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On a new class of rational cuspidal plane curves

Keita Tono

1 Introduction

Let C be a curve on P2 = P?(C). A singular point of C is said to be a cusp if
it is a locally irreducible singular point. We say that C is cuspidal if C has only
cusps as its singular points. Suppose that C is a rational cuspidal plane curve
with n cusps. The curve C is said to be unicuspidal (resp. bicuspidal) if n =1
(resp. n = 2). Let % = ®(P?\ C) denote the logarithmic Kodaira dimension
of the complement of C. By [Ts|, there exist no rational cuspidal plane curves
with & = 0. Let C’ denote the proper transform of C via the minimal embedded
resolution of the cusps. If n = 1 and & = 2, then (C’)2 < -2 by [Y]. lf n = 2,
then % = 2 if and only if (C")* < —1 by [Tol]. From these facts and the following

theorem, (C’)? is bounded from above if & = 2.

THEOREM 1. Let C be a rational cuspidal plane curve with n cusps. I[fn > 3,
then (C')? <7 — 3n.

For a fixed n, we consider the class of the curves with & = 2 having the
maximal (C’). We begin with the case: n = 1. In [O], Orevkov constructed two
infinite sequences Cyx, Cy (kK = 1,2,...) of rational unicuspidal plane curves
with & = 2 in the following way. Let N be the nodal cubic. Let T’ be one of two
analytic branches at the node. Let ¢ : W — P? denote 7-times of blow-ups
over the points which are infinitely near to T’ and the node. The exceptional
curve E of ¢ is a linear chain of 6-pieces of (—2)-curves and one (—1)-curve
E’ as an end point. The curve E intersects N in two points. Let ¢' : W — P?
denote the contraction of the proper transform of NV and the 6—pieces of (—2)-
curves in E. The curve ¢/(E’) is the nodal cubic. Put f = ¢/ o ¢~1. Let Cp
be the tangent line at a flex of N and C§ an irreducible conic meeting with N
only in one smooth point. He defined the curves Cyy, Cj, as Cyx = f(Cax—a),

= f(Chi—y) (k= 1,2,...). For k > 2, I should be chosen as the analytic
branch at the node which is not tangent to Cyx_4 (resp. C},_,). They have the
following properties for each k.

(i) (Co)2 = (Cy)?* = -2.
(i) &(P?\ Cax) = R(P?\ C},) = 2.
The following theorem characterizes the Orevkov’s curves by (C')2.

THEOREM 2. Let C be a rational unicuspidal plane curve with K = 2. Then
(C"? = ~2 if and only if C is projectively equivalent to one of the Orevkov’s
curves.
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We next consider the class of the curves with n = 2. For a cusp P of C,
we denote the multiplicity sequence of the cusp by mp(C), or simply mp. We
use the abbreviation my for a subsequence of mp consisting of k consecutive
m’s. For example, (2;) means an Ay, singularity. The set of the multiplicity
sequences of the cusps of C will be called the numerical data of C. For example,
the rational quartic with three cusps has the numerical data {(2), (2),(2)}.

THEOREM 3. The numerical data of a rational bicuspidal plane curve C with
(CH? = —1 coincides with one of those in the following table, where a is a
positive integer.

No. Numerical data Degree
1 {(ab+b~1,ab—1,b,—1,b— 1), ((ab)2,ba)} 0=2) | 2ab+b-1
2 {(ab+ b,ab,b,), ((ab+1)2,b,)} b>2){2ab+b+1
3 | {(ab+1,ab—b+ 1,b,_1), ((ab)2,bs)} ®b=3)] 2ab+1
4 {(ab+b,ab,b,), ((ab+b—1)2,bs,b-1)} ®23) ]| 2ab+2b—1

Conversely, for a given numerical data in the above table, there erists a rational
cuspidal plane curve having that data.

REMARK. In [Fe], Fenske constructed sequences of rational bicuspidal plane
curves. The numerical data of the curves with (C’)? = ~1 among them coincide
with the data 1, 2 and 3 with a = 1 in Theorem 3.

Now we pass to the case: n > 3. There are no known examples of curves with
n.> 5. There is only one known curve C with n = 4. The curve C is a quintic
curve with (C*)?> = ~7. The bound given by Theorem 1 is the best possible
one for n = 3 as the quartic curve C with three cusps satisfies (C')? = —2.
Moreover, we prove the following:

THEOREM 4. Let C be a rutional cuspidal plane curve with three cusps. Then
(C"? = -2 if and only if C coincides with the quartic curve having three cusps.

2 Preliminary results

In this section, we prepare preliminaries for the proofs of our theorems. Let D
be a reduced effective divisor with only simple normal crossings on a smooth
surface. Let I' denote the weighted dual graph of D. We sometimes do not
distinguish between I' and D. We define a blow-up over I' as the weighted
dual graph of the reduced total transform of D via the blow—up at a point
P ¢ D. The converse modification of the graph is called the contraction of the
vertex corresponding to the exceptional curve. The blow—up is called sprouting
(resp. subdivisional) if P is a smooth point (resp. node) of D. Let Dy,..., D,
be the irreducible components of D. We denote by d(I') the determinant of the
r x r matrix (~D;D;). By convention, we set d(I') = 1 if I' is empty.

Assume that I is connected and linear. Give I" an orientation from an end
point of I' to the other. There are two such orientations if » > 1. The linear
graph T' together with one of the orientations is called a twig. The empty
graph is, by definition, a twig. If necessary, renumber Dy, ..., D, so that the
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orientation of the twig I" is from Dy to D, and D;D;yy =1fori=1,...,r—1.
We denote I by [~D%,...,~D?. The twig is called rational if every D; is
rational. In this note, we always assume that every twig is rational. The twig
T is called admissible if it is not empty and D? < —2 for each i.

Let A = {a1,...,a,] be an admissible twig. The rational number e(A4) :=
d([az, .. .,a.])/d(A) is called the inductance of the twig A. By [Fu, Corollary
3.8], the function e defines a one-to—one correspondence between the set of all
the admissible twigs and the set of rational numbers in the interval (0, 1). For a
given admissible twig A, the admissible twig A* with e(A*) = 1 —e([ar,...,a1])
is called the adjoint of A ([Fu, 3.9]). For an integer n with n > 0, we put

tn = [2,...,2]. For non—empty twigs A = [a1,...,a,], B=[by,...,b,], we write
AxB=lay,...,0;-1,ar+b1~1,ba,...,bs]. The following lemma will be useful
for computing the adjoints of admissible twigs.

LeEMMA 5. The following assertions hold true.

(i) For a positive integer n and an admissible twig A, we have [A,n+ 1]* =
tn * A,

(ii) For an admissible twig A = [a1,...,a,], we have A* =ty g % - *ig 1.

We will use the following lemma, which can be proved by using [Fu, Propo-
sition 4.7}.

LEMMA 6. Let A be an admissible twig and a a positive integer. Let B be a twig
which is empty or admissible. Assume that the twig [A, 1, B] is obtained from
the twig [a] by blow-ups m and that [a] is the image of A under m.

(i) There exzists a positive integer n such that A* = [B,n+1,t,-1]. Moreover,
if B#0, then A= [a] xtn, x B™.

(ii) The first n blow—ups of m are sprouting and the remaining ones are sub-
divisional.

Conversely, for given positive integers a, n and an admissible twig B, the twig
[a] * tn = B*, 1, B] shrinks to [a].

3 Outlines of the proofs

Let C be a rational cuspidal plane curve and P,..., P, the cusps of C. Let
o : V — P? be the composite of a shortest sequence of blow—ups such that the
reduced total transform D := ¢~!(C) is a simple normal crossing divisor. Since
C is rational and cuspidal, X := V' \ D is a Q-homology plane. Let C’ denote
the proper transform of C. For each k, the dual graph of ¢71(P;) + C” has the
following shape.

k H k k
R A
[ %i—%i— AAAAAA c’
k
A(lk) A(zk) A_S]t) D( )
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Here D(()k) is the exceptional curve of the last blow-up over P and gx > 1.
The morphism o contracts Ag’,f) + D(()k) + Bé’:) to a (—~1)~curve E, which is the
image of Ay:), A;:),l +E+B§‘:)_l to a (—1)—curve, which is the image of A;’:)_l,
and so on. The self-intersection number of every irreducible component of Aﬁk)
and ng) is less than —1 for each i. See [BK, MaSa] for detail. We give the
graphs A(lk), - ,Ag:) (resp. BYC), . ,Bg(,f)) the orientation from the left—hand
side to the right (resp. from the bottom to the top) in the above figure. We
assign each vertex the self-intersection number of the corresponding curve as
its weight. With these orientations and weights, we regard Ask) and Bfk) as
twigs. Let 0(%) be the composite of the blow-ups over P of o. There exists a
decomposition (%) = cr((,k) ocrgk) o-- -oaé’,:) such that agk) contracts [Agk), 1, Bfk)]
to a (—1)-curve for each i > 1. Let pgk) denote the number of the sprouting
blow-ups in cri(k)
from Lemma 6.

with respect to the (—1)-curve. The following lemma follows
LemMa 7. We have A" =t o+ BP™ and AR = [B® o) 11].

3.1 Theorem 1

Let K be a canonical divisor on V. Let wy (resp. px) be the number of the
subdivisional (resp. sprouting) blow—ups of o over Py, where the first blow—
up over Py is regarded as the subdivisional one. Theorem 1 follows from the
following lemma.

LEMMA 8. Suppose n > 3. We have
0<K(K+D)=T-2n~(C")’ =3 pr.
k=1

Moreover, we have (C"? < T—3n. The equality holds if and only if K(K+D) =
0 and the dual graph of = 1(Py) is linear for each k.

ProoF. We have K(K + D) =7~ D*-5"7_ (wk +#%). By [MaSa, Lemma 4],
we get the desired equality. By [To3, Lemma 4.1} (cf. [BLMN, Proposition 3.8}),
0 < K(K + D). The second blow—up of ¢ over Py is a sprouting one for each k.
Hence (C')2 < 7 - 3n. O

3.2 Theorem 2

Assume that n = 1, (C")? = -2 and k = 2. We omit the (k)'s of Af-k), Bi(k),
etc. for the sake of simplicity. We see that one and only one of the two irreducible
components of D — Dy — C’ meeting with Dy must be a (-2)-curve. Let Fj
denote the (—2)-curve and Sz the remaining one. Let gp : V — V'’ be the
contraction of Dy and C’. Since (F3)? = 0 on V', there exists a P!-fibration
p’ : V! — P! such that F} is a nonsingular fiber. Put p = p' og¢ : V — P1L.
Since &(P?\ C) = 2, there exists an irreducible component S; of D — Dy — F}
meeting with Fj on V. Put Fy = Fj + Do + C’. The curve S1 (resp. S7) is
a l-section (resp. 2-section) of p. The divisor D contains no. other sections of
p. A general fiber of p|x is isomorphic to C** = P!\ {3 points}. The surface
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35



*- o O0—o & —x—O—n

M—%.; et
-

(III15) + (IVay)

Figure 2: The dual graphs of D + F; + E»

X =V \ D is a Q-homology plane. Such fibrations had already been classified
in [MiSu].

From [MiSu], one can deduce that p has at most two singular fibers Fy, Fa
other than Fy. The fiber F\ (resp. F2) meets with So in one point (resp. two
points). For each 7, let E; be the sum of all the irreducible components of F;
which are not components of D. It follows from [MiSu] that the dual graph
of S + S2 + Fy + F1 + F» must be one of those in Figure 1. In the figure, *
(resp. ®) is a (—1)~curve (resp. (—2)-curve), F} = T11+FE1+ T2+ F{+ F11+ Fi2,
Fy =Ty + Eoy + T2 + Fé + To3 + Eag + To4 and Eo = FEay + Eas. The divisor
T;; may be empty for each 1, ;.

There exists a birational morphism ¢ : V' — X4 from V' onto the Hirzebruch
surface X4 of degree d for some d. The morphism ¢ is the composite of the suc-
cessive contractions of the (—1)—curves in the singular fibers of p. By Lemma 7,
o gives equations on the twigs A; and B;. Similar to o, ¢ gives equations on
twigs for each type of the fibration p. One can prove that the equations for
type (III;,) and (III4,) + (IVgp) have solutions, whose weighted dual graphs
coincide with those in Figure 2, where k > 0. The equations for the remain-
ing types have no solution. From the definition of C4x and Cj,, one can show
that C coincides with Cy(ky1y (resp. C§(, 1)) if the fibration is of type (II1;4)
(resp. (ITI1a) + (IV2p)). »

3.3 Theorem 3

Assume that n = 2 and (C')2 = —1. Put F} = D{". Let oo : V — V'
be the contraction of C'. Since (F})> = 0 on V', there exists a P!-fibration
p' : V! — P! such that F} is a nonsingular fiber. Put p = p’ ooy : V — P!
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Figure 3: The dual graph of D + E; + E»

and Fy = F§ + C’. Let S; and S3 be the irreducible components of Agll) + Bf,})
meeting with Dc(,l). Put 5, = D(()z). The curves Sy, Sz and S3 are 1-sections
of p. The divisor DD contains no other sections of p. A general fiber of p|x is
isomorphic to C** = P\ {3 points}. In the same way as in the previous case,
we use the knowledge of C**—fibrations on Q-homology planes.

From [MiSu}, one can deduce that p has two singular fibers Fy, Fy other
than Fy. For each i, let E; be the sum of all the irreducible components of F;
which are not components of D. It follows from [MiSu] that the dual graph of
D + E; + E; modulo the permutation of S; and S3 must be that in Figure 3.
In the figure, F; = Tj; + E;1 + Ti2 + F: +Ti3+ Epp + T34 and E; = Ej; + Epp
for ¢ = 1,2. The divisor T;; may be empty for each ¢, j. Similar to the previous
case, we deal with the equations on twigs obtained from ¢ and those given by
Lemma 7. The weighted dual graphs of the solutions of the equations modulo
the permutation of P; and P; coincide with those in Figure 4. In the figure, the
graphs (1),...,(4) correspond to curves having the numerical data 1,...,4 in
Theorem 3, respectively.

For the proof of the converse assertion, let I be one of the weighted dual
graphs in Figure 4. It follows from [Fu, Proposition 4.7} that the sub—graphs
Fy, F1 and F; of T’ can be contracted to three disjoint O—curves. After the
contraction, Sp, S; and S3 become disjoint O—curves and meet with each curve
F; transversally. Thus T’ can be realized by blow—ups over three sections and
fibers of ¥y. By Lemma 6, I — E; — E3 — C’ can be contracted to two points
of P2. Hence all the numerical data in Theorem 3 can be realized as those of
rational cuspidal plane curves.

3.4 Theorem 4

Assume that n = 3. By Lemma 8, we have (C')? < —2. Suppose (C')? = —2.
By Lemma 7 and Lemma 8, we get the following:

LEMMA 9. The following assertions hold for each k.
(i) ge =1 and P = 1.
(i) A =t » B and A9 = (B .

Let op : V — V' be the contraction of D{(,z} and D(()3). Sinee ap(C’)? = 0,
there exists a P)-fibration p’ : V! — P!. Because oo(D ~ C')op(C’) = 5, the
fibration p'|x is a C*)-fibration. Dissimilar to the previous cases, we do not
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Figure 4: The dual graph of D + FE; + E,
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have the knowledge of C(**)—fibrations on Q-homology planes. But one can
determine the structure of the fibration by using the fact that our fibration
is obtained from a rational cuspidal plane curve with three cusps. Similar to
the previous cases, we deal with the equations on twigs obtained from ¢ and
those given by Lemma 9. By analyzing the equations, one can prove that the
equations have only one solution, which corresponds to the quartic curve with
three cusps.
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