On a new class of rational cuspidal plane curves

Keita Tono

1 Introduction

Let C be a curve on $\mathbf{P}^{2}=\mathbf{P}^{2}(\mathbf{C})$ ．A singular point of C is said to be a cusp if it is a locally irreducible singular point．We say that C is cuspidal if C has only cusps as its singular points．Suppose that C is a rational cuspidal plane curve with n cusps．The curve C is said to be unicuspidal（resp．bicuspidal）if $n=1$ （resp．$n=2$ ）．Let $\bar{\kappa}=\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)$ denote the logarithmic Kodaira dimension of the complement of C ．By［ Ts ］，there exist no rational cuspidal plane curves with $\bar{\kappa}=0$ ．Let C^{\prime} denote the proper transform of C via the minimal embedded resolution of the cusps．If $n=1$ and $\bar{\kappa}=2$ ，then $\left(C^{\prime}\right)^{2} \leq-2$ by［Y］．If $n=2$ ， then $\bar{\kappa}=2$ if and only if $\left(C^{\prime}\right)^{2} \leq-1$ by［Tol］．From these facts and the following theorem，$\left(C^{\prime}\right)^{2}$ is bounded from above if $\bar{\kappa}=2$ ．

Theorem 1．Let C be a rational cuspidal plane curve with n cusps．If $n \geq 3$ ， then $\left(C^{\prime}\right)^{2} \leq 7-3 n$ ．

For a fixed n ，we consider the class of the curves with $\bar{\kappa}=2$ having the maximal $\left(C^{\prime}\right)$ ．We begin with the case：$n=1$ ．In［O］，Orevkov constructed two infinite sequences $C_{4 k}, C_{4 k}^{*}(k=1,2, \ldots)$ of rational unicuspidal plane curves with $\bar{\kappa}=2$ in the following way．Let N be the nodal cubic．Let Γ be one of two analytic branches at the node．Let $\phi: W \rightarrow \mathbf{P}^{2}$ denote 7－times of blow－ups over the points which are infinitely near to Γ and the node．The exceptional curve E of ϕ is a linear chain of 6 －pieces of（－2）－curves and one（－1）－curve E^{\prime} as an end point．The curve E intersects N in two points．Let $\phi^{\prime}: W \rightarrow \mathbf{P}^{2}$ denote the contraction of the proper transform of N and the 6－pieces of $(-2)-$ curves in E ．The curve $\phi^{\prime}\left(E^{\prime}\right)$ is the nodal cubic．Put $f=\phi^{\prime} \circ \phi^{-1}$ ．Let C_{0} be the tangent line at a flex of N and C_{0}^{*} an irreducible conic meeting with N only in one smooth point．He defined the curves $C_{4 k}, C_{4 k}^{*}$ as $C_{4 k}=f\left(C_{4 k-4}\right)$ ， $C_{4 k}^{*}=f\left(C_{4 k-4}^{*}\right)(k=1,2, \ldots)$ ．For $k \geq 2, \Gamma$ should be chosen as the analytic branch at the node which is not tangent to $C_{4 k-4}$（resp．$C_{4 k-4}^{*}$ ）．They have the following properties for each k ．
（i）$\left(C_{4 k}^{\prime}\right)^{2}=\left(C_{4 k}^{*}\right)^{2}=-2$ ．
（ii） $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C_{4 k}\right)=\bar{\kappa}\left(\mathbf{P}^{2} \backslash C_{4 k}^{*}\right)=2$.
The following theorem characterizes the Orevkov＇s curves by $\left(C^{\prime}\right)^{2}$ ．
Theorem 2．Let C be a rational unicuspidal plane curve with $\bar{\kappa}=2$ ．Then $\left(C^{\prime}\right)^{2}=-2$ if and only if C is projectively equivalent to one of the Orevkov＇s curves．

We next consider the class of the curves with $n=2$. For a cusp P of C, we denote the multiplicity sequence of the cusp by $\bar{m}_{P}(C)$, or simply \bar{m}_{P}. We use the abbreviation m_{k} for a subsequence of \bar{m}_{P} consisting of k consecutive m 's. For example, $\left(2_{k}\right)$ means an $A_{2 k}$ singularity. The set of the multiplicity sequences of the cusps of C will be called the numerical data of C. For example, the rational quartic with three cusps has the numerical data $\{(2),(2),(2)\}$.

Theorem 3. The numerical data of a rational bicuspidal plane curve C with $\left(C^{\prime}\right)^{2}=-1$ coincides with one of those in the following table, where a is a positive integer.

No.	Numerical data		Degree
1	$\left\{\left(a b+b-1, a b-1, b_{a-1}, b-1\right),\left((a b)_{2}, b_{a}\right)\right\}$	$(b \geq 2)$	$2 a b+b-1$
2	$\left\{\left(a b+b, a b, b_{a}\right),\left((a b+1)_{2}, b_{a}\right)\right\}$	$(b \geq 2)$	$2 a b+b+1$
3	$\left\{\left(a b+1, a b-b+1, b_{a-1}\right),\left((a b)_{2}, b_{a}\right)\right\}$	$(b \geq 3)$	$2 a b+1$
4	$\left\{\left(a b+b, a b, b_{a}\right),\left((a b+b-1)_{2}, b_{a}, b-1\right)\right\}$	$(b \geq 3)$	$2 a b+2 b-1$

Conversely, for a given numerical data in the above table, there exists a mational cuspidal plane curve having that data.

Remark. In [Fe], Fenske constructed sequences of rational bicuspidal plane curves. The numerical data of the curves with $\left(C^{\prime}\right)^{2}=-1$ among them coincide with the data 1,2 and 3 with $a=1$ in Theorem 3 .

Now we pass to the case: $n \geq 3$. There are no known examples of curves with $n \geq 5$. There is only one known curve C with $n=4$. The curve C is a quintic curve with $\left(C^{\prime}\right)^{2}=-7$. The bound given by Theorem 1 is the best possible one for $n=3$ as the quartic curve C with three cusps satisfies $\left(C^{\prime}\right)^{2}=-2$. Moreover, we prove the following:

Theorem 4. Let C be a rational cuspidal plane curve with three cusps. Then $\left(C^{\prime}\right)^{2}=-2$ if and only if C coincides with the quartic curve having three cusps.

2 Preliminary results

In this section, we prepare preliminaries for the proofs of our theorems. Let D be a reduced effective divisor with only simple normal crossings on a smooth surface. Let Γ denote the weighted dual graph of D. We sometimes do not distinguish between Γ and D. We define a blow-up over Γ as the weighted dual graph of the reduced total transform of D via the blow-up at a point $P \in D$. The converse modification of the graph is called the contraction of the vertex corresponding to the exceptional curve. The blow-up is called sprouting (resp. subdivisional) if P is a smooth point (resp. node) of D. Let D_{1}, \ldots, D_{τ} be the irreducible components of D. We denote by $d(\Gamma)$ the determinant of the $r \times r$ matrix $\left(-D_{i} D_{j}\right)$. By convention, we set $d(\Gamma)=1$ if Γ is empty.

Assume that Γ is connected and linear. Give Γ an orientation from an end point of Γ to the other. There are two such orientations if $r>1$. The linear graph Γ together with one of the orientations is called a twig. The empty graph is, by definition, a twig. If necessary, renumber D_{1}, \ldots, D_{r} so that the
orientation of the twig Γ is from D_{1} to D_{r} and $D_{i} D_{i+1}=1$ for $i=1, \ldots, r-1$. We denote Γ by $\left[-D_{1}^{2}, \ldots,-D_{r}^{2}\right]$. The twig is called rational if every D_{i} is rational. In this note, we always assume that every twig is rational. The twig Γ is called admissible if it is not empty and $D_{i}^{2} \leq-2$ for each i.

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be an admissible twig. The rational number $e(A):=$ $d\left(\left[a_{2}, \ldots, a_{r}\right]\right) / d(A)$ is called the inductance of the twig A. By [Fu, Corollary $3.8]$, the function e defines a one-to-one correspondence between the set of all the admissible twigs and the set of rational numbers in the interval $(0,1)$. For a given admissible twig A, the admissible twig A^{*} with $e\left(A^{*}\right)=1-e\left(\left[a_{\uparrow}, \ldots, a_{1}\right]\right)$ is called the adjoint of A ($[\mathrm{Fu}, 3.9])$. For an integer n with $n \geq 0$, we put $t_{n}=[\overbrace{2, \ldots, 2}^{n}]$. For non-empty twigs $A=\left[a_{1}, \ldots, a_{r}\right], B=\left[b_{1}, \ldots, b_{s}\right]$, we write $A * B=\left[a_{1}, \ldots, a_{r-1}, a_{r}+b_{1}-1, b_{2}, \ldots, b_{s}\right]$. The following lemma will be useful for computing the adjoints of admissible twigs.

Lemma 5. The following assertions hold true.
(i) For a positive integer n and an admissible twig A, we have $[A, n+1]^{*}=$ $t_{n} * A^{*}$.
(ii) For an admissible twig $A=\left[a_{1}, \ldots, a_{r}\right]$, we have $A^{*}=t_{a_{r}-1} * \cdots * t_{a_{1}-1}$.

We will use the following lemma, which can be proved by using [Fu, Proposition 4.7].

Lemma 6. Let A be an admissible twig and a a positive integer. Let B be a twig which is empty or admissible. Assume that the twig $[A, 1, B]$ is obtained from the twig [a] by blow-ups π and that $[a]$ is the image of A under π.
(i) There exists a positive integer n such that $A^{*}=\left[B, n+1, t_{a-1}\right]$. Moreover, if $B \neq \emptyset$, then $A=[a] * t_{n} * B^{*}$.
(ii) The first n blow-ups of π are sprouting and the remaining ones are subdivisional.

Conversely, for given positive integers a, n and an admissible twig B, the twig $\left[[a] * t_{n} * B^{*}, 1, B\right]$ shrinks to $[a]$.

3 Outlines of the proofs

Let C be a rational cuspidal plane curve and P_{1}, \ldots, P_{n} the cusps of C. Let $\sigma: V \rightarrow \mathbf{P}^{2}$ be the composite of a shortest sequence of blow-ups such that the reduced total transform $D:=\sigma^{-1}(C)$ is a simple normal crossing divisor. Since C is rational and cuspidal, $X:=V \backslash D$ is a Q-homology plane. Let C^{\prime} denote the proper transform of C. For each k, the dual graph of $\sigma^{-1}\left(P_{k}\right)+C^{t}$ has the following shape.

Here $D_{0}^{(k)}$ is the exceptional curve of the last blow-up over P_{k} and $g_{k} \geq 1$. The morphism σ contracts $A_{g_{k}}^{(k)}+D_{0}^{(k)}+B_{g_{k}}^{(k)}$ to a (-1)-curve E, which is the image of $A_{g_{k}}^{(k)}, A_{g_{k}-1}^{(k)}+E+B_{g_{k}-1}^{(k)}$ to a (-1)-curve, which is the image of $A_{g_{k}-1}^{(k)}$, and so on. The self-intersection number of every irreducible component of $A_{i}^{(k)}$ and $B_{i}^{(k)}$ is less than -1 for each i. See [$\left.\mathrm{BK}, \mathrm{MaSa}\right]$ for detail. We give the graphs $A_{1}^{(k)}, \ldots, A_{g_{k}}^{(k)}$ (resp. $B_{1}^{(k)}, \ldots, B_{g_{k}}^{(k)}$) the orientation from the left-hand side to the right (resp. from the bottom to the top) in the above figure. We assign each vertex the self-intersection number of the corresponding curve as its weight. With these orientations and weights, we regard $A_{i}^{(k)}$ and $B_{i}^{(k)}$ as twigs. Let $\sigma^{(k)}$ be the composite of the blow-ups over P_{k} of σ. There exists a decomposition $\sigma^{(k)}=\sigma_{0}^{(k)} \circ \sigma_{1}^{(k)} \circ \cdots \circ \sigma_{g k}^{(k)}$ such that $\sigma_{i}^{(k)}$ contracts $\left[A_{i}^{(k)}, 1, B_{i}^{(k)}\right]$ to a (-1)-curve for each $i \geq 1$. Let $\rho_{i}^{(k)}$ denote the number of the sprouting blow-ups in $\sigma_{i}^{(k)}$ with respect to the (-1 -curve. The following lemma follows from Lemma 6.

Lemma 7. We have $A_{i}^{(k)}=t_{\rho_{i}^{(k)}} * B_{i}^{(k) *}$ and $A_{i}^{(k) *}=\left[B_{i}^{(k)}, \rho_{i}^{(k)}+1\right]$.

3.1 Theorem 1

Let K be a canonical divisor on V. Let ω_{k} (resp. p_{k}) be the number of the subdivisional (resp. sprouting) blow-ups of σ over P_{k}, where the first blowup over P_{k} is regarded as the subdivisional one. Theorem 1 follows from the following lemma.

Lemma 8. Suppose $n \geq 3$. We have

$$
0 \leq K(K+D)=7-2 n-\left(C^{\prime}\right)^{2}-\sum_{k=1}^{n} \rho_{k}
$$

Moreover, we have $\left(C^{\prime}\right)^{2} \leq 7-3 n$. The equality holds if and only if $K(K+D)=$ 0 and the dual graph of $\sigma^{-1}\left(P_{k}\right)$ is linear for each k.

Proof. We have $K(K+D)=7-D^{2}-\sum_{k=1}^{n}\left(\omega_{k}+\rho_{k}\right)$. By [MaSa, Lemma 4], we get the desired equality. By [To3, Lemma 4.1] (cf. [BLMN, Proposition 5.8]), $0 \leq K(K+D)$. The second blow-up of σ over P_{k} is a sprouting one for each k. Hence $\left(C^{\prime}\right)^{2} \leq 7-3 n$.

3.2 Theorem 2

Assume that $n=1,\left(C^{\prime}\right)^{2}=-2$ and $\bar{\kappa}=2$. We omit the (k) 's of $A_{i}^{(k)}, B_{i}^{(k)}$, etc. for the sake of simplicity. We see that one and only one of the two irreducible components of $D-D_{0}-C^{\prime}$ meeting with D_{0} must be a (-2) curve. Let F_{0}^{\prime} denote the (-2)-curve and S_{2} the remaining one. Let $\sigma_{0}: V \rightarrow V^{\prime}$ be the contraction of D_{0} and C^{\prime}. Since $\left(F_{0}^{\prime}\right)^{2}=0$ on V^{\prime}, there exists a \mathbf{P}^{1}-fibration $p^{\prime}: V^{\prime} \rightarrow \mathbf{P}^{1}$ such that F_{0}^{\prime} is a nonsingular fiber. Put $p=p^{\prime} \circ \sigma_{0}: V \rightarrow \mathbf{P}^{1}$. Since $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=2$, there exists an irreducible component S_{1} of $D-D_{0}-F_{0}^{*}$ meeting with F_{0}^{\prime} on V. Put $F_{0}=F_{0}^{\prime}+D_{0}+C^{\prime}$. The curve S_{1} (resp. S_{2}) is a 1 -section (resp. 2 -section) of p. The divisor D contains no other sections of p. A general fiber of $\left.p\right|_{X}$ is isomorphic to $\mathbf{C}^{* *}=\mathbf{P}^{1} \backslash\{3$ points $\}$. The surface

Figure 1: Dual graphs of $S_{1}+S_{2}+F_{0}+F_{1}+F_{2}$

Figure 2: The dual graphs of $D+E_{1}+E_{2}$
$X=V \backslash D$ is a Q-homology plane. Such fibrations had already been classified in [MiSu].

From [MiSu], one can deduce that p has at most two singular fibers F_{1}, F_{2} other than F_{0}. The fiber F_{1} (resp. F_{2}) meets with S_{2} in one point (resp. two points). For each i, let E_{i} be the sum of all the irreducible components of F_{i} which are not components of D. It follows from [MiSu] that the dual graph of $S_{1}+S_{2}+F_{0}+F_{1}+F_{2}$ must be one of those in Figure 1. In the figure, * (resp. \bullet) is a (-1)-curve (resp. (-2)-curve), $F_{1}=T_{11}+E_{1}+T_{12}+F_{1}^{\prime}+F_{11}+F_{12}$, $F_{2}=T_{21}+E_{21}+T_{22}+F_{2}^{\prime}+T_{23}+E_{22}+T_{24}$ and $E_{2}=E_{21}+E_{22}$. The divisor $T_{i j}$ may be empty for each i, j.

There exists a birational morphism $\varphi: V \rightarrow \Sigma_{d}$ from V onto the Hirzebruch surface Σ_{d} of degree d for some d. The morphism φ is the composite of the successive contractions of the (-1)-curves in the singular fibers of p. By Lemma 7, σ gives equations on the twigs A_{i} and B_{i}. Similar to σ, φ gives equations on twigs for each type of the fibration p. One can prove that the equations for type $\left(\mathbf{I I I}_{\mathbf{1 a}}\right)$ and $\left(\mathbf{I I I}_{\mathbf{1 a}}\right)+\left(\mathbf{I} \mathbf{V}_{\mathbf{2 b}}\right)$ have solutions, whose weighted dual graphs coincide with those in Figure 2, where $k \geq 0$. The equations for the remaining types have no solution. From the definition of $C_{4 k}$ and $C_{4 k}^{*}$, one can show that C coincides with $C_{4(k+1)}$ (resp. $\left.C_{4(k+1)}^{*}\right)$ if the fibration is of type ($\mathbf{I I I}_{\mathbf{1 a}}$) $\left(\operatorname{resp} .\left(\mathbf{I I I}_{\mathbf{1 a}}\right)+\left(\mathbf{I V}_{\mathbf{2 b}}\right)\right)$.

3.3 Theorem 3

Assume that $n=2$ and $\left(C^{\prime}\right)^{2}=-1$. Put $F_{0}^{\prime}=D_{0}^{(1)}$. Let $\sigma_{0}: V \rightarrow V^{\prime}$ be the contraction of C^{\prime}. Since $\left(F_{0}^{\prime}\right)^{2}=0$ on V^{\prime}, there exists a \mathbf{P}^{1}-fibration $p^{\prime}: V^{\prime} \rightarrow \mathbf{P}^{1}$ such that F_{0}^{\prime} is a nonsingular fiber. Put $p=p^{\prime} \circ \sigma_{0}: V \rightarrow \mathbf{P}^{1}$

Figure 3: The dual graph of $D+E_{1}+E_{2}$
and $F_{0}=F_{0}^{\prime}+C^{\prime}$. Let S_{1} and S_{3} be the irreducible components of $A_{g_{1}}^{(1)}+B_{g_{1}}^{(1)}$ meeting with $D_{0}^{(1)}$. Put $S_{2}=D_{0}^{(2)}$. The curves S_{1}, S_{2} and S_{3} are 1-sections of p. The divisor D contains no other sections of p. A general fiber of $\left.p\right|_{X}$ is isomorphic to $\mathbf{C}^{* *}=\mathbf{P}^{\mathbf{1}} \backslash\{3$ points $\}$. In the same way as in the previous case, we use the knowledge of $\mathbf{C}^{* *}$-fibrations on \mathbf{Q}-homology planes.

From [MiSu], one can deduce that p has two singular fibers F_{1}, F_{2} other than F_{0}. For each i, let E_{i} be the sum of all the irreducible components of F_{i} which are not components of D. It follows from [MiSu] that the dual graph of $D+E_{1}+E_{2}$ modulo the permutation of S_{1} and S_{3} must be that in Figure 3. In the figure, $F_{i}=T_{i 1}+E_{i 1}+T_{i 2}+F_{i}^{\prime}+T_{i 3}+E_{i 2}+T_{i 4}$ and $E_{i}=E_{i 1}+E_{i 2}$ for $i=1,2$. The divisor $T_{i j}$ may be empty for each i, j. Similar to the previous case, we deal with the equations on twigs obtained from φ and those given by Lemma 7. The weighted dual graphs of the solutions of the equations modulo the permutation of P_{1} and P_{2} coincide with those in Figure 4. In the figure, the graphs (1),..., (4) correspond to curves having the numerical data $1, \ldots, 4$ in Theorem 3, respectively.

For the proof of the converse assertion, let Γ be one of the weighted dual graphs in Figure 4. It follows from [Fu, Proposition 4.7] that the sub-graphs F_{0}, F_{1} and F_{2} of Γ can be contracted to three disjoint 0 -curves. After the contraction, S_{1}, S_{2} and S_{3} become disjoint 0 -curves and meet with each curve F_{i} transversally. Thus Γ can be realized by blow-ups over three sections and fibers of Σ_{0}. By Lemma $6, \Gamma-E_{1}-E_{2}-C^{\prime}$ can be contracted to two points of \mathbf{P}^{2}. Hence all the numerical data in Theorem 3 can be realized as those of rational cuspidal plane curves.

3.4 Theorem 4

Assume that $n=3$. By Lemma 8, we have $\left(C^{\prime}\right)^{2} \leq-2$. Suppose $\left(C^{\prime}\right)^{2}=-2$. By Lemma 7 and Lemma 8, we get the following:

Lemma 9. The following assertions hold for each k.
(i) $g_{k}=1$ and $\rho_{1}^{(k)}=1$.
(ii) $A_{1}^{(k)}=t_{1} * B_{1}^{(k) *}$ and $A_{1}^{(k) *}=\left[B_{1}^{(k)}, 2\right]$.

Let $\sigma_{0}: V \rightarrow V^{\prime}$ be the contraction of $D_{0}^{(2)}$ and $D_{0}^{(3)}$. Since $\sigma_{0}\left(C^{\prime}\right)^{2}=0$, there exists a \mathbf{P}^{1}-fibration $p^{\prime}: V^{\prime} \rightarrow \mathbf{P}^{1}$. Because $\sigma_{0}\left(D-C^{\prime}\right) \sigma_{0}\left(C^{\prime}\right)=5$, the fibration $\left.p^{\prime}\right|_{X}$ is a $\mathbf{C}^{(4 *)}$-fibration. Dissimilar to the previous cases, we do not

Figure 4: The dual graph of $D+E_{1}+E_{2}$
have the knowledge of $\mathbf{C}^{(4 *)}$ fibrations on \mathbf{Q}-homology planes. But one can determine the structure of the fibration by using the fact that our fibration is obtained from a rational cuspidal plane curve with three cusps. Similar to the previous cases, we deal with the equations on twigs obtained from φ and those given by Lemma 9. By analyzing the equations, one can prove that the equations have only one solution, which corresponds to the quartic curve with three cusps.

References

[BK] Brieskorn, E., Knörrer, H.: Plane algebraic curves. Basel, Boston, Stuttgart: Birkhäuser 1986.
[BLMN] Fernández de Bobadilla, J., Luengo, I., Melle-Hernández, A. and Némethi, A.: On rational cuspidal curves, open surfaces and local singularities, Preprint.
[Fe] Fenske, T.: Rational 1- and 2-cuspidal plane curves, Beiträge zur Algebra und Geometrie 40, (1999), 309-329.
[Fu] Fujita, T.: On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo 29, (1982), 503-566.
[MaSa] Matsuoka, T., Sakai, F.: The degree of rational cuspidal curves, Math. Ann. 285, (1989), 233-247.
[MiSu] Miyanishi, M., Sugie, T.: Q-homology planes with $\mathbf{C}^{* *--f i b r a t i o n s, ~}$ Osaka J. Math. 28, (1991), 1-26.
[O] Orevkov, S. Yu.: On rational cuspidal curves I. Sharp estimate for degree via multiplicities, Math. Ann. 324, (2002), 657-673.
[Tol] Tono, K.: On rational cuspidal plane curves of Lin-Zaidenberg type, Preprint.
[To2] Tono, K.: On rational unicuspidal plane curves with logarithmic Kodaira dimension one, Preprint.
[To3] Tono, K.: On the number of cusps of cuspidal plane curves, Math. Nachr. 278, (2005), 216-221.
[Ts] Tsunoda, S.: The complements of projective plane curves, RIMSKồkyûroku 446, (1981), 48-56.
[Wak] Wakabayashi, I.: On the logarithmic Kodaira dimension of the complement of a curve in \mathbf{P}^{2}, Proc. Japan Acad. 54, Ser. A, (1978), 157-162.
[Y] Yoshihara, H.: Rational curves with one cusp (in Japanese), Sugaku 40, (1988), 269-271.

E-mail address: ktono@rimath.saitama-u.ac.jp
Department of Mathematics, Faculty of Science, Saitama University, Shimo-Okubo 255, Urawa Saltama 338-8570, Japan.

