On a new class of rational cuspidal plane curves

Keita Tono

1 Introduction

Let C be a curve on $\mathbf{P}^2 = \mathbf{P}^2(\mathbf{C})$. A singular point of C is said to be a cusp if it is a locally irreducible singular point. We say that C is cuspidal if C has only cusps as its singular points. Suppose that C is a rational cuspidal plane curve with n cusps. The curve C is said to be unicuspidal (resp. bicuspidal) if n = 1(resp. n = 2). Let $\overline{\kappa} = \overline{\kappa}(\mathbf{P}^2 \setminus C)$ denote the logarithmic Kodaira dimension of the complement of C. By [Ts], there exist no rational cuspidal plane curves with $\overline{\kappa} = 0$. Let C' denote the proper transform of C via the minimal embedded resolution of the cusps. If n = 1 and $\overline{\kappa} = 2$, then $(C')^2 \leq -2$ by [Y]. If n = 2, then $\overline{\kappa} = 2$ if and only if $(C')^2 \leq -1$ by [To1]. From these facts and the following theorem, $(C')^2$ is bounded from above if $\overline{\kappa} = 2$.

THEOREM 1. Let C be a rational cuspidal plane curve with n cusps. If $n \ge 3$, then $(C')^2 \le 7-3n$.

For a fixed n, we consider the class of the curves with $\bar{\kappa} = 2$ having the maximal (C'). We begin with the case: n = 1. In [O], Orevkov constructed two infinite sequences C_{4k} , C_{4k}^* (k = 1, 2, ...) of rational unicuspidal plane curves with $\bar{\kappa} = 2$ in the following way. Let N be the nodal cubic. Let Γ be one of two analytic branches at the node. Let $\phi : W \to \mathbf{P}^2$ denote 7-times of blow-ups over the points which are infinitely near to Γ and the node. The exceptional curve E of ϕ is a linear chain of 6-pieces of (-2)-curves and one (-1)-curve E' as an end point. The curve E intersects N in two points. Let $\phi' : W \to \mathbf{P}^2$ denote the contraction of the proper transform of N and the 6-pieces of (-2)-curves in E. The curve $\phi'(E')$ is the nodal cubic. Put $f = \phi' \circ \phi^{-1}$. Let C_0 be the tangent line at a flex of N and C_0^* an irreducible conic meeting with N only in one smooth point. He defined the curves C_{4k}, C_{4k}^* as $C_{4k} = f(C_{4k-4})$, $C_{4k}^* = f(C_{4k-4}^*)$ (k = 1, 2, ...). For $k \geq 2$, Γ should be chosen as the analytic branch at the node which is not tangent to C_{4k-4} (resp. C_{4k-4}^*). They have the following properties for each k.

- (i) $(C'_{4k})^2 = (C^*_{4k})^2 = -2.$
- (ii) $\bar{\kappa}(\mathbf{P}^2 \setminus C_{4k}) = \bar{\kappa}(\mathbf{P}^2 \setminus C_{4k}^*) = 2.$

The following theorem characterizes the Orevkov's curves by $(C')^2$.

THEOREM 2. Let C be a rational unicuspidal plane curve with $\bar{\kappa} = 2$. Then $(C')^2 = -2$ if and only if C is projectively equivalent to one of the Orevkov's curves.

We next consider the class of the curves with n = 2. For a cusp P of C, we denote the multiplicity sequence of the cusp by $\overline{m}_P(C)$, or simply \overline{m}_P . We use the abbreviation m_k for a subsequence of \overline{m}_P consisting of k consecutive m's. For example, (2_k) means an A_{2k} singularity. The set of the multiplicity sequences of the cusps of C will be called the *numerical data* of C. For example, the rational quartic with three cusps has the numerical data $\{(2), (2), (2)\}$.

THEOREM 3. The numerical data of a rational bicuspidal plane curve C with $(C')^2 = -1$ coincides with one of those in the following table, where a is a positive integer.

No.	Numerical data		Degree
1	$\{(ab+b-1,ab-1,b_{a-1},b-1),((ab)_2,b_a)\}$	$b \ge 2$	2ab + b - 1
2	$\{(ab+b,ab,b_a), ((ab+1)_2,b_a)\}$	$b \geq 2$	2ab + b + 1
3	$\{(ab+1,ab-b+1,b_{a-1}), ((ab)_2,b_a)\}$	$b \geq 3$)	2ab + 1
4	$ \{(ab + b - 1, ab - 1, b_{a-1}, b - 1), ((ab)_2, b_a)\} $ $ \{(ab + b, ab, b_a), ((ab + 1)_2, b_a)\} $ $ \{(ab + 1, ab - b + 1, b_{a-1}), ((ab)_2, b_a)\} $ $ \{(ab + b, ab, b_a), ((ab + b - 1)_2, b_a, b - 1)\} $	$(b \ge 3)$	2ab+2b-1

Conversely, for a given numerical data in the above table, there exists a rational cuspidal plane curve having that data.

REMARK. In [Fe], Fenske constructed sequences of rational bicuspidal plane curves. The numerical data of the curves with $(C')^2 = -1$ among them coincide with the data 1, 2 and 3 with a = 1 in Theorem 3.

Now we pass to the case: $n \ge 3$. There are no known examples of curves with $n \ge 5$. There is only one known curve C with n = 4. The curve C is a quintic curve with $(C')^2 = -7$. The bound given by Theorem 1 is the best possible one for n = 3 as the quartic curve C with three cusps satisfies $(C')^2 = -2$. Moreover, we prove the following:

THEOREM 4. Let C be a rational cuspidal plane curve with three cusps. Then $(C')^2 = -2$ if and only if C coincides with the quartic curve having three cusps.

2 Preliminary results

In this section, we prepare preliminaries for the proofs of our theorems. Let D be a reduced effective divisor with only simple normal crossings on a smooth surface. Let Γ denote the weighted dual graph of D. We sometimes do not distinguish between Γ and D. We define a blow-up over Γ as the weighted dual graph of the reduced total transform of D via the blow-up at a point $P \in D$. The converse modification of the graph is called the contraction of the vertex corresponding to the exceptional curve. The blow-up is called sprouting (resp. subdivisional) if P is a smooth point (resp. node) of D. Let D_1, \ldots, D_r be the irreducible components of D. We denote by $d(\Gamma)$ the determinant of the $r \times r$ matrix $(-D_iD_j)$. By convention, we set $d(\Gamma) = 1$ if Γ is empty.

Assume that Γ is connected and linear. Give Γ an orientation from an end point of Γ to the other. There are two such orientations if r > 1. The linear graph Γ together with one of the orientations is called a *twig*. The empty graph is, by definition, a twig. If necessary, renumber D_1, \ldots, D_r so that the orientation of the twig Γ is from D_1 to D_r and $D_i D_{i+1} = 1$ for $i = 1, \ldots, r-1$. We denote Γ by $[-D_1^2, \ldots, -D_r^2]$. The twig is called *rational* if every D_i is rational. In this note, we always assume that every twig is rational. The twig Γ is called *admissible* if it is not empty and $D_i^2 \leq -2$ for each *i*.

Let $A = [a_1, \ldots, a_r]$ be an admissible twig. The rational number $e(A) := d([a_2, \ldots, a_r])/d(A)$ is called the *inductance* of the twig A. By [Fu, Corollary 3.8], the function e defines a one-to-one correspondence between the set of all the admissible twigs and the set of rational numbers in the interval (0, 1). For a given admissible twig A, the admissible twig A^* with $e(A^*) = 1 - e([a_r, \ldots, a_1])$ is called the *adjoint* of A ([Fu, 3.9]). For an integer n with $n \ge 0$, we put

 $t_n = \overbrace{[2, \ldots, 2]}^{n}$. For non-empty twigs $A = [a_1, \ldots, a_r]$, $B = [b_1, \ldots, b_s]$, we write $A * B = [a_1, \ldots, a_{r-1}, a_r + b_1 - 1, b_2, \ldots, b_s]$. The following lemma will be useful for computing the adjoints of admissible twigs.

LEMMA 5. The following assertions hold true.

- (i) For a positive integer n and an admissible twig A, we have $[A, n + 1]^* = t_n * A^*$.
- (ii) For an admissible twig $A = [a_1, \ldots, a_r]$, we have $A^* = t_{a_r-1} * \cdots * t_{a_1-1}$.

We will use the following lemma, which can be proved by using [Fu, Proposition 4.7].

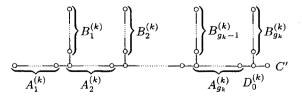
LEMMA 6. Let A be an admissible twig and a a positive integer. Let B be a twig which is empty or admissible. Assume that the twig [A, 1, B] is obtained from the twig [a] by blow-ups π and that [a] is the image of A under π .

- (i) There exists a positive integer n such that A^{*} = [B, n+1, t_{a-1}]. Moreover, if B ≠ Ø, then A = [a] * t_n * B^{*}.
- (ii) The first n blow-ups of π are sprouting and the remaining ones are subdivisional.

Conversely, for given positive integers a, n and an admissible twig B, the twig $[[a] * t_n * B^*, 1, B]$ shrinks to [a].

3 Outlines of the proofs

Let C be a rational cuspidal plane curve and P_1, \ldots, P_n the cusps of C. Let $\sigma: V \to \mathbf{P}^2$ be the composite of a shortest sequence of blow-ups such that the reduced total transform $D := \sigma^{-1}(C)$ is a simple normal crossing divisor. Since C is rational and cuspidal, $X := V \setminus D$ is a **Q**-homology plane. Let C' denote the proper transform of C. For each k, the dual graph of $\sigma^{-1}(P_k) + C'$ has the following shape.



Here $D_0^{(k)}$ is the exceptional curve of the last blow-up over P_k and $g_k \geq 1$. The morphism σ contracts $A_{g_k}^{(k)} + D_0^{(k)} + B_{g_k}^{(k)}$ to a (-1)-curve E, which is the image of $A_{g_k}^{(k)}, A_{g_{k-1}}^{(k)} + E + B_{g_{k-1}}^{(k)}$ to a (-1)-curve, which is the image of $A_{g_k}^{(k)}$, $A_{g_{k-1}}^{(k)} + E + B_{g_{k-1}}^{(k)}$ to a (-1)-curve, which is the image of $A_{g_k}^{(k)}$, and so on. The self-intersection number of every irreducible component of $A_i^{(k)}$ and $B_i^{(k)}$ is less than -1 for each i. See [BK, MaSa] for detail. We give the graphs $A_1^{(k)}, \ldots, A_{g_k}^{(k)}$ (resp. $B_1^{(k)}, \ldots, B_{g_k}^{(k)}$) the orientation from the left-hand side to the right (resp. from the bottom to the top) in the above figure. We assign each vertex the self-intersection number of the corresponding curve as its weight. With these orientations and weights, we regard $A_i^{(k)}$ and $B_i^{(k)}$ as twigs. Let $\sigma^{(k)}$ be the composite of the blow-ups over P_k of σ . There exists a decomposition $\sigma^{(k)} = \sigma_0^{(k)} \circ \sigma_1^{(k)} \circ \cdots \circ \sigma_{g_k}^{(k)}$ such that $\sigma_i^{(k)}$ contracts $[A_i^{(k)}, 1, B_i^{(k)}]$ to a (-1)-curve for each $i \geq 1$. Let $\rho_i^{(k)}$ denote the number of the sprouting blow-ups in $\sigma_i^{(k)}$ with respect to the (-1)-curve. The following lemma follows from Lemma 6.

LEMMA 7. We have $A_i^{(k)} = t_{\rho_i^{(k)}} * B_i^{(k)*}$ and $A_i^{(k)*} = [B_i^{(k)}, \rho_i^{(k)} + 1].$

3.1 Theorem 1

Let K be a canonical divisor on V. Let ω_k (resp. ρ_k) be the number of the subdivisional (resp. sprouting) blow-ups of σ over P_k , where the first blow-up over P_k is regarded as the subdivisional one. Theorem 1 follows from the following lemma.

LEMMA 8. Suppose $n \ge 3$. We have

$$0 \le K(K+D) = 7 - 2n - (C')^2 - \sum_{k=1}^n \rho_k \,.$$

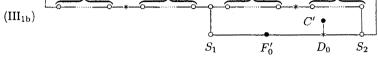
Moreover, we have $(C')^2 \leq 7-3n$. The equality holds if and only if K(K+D) = 0 and the dual graph of $\sigma^{-1}(P_k)$ is linear for each k.

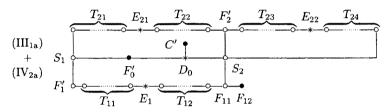
PROOF. We have $K(K+D) = 7 - D^2 - \sum_{k=1}^{n} (\omega_k + \rho_k)$. By [MaSa, Lemma 4], we get the desired equality. By [To3, Lemma 4.1] (cf. [BLMN, Proposition 5.8]), $0 \le K(K+D)$. The second blow-up of σ over P_k is a sprouting one for each k. Hence $(C')^2 \le 7 - 3n$.

3.2 Theorem 2

Assume that n = 1, $(C')^2 = -2$ and $\bar{\kappa} = 2$. We omit the (k)'s of $A_i^{(k)}$, $B_i^{(k)}$, etc. for the sake of simplicity. We see that one and only one of the two irreducible components of $D - D_0 - C'$ meeting with D_0 must be a (-2)-curve. Let F'_0 denote the (-2)-curve and S_2 the remaining one. Let $\sigma_0 : V \to V'$ be the contraction of D_0 and C'. Since $(F'_0)^2 = 0$ on V', there exists a \mathbf{P}^1 -fibration $p': V' \to \mathbf{P}^1$ such that F'_0 is a nonsingular fiber. Put $p = p' \circ \sigma_0 : V \to \mathbf{P}^1$. Since $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 2$, there exists an irreducible component S_1 of $D - D_0 - F'_0$ meeting with F'_0 on V. Put $F_0 = F'_0 + D_0 + C'$. The curve S_1 (resp. S_2) is a 1-section (resp. 2-section) of p. The divisor D contains no other sections of p. A general fiber of $p|_X$ is isomorphic to $\mathbf{C}^{**} = \mathbf{P}^1 \setminus \{3 \text{ points}\}$. The surface

 T_{21} E_{21} T_{22} T_{24} F_2' T_{23} E_{22} (III_{1a}) C' S_1 F_0' D_0 \tilde{S}_2 T_{22} T_{21} F_2' T_{23} E_{22} T_{24} E_{21}





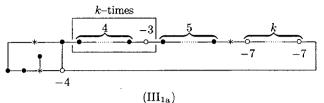
$$(\text{III}_{1b}) + (\text{IV}_{2a}) + S_1 + S_1$$

$$(III_{1a}) + S_{1} \xrightarrow{F_{1}} F_{0}' \xrightarrow{F_{1}} F_{0}' \xrightarrow{F_{1}} F_{1}' \xrightarrow{F_{1}} F_{0}' \xrightarrow{F_{1}} F_{1}' \xrightarrow{F_{1}}$$

(III_{1b})
+
(IV_{2b})
$$(III_{2b})$$

 F_{2}
 F_{1}
 F_{2}
 F_{1}
 F_{2}
 F_{1}
 F_{2}
 $F_$

Figure 1: Dual graphs of $S_1 + S_2 + F_0 + F_1 + F_2$



(14)

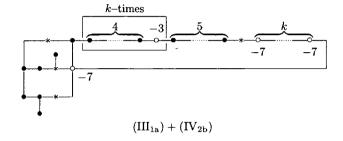


Figure 2: The dual graphs of $D + E_1 + E_2$

 $X = V \setminus D$ is a Q-homology plane. Such fibrations had already been classified in [MiSu].

From [MiSu], one can deduce that p has at most two singular fibers F_1 , F_2 other than F_0 . The fiber F_1 (resp. F_2) meets with S_2 in one point (resp. two points). For each i, let E_i be the sum of all the irreducible components of F_i which are not components of D. It follows from [MiSu] that the dual graph of $S_1 + S_2 + F_0 + F_1 + F_2$ must be one of those in Figure 1. In the figure, * (resp. •) is a (-1)-curve (resp. (-2)-curve), $F_1 = T_{11} + E_1 + T_{12} + F'_1 + F_{11} + F_{12}$, $F_2 = T_{21} + E_{21} + T_{22} + F'_2 + T_{23} + E_{22} + T_{24}$ and $E_2 = E_{21} + E_{22}$. The divisor T_{ij} may be empty for each i, j.

There exists a birational morphism $\varphi: V \to \Sigma_d$ from V onto the Hirzebruch surface Σ_d of degree d for some d. The morphism φ is the composite of the successive contractions of the (-1)-curves in the singular fibers of p. By Lemma 7, σ gives equations on the twigs A_i and B_i . Similar to σ , φ gives equations on twigs for each type of the fibration p. One can prove that the equations for type (III_{1a}) and (III_{1a}) + (IV_{2b}) have solutions, whose weighted dual graphs coincide with those in Figure 2, where $k \geq 0$. The equations for the remaining types have no solution. From the definition of C_{4k} and C_{4k}^* , one can show that C coincides with $C_{4(k+1)}$ (resp. $C_{4(k+1)}^*$) if the fibration is of type (III_{1a}) (resp. (III_{1a}) + (IV_{2b})).

3.3 Theorem 3

Assume that n = 2 and $(C')^2 = -1$. Put $F'_0 = D_0^{(1)}$. Let $\sigma_0 : V \to V'$ be the contraction of C'. Since $(F'_0)^2 = 0$ on V', there exists a \mathbf{P}^1 -fibration $p': V' \to \mathbf{P}^1$ such that F'_0 is a nonsingular fiber. Put $p = p' \circ \sigma_0 : V \to \mathbf{P}^1$

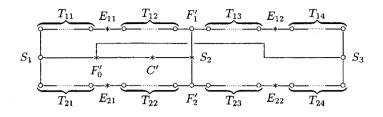


Figure 3: The dual graph of $D + E_1 + E_2$

and $F_0 = F'_0 + C'$. Let S_1 and S_3 be the irreducible components of $A_{g_1}^{(1)} + B_{g_1}^{(1)}$ meeting with $D_0^{(1)}$. Put $S_2 = D_0^{(2)}$. The curves S_1 , S_2 and S_3 are 1-sections of p. The divisor D contains no other sections of p. A general fiber of $p|_X$ is isomorphic to $\mathbf{C^{**}} = \mathbf{P}^1 \setminus \{3 \text{ points}\}$. In the same way as in the previous case, we use the knowledge of $\mathbf{C^{**}}$ -fibrations on \mathbf{Q} -homology planes.

From [MiSu], one can deduce that p has two singular fibers F_1 , F_2 other than F_0 . For each i, let E_i be the sum of all the irreducible components of F_i which are not components of D. It follows from [MiSu] that the dual graph of $D + E_1 + E_2$ modulo the permutation of S_1 and S_3 must be that in Figure 3. In the figure, $F_i = T_{i1} + E_{i1} + T_{i2} + F'_i + T_{i3} + E_{i2} + T_{i4}$ and $E_i = E_{i1} + E_{i2}$ for i = 1, 2. The divisor T_{ij} may be empty for each i, j. Similar to the previous case, we deal with the equations on twigs obtained from φ and those given by Lemma 7. The weighted dual graphs of the solutions of the equations modulo the permutation of P_1 and P_2 coincide with those in Figure 4. In the figure, the graphs $(1), \ldots, (4)$ correspond to curves having the numerical data $1, \ldots, 4$ in Theorem 3, respectively.

For the proof of the converse assertion, let Γ be one of the weighted dual graphs in Figure 4. It follows from [Fu, Proposition 4.7] that the sub-graphs F_0 , F_1 and F_2 of Γ can be contracted to three disjoint 0-curves. After the contraction, S_1 , S_2 and S_3 become disjoint 0-curves and meet with each curve F_i transversally. Thus Γ can be realized by blow-ups over three sections and fibers of Σ_0 . By Lemma 6, $\Gamma - E_1 - E_2 - C'$ can be contracted to two points of \mathbf{P}^2 . Hence all the numerical data in Theorem 3 can be realized as those of rational cuspidal plane curves.

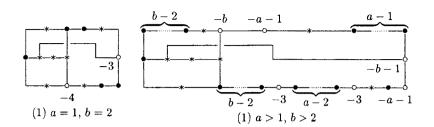
3.4 Theorem 4

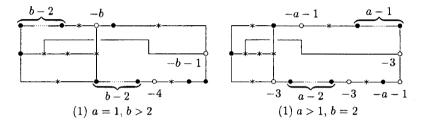
Assume that n = 3. By Lemma 8, we have $(C')^2 \leq -2$. Suppose $(C')^2 = -2$. By Lemma 7 and Lemma 8, we get the following:

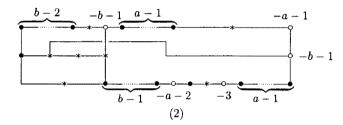
LEMMA 9. The following assertions hold for each k.

- (i) $g_k = 1$ and $\rho_1^{(k)} = 1$.
- (ii) $A_1^{(k)} = t_1 * B_1^{(k)*}$ and $A_1^{(k)*} = [B_1^{(k)}, 2]$.

Let $\sigma_0: V \to V'$ be the contraction of $D_0^{(2)}$ and $D_0^{(3)}$. Since $\sigma_0(C')^2 = 0$, there exists a **P**¹-fibration $p': V' \to \mathbf{P}^1$. Because $\sigma_0(D - C')\sigma_0(C') = 5$, the fibration $p'|_X$ is a $\mathbf{C}^{(4*)}$ -fibration. Dissimilar to the previous cases, we do not







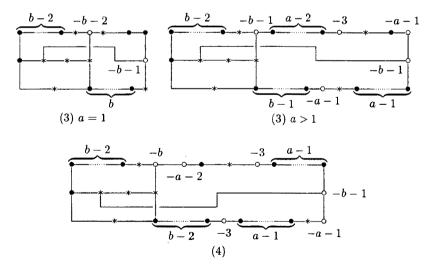


Figure 4: The dual graph of $D + E_1 + E_2$

have the knowledge of $\mathbf{C}^{(4*)}$ -fibrations on \mathbf{Q} -homology planes. But one can determine the structure of the fibration by using the fact that our fibration is obtained from a rational cuspidal plane curve with three cusps. Similar to the previous cases, we deal with the equations on twigs obtained from φ and those given by Lemma 9. By analyzing the equations, one can prove that the equations have only one solution, which corresponds to the quartic curve with three cusps.

References

- [BK] Brieskorn, E., Knörrer, H.: Plane algebraic curves. Basel, Boston, Stuttgart: Birkhäuser 1986.
- [BLMN] Fernández de Bobadilla, J., Luengo, I., Melle-Hernández, A. and Némethi, A.: On rational cuspidal curves, open surfaces and local singularities, Preprint.
- [Fe] Fenske, T.: Rational 1- and 2-cuspidal plane curves, Beiträge zur Algebra und Geometrie 40, (1999), 309-329.
- [Fu] Fujita, T.: On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo 29, (1982), 503–566.
- [MaSa] Matsuoka, T., Sakai, F.: The degree of rational cuspidal curves, Math. Ann. 285, (1989), 233-247.
- [MiSu] Miyanishi, M., Sugie, T.: Q-homology planes with C^{**}-fibrations, Osaka J. Math. 28, (1991), 1-26.
- [O] Orevkov, S. Yu.: On rational cuspidal curves I. Sharp estimate for degree via multiplicities, Math. Ann. 324, (2002), 657–673.
- [To1] Tono, K.: On rational cuspidal plane curves of Lin-Zaidenberg type, Preprint.
- [To2] Tono, K.: On rational unicuspidal plane curves with logarithmic Kodaira dimension one, Preprint.
- [To3] Tono, K.: On the number of cusps of cuspidal plane curves, Math. Nachr. 278, (2005), 216-221.
- [Ts] Tsunoda, S.: The complements of projective plane curves, RIMS-Kôkyûroku 446, (1981), 48–56.
- [Wak] Wakabayashi, I.: On the logarithmic Kodaira dimension of the complement of a curve in P², Proc. Japan Acad. 54, Ser. A, (1978), 157–162.
- [Y] Yoshihara, H.: Rational curves with one cusp (in Japanese), Sugaku 40, (1988), 269–271.

E-mail address: ktono@rimath.saitama-u.ac.jp

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SAITAMA UNIVERSITY, SHIMO-OKUBO 255, URAWA SAITAMA 338-8570, JAPAN.