 0;

(an)™=

(v) Suppose that d < an + ~———

1 + 2. Then the canonical class Kx cannot be ample on X.

47
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Remarks 2.7.

()

(iii)

Sometimes the bounds in Example 2.4 and Corollary 2.5 can be improved. For example, if
a = N —n is odd, then argmax ¢ = [%] + 1 and one gets slightly better upper bounds for r;
and r,. Thus, if a = 1, then ry, < @=1E=2) 4 53 _ 1) = d(d - 1), r, < LT = d(d - )7,
which is the best possible bound (it is sharp if and only if the hypersurface X is smooth; cf.
Theorem 1.16 below) and (K%) < d(d — n — 2)¢ which is again sharp. If a = 2, then r; < %2,

2n n . oy i R
T < 2—,,%—”—.7 = d2:l and (K%) < d(%)l, and if a = 3, then r; < ‘—iﬁdf—ll, rn < d(d%l)n

and (K%) < d (d‘—33"_—l-)l We already saw that if a < 12 or, more generally, d > ga_—szﬁ’ then

™ <d (% + 1)11 and (K% H™ %) < d(% — n)l. If, on the other hand, d < 2a + 1, then from the
Clifford theorem it follows that r; < 2(2d — a — 2) (cf. [GH, p. 252]), Theorem 2.1 shows that
h < 3"d, and from Corollary 2.6 it follows that Kx cannot be effective for n > 2.

After completing this work I learned that, under certain assumptions, Di Gennaro [DG] ob-
tained Castelnuovo type bounds for (K%) in terms of degree, dimension and codimension. In
particular, he had to assume that Kx is nef. Apart from being intimately connected with other
important invariants, such as classes (cf. Theorem 2.8 below), Ry, unlike the canonical class,
is always ample (cf. Example 2.4).

It might be useful to extend Example 2.4 to more general finite coverings of P" (not necessarily
corresponding to projections); cf. [Laz, 6.3.D].

We apply the above results to bound the classes of projective varieties in terms of their codimension
and degree.

Theorem 2.8. Let X C PV be an n-dimensional nonsingular variety, let R be the ramification divisor
(¢f. Example 2.4), let 0 < i < n, and let p; be the i-th class of X. Then u; <r;.

Examples 2.9.

(1)

(1)

()

(iv)

Let X be a nonsingular curve of genus g. Then r; = deg R = deg K + 2H = d*, and we get the
Riemann-Hurwitz formula:

p=d" =29+2d-2.

Let X C P™*! be a nonsingular hypersurface of degree d. Then, in the notations of 1.4,
Kx =(d-n—-2Had R = Kx+ (n+1)H = (d -~ 1)H. Thus, by Theorem 2.8, u; <
2

T = :‘11 = d(d — 1)*. It is easy to see that the above inequality is actually an equality; cf.
Theorem 2.14 below.
Let X be a (nonsingular) cubic scroll in P%. It is easy to see that pa = pa(X) = d* = 3 (in fact,
X* is the projection of a Segre variety P! x P? C P°* from an exterior point), g = p1(X) = 4
and pg = po(X) = 3. On the other hand, R ~ H + F, where H is a hyperplane section and F is
a fiber of X, and so r, = (R?) = 5 and r; = 4. The reason why po < 75 is that the double locus
of the projection of X from a general point z € P! is a conic D, ~ H — F containing two pinch
points corresponding to the two tangent lines to D, passing through the point z: 3 =5 — 2.
A general projection X" of the Veronese surface X = vy(P?) C P5 in P3 is called Steiner or
Roman surface. The surface X” can also be viewed as the projection of the surface X’ c P*
from a point z € P*\ X', where X' is a nonsingular projection of X in P*. As noted first by
Castelnuovo, z is contained in a unique trisecant line of X’ and any two of the three intersection
points of this line with X’ lie on a unique conic corresponding to a line in P2. Thus the double
locus D, of the projection from z consists of three conics, so that X" is singular along a
union of three lines meeting in a triple point (the image of the trisecant line). In this example
R ~ D!, ~ 3¢, where { is the image of a line in P? on X ~ X’, and it is easy to see that
p2(X) = 3 (determinant of symmetric 3 x 3-matrix is a cubic form), g1 (X) = 6 and po(X) =4
while 72(X) = 9. The reason why u < 3 is that each of the three double lines on the Steiner
surface obviously contains two pinch points (since any point in the complement of a plane conic
is contained in exactly two tangent lines to the conic): 3 =9 — 6.

General formulas of this type for surfaces-in P® were first obtained by Salmon, Cayley and
Zeuthen.

Corollary 2.10. Let X™ C PV be a nondegenerate nonsingular variety of codimension a = N —n,
degree d and sectional genus w. Then

n—def X d 5 n—def X
d*S”'n—defXSan—l_m:‘l‘<d(a+j—) s L= =27+ 2d - 2.
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2 n—def X
If, moreover, d > (f-*gz}—», thend* <d (g + 1) .
Example 2.11. Let X™ ¢ PV be a nonsingular rational normal scroll. Then d = deg X = N —n + 1
and def X = n — 2 (since each tangent hyperplane to X contains a linear generator P"~! C X and the
corresponding hyperplane section is reducible, so that the dimension of its singular locus, equal to the
defect, is n — 2). Another way to see this is to use the fact that X is a linear section of a Segre variety
P! x Po ¢ P22+ which is easily seen to be self-dual. Then it is easy to show that X* is a projection
of the Segre variety, and sodimX* =a+1=N-n+landdef X =N-1-~(N-n+1)=n~2
The same argument shows that d* = deg X* =a + 1=N-n ~+- 1 =d. On the other hand, in this case

r1 = 2d — 2 and Corollary 2.10 only gives d* < d =4d -8~ <—i which fails to be sharp for d # 2. It

should be noted that for d = 3 this example reduces to Example 1.14 (iii) and that any smooth section
of X is again a rational normal scroll.

Corollary 2. 12. Let X™ c PV be a nondegenerate nonsingular variety of degree d and codimension
T o 2 T
a. Then p; < d' 1 <d< Z) . If, moreover, d > (a 82) , t@enpi<d(g+1> .

Remarks 2.13.

(1) The first inequality in Corollary 2.10 actually yields a bound for the codegree of X in terms
of the degree d and the sectional genus 7(X) (defined as m{X) = g(Xn-;)). In the case when
the sectional genus of X is much less than the maximum given by Castelnuovo’s theorem this
bound is much better than the general one given by the second inequality.

(ii) The bounds for codegree given in Corollaries 2.10 and 2.12 are not optimal. The main reason
for the failure of these bounds to be sharp is that the inequality u; < r; proved in Theorem 2.8
is always strict provided that ¢ > 1 and a > 1 (cf. Examples 2.9; one can give a lower bound
for the difference r; — p; in terms of other projective invariants). Also the bound r; < d—f—i—l
obtained in Theorem 2.1 is not always sharp. Varieties of positive defect have an additional
reason for the failure of this bound to be sharp (cf. Example 2.11). Finally, the last bounds in

Corollaries 2.10 and 2.12 depend on the bound €(d,a) < d (£ + 2) (cf. Remark 2.7 (i)). The real
di+t

import of Corollary 2.10 is that u; < + ---, where dots stand for an (easily computable)

polynomial of degree i in d. Below we will give examples of series of varieties whose classes have
it1

the form u; = +---}, and so in this sense our bound for classes is good. Using Castelnuovo

theory, one can prove better bounds for classes and classify the varieties on the boundary (cf.
section 4).

One case when the bounds in Corollaries 2.10 and 2.12 are is sharp is the case of hypersurfaces (cf.
Example 2.9 (ii) ).

Theorem 2.14. Let X™ C PV be a nondegenerate (not necessarily nonsingular) variety of degree d.
Then p; < d{d — 1), 0 < ¢ < n with equality (for some i) holding if and only if either i=0 or X is a
hypersurface with dim (Sing X) < n — i (i.e. X; is a nonsingular hypersurface).

Similarly, d* < d(d — 1)~ X with equality holding if and only if X is a cone over a nonsingular
hypersurface Y C PN=9X with vertex PEX-1 in which case n = N — 1,°dimY = n — def X,
Sing X = P4 X1 gngd X* = Y* C PN-4ef X C PN™ is the linear subspace orthogonal to the vertex
of the cone X.

In particular, one always has d* < d(d — 1) with equality holding if and only if X is a nonsingular
hypersurface.

Remark 2.15. For X nonsingular and a = codim X > 1 Theorem 2.8 combined with Remarks 2.7 (i)
i1

and 2.13 (ii) yield a much better bound for classes than Theorem 2.14, viz. p; < r; <
Theorem 2.14 has a fargoing generalization to varieties of given codimension ¢ > 1.

Definition 2.18. Let X C PN be a projective variety, and let Tx be the sheaf of ideals defining X.
We say that X is defined by equations of degree (not exceeding) d if the sheaf 7(d) is generated by its
global sections.

It is clear that if d’ > d and X is defined by equations of degree d, then X is also defined by equations
of degree d'.

For example, a complete intersection of a hypersurfaces of degrees dy < dy < --- < d, = d is defined
by equations of degree d (of course, if d; < d and we wish to represent X (scheme theoretically) as an
intersection of hypersurfaces of degree d, then we need more than o hypersurfaces).

49
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Theorem 2.17. Let X® C PV, N = n + a be a (not necessarily nondegenerate or nonsingular)
variety defined by equations of degree d, and let t, 0 < i < n be an integer. Then p; < (“"";‘:—l)da(d -
1)* with equality holding if and only if X is a complete intersection of a hypersurfaces of degree d
with dim (Sing X) < n — 1 {so that X; is a nonsingular complete intersection). In particular, d* <
NoHaNrd - D)t~ (N1)aY with equality holding if and only if X is o nonsingular complete
intersection of N — n hypersurfaces of degree d.

3. BoUNDS FOR BETTI NUMBERS

The results of section 1 largely reduce bounding of Betti numbers of nonsingular complex affine
and projective varieties to bounding their classes. In section 2 we bounded the classes in terms of
codimension, degree and sectional genus. In this section we combine the results of the first two sections
to obtain bounds for Betti numbers.

Theorem 3.1. Let V™ C AV be a smooth complex affine variety, let X be the closure of V in PN > AV,
letd =deg X, a = codimX = N —n, and let b(V) denote the total Betti number of V. Then b(V) <

dn+1 d 5\
+ - -+, where dots stand for a polynomial of degree n in d. More precisely, b(V) < a (a + Z)

an
d n+1
and also b(V) < a <— + 1) + ¢, where ¢ is a constant depending only on codimension a (and
a
dimension n).

Theorem 3.2. Let X be a nonsinguler complez projective variety of dimension n and degree d. Then:

(i) Putt = %—, where r1 = py = 27 + 2d — 2 and 7 is the sectional genus of X. Then b;(X) <

ﬂ+2 d ﬁ+2
d(t2—1_1>< -1

(i) 55(X) = bams (X) < T

al

+ .-+, where a = codim X and dots stand for a polynomial of degree
; d 5 -+1 d 41

iind, i <n. More precisely, b; < a <E + Z) and also b; < a (E + 1) +c¢, where c is a

constant depending only on codimension a (and dimension n).

Theorem 3.3. Let X be a nonsingular complex projective variety of dimension n, and let d = deg X .
Then:

(i) Putt = %, where 71 = p1 = 2 + 2d — 2 and 7w is the sectional genus of X. Then b(X) <

dtn+2 _ T1tn+l
(=12 (t-1)
dn+1
(i) b(X) < - + ---, where o = codim X and dots stand for a polynomial of degree n in
. a? (d 5\ ay [d n+l

d. More precisely, b(X) < i (E + Z) and also b(X) < (1+ E) <E +1> +c =
2

a

d

n+2
— (— + 1) +c, where c is e constant depending only on codimension a (and dimension n).
a .

Corollary 3.4. The total Betti number of a nonsingular complez algebraic variety, either affine or
n+1

. projective, does not exceed +---, where n is the dimension, a is the codimension, d is the degree

n
of the projective closure, and dots stand for a polynomial of degree n in d.

Remark 3.5.

(i) The bounds in Theorems 3.1 and 3.3 are asymptotically equivalent. This means that if a variety
has big degree and total Betti number, then the contribution to the total Betti number of all
homologies except the middle one is negligible.

(i) Actually the bounds in Theorems 3.1 and 3.3, (ii) and the bound for b, in Theorem 3.2, (ii)
are asymptotically sharp. However, for ¢ # n the bounds in Theorem 3.2, (ii) fail to be asymp-
totically sharp. For example, bo(X) = 1 while the bound in Theorem 3.2, (ii) has the form
d+---. If1 < i< n, the situation is similar. If the bound in Theorem 3.2, (ii) were asymp-
totically sharp, then, by Corollary 2.12, the sectional genus of X would be close to maximum,
so that by the Halphen-Harris theorem (cf. Theorem 4.1) X would be a divisor on a variety of
minimal degree . Thus from Theorem 1.5 and Corollary 1.6 it would follow that b;(X) < 1, a
contradiction.
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Example 3.6. Let X™ C P"*! be a nonsingular hypersurface of degree d. The dual variety X is the
image of X under the Gauss map defined by the partial derivatives of the equation of X;, hence u; =
d(d—1)},i=0,...,n. Since X can be viewed as a hyperplane section of the d-th Veronese embedding

1, 0<i<2n,¢=0 d2), i#mn,
of P!, Theorem 1.5 shows that b;(X) = b;(P"+1) = { is2n, 120 (mod2), ign, 4

0, O<i<2n,i51(mod2) i#En
[ HX), n=0 (mod 2), ) i
(X) = { BX) ~ 0(X), n=1(mod2)’ , and by Theorem 1.10, e(X) = d E ~1) (n—i+1)(d-1)%.

i=0
This allows to compute the numbers b,(X) and (X ):

(d—1)n+2 4 (—pnt N (-1 +1

d 2 = d(i(—mi(” ‘:‘ 2)dn-i) 4 Ont 1)(;1)"+1 +1

1=0

ba(X) =

and

(d— 1)n+2 +( 1)n+l
d

b(X) = + 041+ (-1)"

= d(i(—l)" (” :’ 2)@”"‘) + {1+ ()" +1).

=0

Theorem 3.7. Let X" C PV be o nonsingular n-dimensional complez projective variety of degree
d. Then bp(X) < bo{X), where X C P**! is o smooth hypersurface of degree d. Furthermore,
bn(X) = bp(X) if and only if X is itself a hypersurface.

Theorem 3.8. Let X™ C PV be a nonsingular complez projective variety of degree d. Then b(X) <

b(X), where X is a smooth compler hypersurface of degree d. Furthermore, if b(X) = b(X), then X
is itself a hypersurface (we recall that all smooth complez hypersurfaces of dimension n and degree d
have the same Betti number b(X)).

Theorem 3.3 also yields a bound not involving codimension. In particular, for a nonsingular complex

o . (d+ 1)nt2
projective variety X of degree d one has b(X) < ~—————

to get a better bound that is easy to memorize.

. However, in this case Theorem 3.8 allows

Theorem 3.9. Let X" C PV be a nonsingular complex projective variety of degree d. Then b(X) <
dntl,

Building on Corollary 1.9 and Theorem 2.17, one can prove the following result extending Theo-
rem 3.9 to varieties of arbitrary codimension defined by equations of degree d.

Theorem 3.10. Let X™ C PV be a (not necessarily nondegenerate) variety defined by equations of
degree d. Then b(X) < (N7 1)aV.

Example 3.11. Let X™ ¢ PV be a nonsingular complete intersection of hypersurfaces of degree d.

0, 2#mn,i=1 (mod 2), .
Then b;(X) = { L : in, i=0 Emod 2; , bn(X) = ... is computed in {Hi] and [De].

From Theorem 3.10 and Stirling’s formula we derive the following bound valid for arbitrary smooth
subvarieties of PV,

Corollary 3.12. Let X C PV be a nonsingular variety defined by equations of degree < d. Then

b(X) < (E;Dd’v ~ &ud)”,

Remark 3.13. In view of Example 3.11, the bounds in Theorem 3.10 and Corollary 3.12 and a similar
bound for affine varieties that easily follow from Theorems 1.3 and Theorem 2.17 are asymptotically
sharp. In particular, they are better than the bounds obtained in [Mil2] and [Th} (cf. e.g. [Mil2,
Theorem 2 and Corollaries 1-3]); furthermore, our bounds take into account the codimension of X.
On the other hand, although Theorem 2.17 holds for arbitrary varieties, to apply the theory developed
in section 1 we, unlike Milnor and Thom, need to %slsume that X is nonsingular.
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4. FURTHER RESULTS AND OPEN PROBLEMS

As pointed out in Remark 2.13 (ii), the bounds for classes and Betti numbers obtained in Corol-
lary 2.12 and Theorems 3.1-3.4 are not optimal. In this section we improve these bounds and describe
the varieties on the boundary. We will use the following result (cf. {H-E, Theorem 3.15] or [Ci, Theo-
rem 3.4]).

Theorem 4.1 (Halphen-Harris). Let C C P, r = a + 1 be a nondegenerate curve of genus g and
degree d > 2r such that
S (d—e)(d+e—1) + [f] ’
2r r
Then C is contained in a surface S of minimal degree m P": CC SCP", degS=r—1.

e=d (modr), 1<e<r.

Using the Halphen-Harris theorem, one can prove the following

Theorem 4.2. Let X C PV be a nonsingular nondegenerate variety of dimension n, codimension

2n
a=N —n and degreed >2a+ 2, letb;, 1 =0,...,2n and b= Zbi be its Betti numbers, and let u;,
i=0
i =20,...,n denote its classes (cf. Definition 1.11).
d d-2 1\’
(1) Suppose that p; > d (a 1 + p + a;—i ) (since d > 2a + 2, this condition is satisfied

d H
provided that u; > d (E:_l + g) ) for somei > 0. Then X CV, where V C PV, dimV =

n+1, degV = a is a variety of minimal degree.
d d—2 1
(ii) Suppose thatb > d¢ (a 1 + 7 + a; ), where, as in the proof of Corollary 2.14, ¢(t) =
n+2 2 n+2
(tt——l)‘z (this condition is satisfied provided that b > (a Zl) (a i T + g) ). Then X CV,
where V C PN, dimV =n+1, degV = a is a variety of minimal degree.

Theorem 4.2 largely reduces (at least for big d) the general problem of bounding classes and Betti
numbers to the special case of subvarieties of codimension one in varieties of minimal degree. Since the
structure of varieties of minimal degree is well known (with a couple of exceptions, they are rational
normal scrolls), this last problem is not hard to solve, and thus, at least when the degree is large
enough, one can get both sharp bounds for classes and Betti numbers and nice bounds generalizing
Theorems 2.14 and 3.9 to varieties of arbitrary codimension. We do not go into details here.

Remark 4.3.
(i) Taking an irreducible smooth subvariety of the form X ~ [iﬂ H+ (d —-a [ﬂ) F, where

vntl ¢ PV is a rational normal scroll (of degree @), and H and F are, respectively, its
hyperplane section and fiber P* C V, one sees that the bounds for classes u;(X) and Betti
numbers b, (X) and b(X) given in sections 2 and 3 are “asymptotically” best possible. However
this is not the case for the bounds for the other Betti numbers b;(X). As an example, consider
the case 7 = 1. In fact, if the sectional genus of X is high enough, then from the Halphen-Harris
theorem it follows that X is a codimension one subvariety in a variety of minimal degree, from
which and the Lefschetz theorem it is easy to infer that X is regular provided that n > 1.

(ii) Let b_(X) = Zbi(X) = b(X) — bp(X) be the sum of all Betti numbers of X except the

i#n
middle one. Then from the results of section 3 it follows that b_(X) < b(X') + bp—1(X) <
d
B(X") + bp—1(X') < 2b(X') is bounded by a polynomial of the form dP(;), where P is an
explicitly given polynomial of degree n — 1 with leading coefficient 2 (if d is large with respect
to a, then one can simply take P(t) = 2t"~1). On the other hand, in view of (i), it is impossible
to give a bound of this form for the middle Betti number. In other words, if the degree and
the total Betti number of a variety are large, then the contribution of all homologies except
the middle one to the total Betti number is much less than that of the middle homology. More
generally, if b.; = Z b;, then b_y(X) = b_;(X;), where X; = XNL, LC PN dimL = N-1
li=n|>1

is a general linear subspace, and, arguing as above, we see that, for d large with respect to q,

b_y(X) < 2d (f)n_H.

a
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Here we only briefly discuss some extensions and generalizations of the above results. First of all,
while we considered only complex algebraic varieties, using the l-adic etale cohomology theory, most of
the results can be extended to varieties over an arbitrary algebraically closed field. On the other hand,
most of our results (except those for individual Betti numbers) also extend to real algebraic varieties;
this is the topic of a joint paper in preparation with V. Kharlamov [Kh-Za).

Our method of proving the bounds for Betti numbers in section 3 is ultimately based on Castelnuovo’s
bound for curves (cf. Example 2.4) from which we derive, using the Hodge index theorem, bounds for
the degrees of selfintersections of ramification divisor and classes. Thus it is desirable to get better
understanding of these basic tools. It turns out that both Castelnuovo’s bound and Hodge's theorem
are consequences of a general theory yielding an upper bound for the dimension of the ambient space
of primitive families of intersecting linear subspaces (cf. Remark 2.2, (v)). This topic will be dealt with
elsewhere.

Classes, ramification degrees, and Betti numbers are only special examples of numerical invariants
of algebraic varieties. Important examples of such invariants are given by Chern numbers ¢;(X), where
I is a multiindex of weight n {(e.g. ¢! = £(K") and ¢, = €) and Hodge numbers h»?, 0 < p,q < n,
p+ q =n. For each of these (and other) numerical invariants, one can consider the problem of finding
its maximal value on the class of nonsingular nondegenerate projective varieties of given dimension n,
codimension a and degree d and describing the varieties on the boundary. Also, it is desirable to study
the relationship between these invariants. Using the theory of Chern classes of nef vector bundles and
a more detailed study of polar classes, we show that, at least for d large enough, maximization of all

the above numerical invariants leads to codimension one subvarieties of varieties of minimal degree.
n+1 n—+1
{regardless of I} and h?™"P ~

Furthermore, for maximal varieties |cz| ~ where « is

n ar
the volume of the p-th slice of the unit (n + 1)-dimensional cube by integral hyperplanes orthogonal to
PP
the main diagonal. Moreover, the quotients ledl {resp. ) are arbitrarily close to 1 (resp. to ap)

b,
n
as soon as by, is sufficiently large with respect to <5) .

We proceed with listing a few open problems.

1) It is desirable to extend our results to varieties with arbitrary singularities. Unfortunately, this
is not easy, particularly in the case of Betti numbers, because no Lefschetz or Morse theory for
singular varieties good for our purposes seems to be available. Castelnuovo theory for singular
curves is as good as for nonsingular ones provided that the geometric genus is replaced by the
arithmetic one. In higher dimensions, the geometric genus is a birational invariant, and so
Harris did not have to assume nonsingularity in [Har]. However, it seems harder to deal with
the Hodge numbers 79 for p,q > 0.

2} As pointed out in Remark 1.11, it would be nice to get a proof of Lefschetz’s hard theorem “on
the level of complexes” which would strengthen it just as Theorem 1.3 strengthens Lefschetz’s
weak theorem.

3) As pointed out in Remark 4.3 (ii), the bound for the Betti number b; of a nondegenerate
nonsingular complex variety X™ C PV obtained in Theorem 3.2, (ii) fails to be asymptotically
sharp if ¢ < n. In fact, while, by Lefschetz’s theorem b;(X) is dominated by b;(X) for k > 1,
one usually has a strict inequality b;(X;) > b;(X). Thus it is desirable to obtain sharp (or
asymptotically sharp) inequalities for the individual Betti numbers other than the middle one
and classify the varieties on the boundary. In particular, one would like to bound the irregularity
of complex projective varieties of given dimension, codimension and degree. By Lefschetz’s
theory, this problem reduces to the case of surfaces. There are reasons to believe that the
bound in question is roughly twice better than Castelnuovo’s bound for curves.

More generally, one would like to get sharp bounds for the Hodge numbers 27?7 with p+ ¢ =
i<n.

4) It is desirable to understand better the asymptotic behavior of projective varieties and in
particular the condition b, being large with respect to d" playing an important role in stydying
the behavior of numerical invariants (cf. above; the behavior of invariants of ‘lower weight’, such
as b; for i < n, is probably controlled by lower powers of d, such as d*). For example, arbitrary
complete intersections of large degree clearly have this property, and it might be worthwhile to
study it from the point of view of linkage.

There is also some evidence that, asymptotically, the partition of unity by the ‘Betti weights’

_be’ 0 < p < n of a nonsingular real projective variety with a sufficiently large total Betti number

hp,n“P
b is also close to the partition ap i.e. to the partition of unity by the ‘Hodge weights’
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of the corresponding nonsingular complex projective variety (the complex conjugation duality
hPm=P(X¢) = h" PP(Xc) corresponds then to the Poincaré duality by(Xg) = bn—p(Xr)). It is
desirable to understand the connection between these two theories.

5) It would be nice to find bounds for Betti numbers (and, possibly, for analogs of classes and

[AL]
[Cast]
[Cast2]

[ci]

[De]

other numerical invariants) for subvarieties of abelian varieties, subvarieties of toric varieties
and, maybe, subvarieties of other special varieties.
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