
On a new class of rational cuspidal plane curves

Keita Tono

l IRtreductioi}

Let C be a curve on P2 = P2(( ). A singular point of C is said to be a cusp if

it is a locally irreducible singular point. We say that C is cuspidal if C has only

cirsps as its singu}ar pcints. Suppose that C is a rational cuspidal plane cur"y'e
with n cusps. The c{iirve e is said to be unicu$pidai (resp. bic•uspidal) if n = 1
(resp. n me 2). Let rc = R(P2 X O') denote the logarithnic Kodaira dimension
of the cornplement of C. By [Ts], there exist no rational cuspidal plane curves

with K = O. Let C' denote the proper transform of C via the mmimal embedded
reso}ution of the cusps. Ifn = i and g= 2, theR (C')2 f{ -2 by l\]. Ifn= 2,
thenk me 2 if and oniy if (C')2 Åq- -1 by [Toll. From these facts and the following

theorem, (C')2 is bonnded from above if K :2.

THEoREM 1. Let C be a rationat euspidal pgane curve ufith n eusps. ij n ;il 3,
then (C')2 S 7- 3n.

  For a fixed n, we consider the class of the curves with k = 2 having the
maximal (C'). We begin with the case: n = 1. In [O], Orevkov constructed two
iRfinite sequences C4k, C4'k Åqk -ww l,2,...) of ratigBa} uniÅëuspidal plaxxe eurves

with k : 2 in tke foiiowing way. Åíet N be the nedal cubie. Let T be oxxe of two
analytie branches at the node. Let ip: VV -be P2 denote 7-times of blow-ups
over the points which are infinitely near to r and the nnde. The exceptional
curve E of Åë is a linear chain of 6-pieces of (-2År-curves and oRe (-1)-cur"ve
E' as an end peint. r,I'he cljrve E iRtersects N iR twe peints. Let Åë' : W - P2

denote the contraction of the proper transform of N and the 6-pieces of (-2)-
curves in .El]. The curve ip'(E') is the nodal cubic. Put f = ip' o ip-i. Let Co

be the tangent line at a fiex of N and Co' an irreducible conic meeting with IV
oniy iR oxxe smogth poiRt. Xe defilled tke eurves C4fo, C4*k as C4fe me f(C4h-4,
C4'k = f(U4'k-4) (k xx= 1,2,•••)- 1or k }l 2, r should be chosen as the analytic
branch at the node which is not tangent to C4k-4 (resp. CvV4"k-4). They have the
following properties for each k.

(i) (Ca,)2 = ÅqC,*,r)2 .. "2.

(ii) k(P2Å~ C,k) =: re(P2X C4'k) me 2.

The following theorem characterizes the Orevkov's curves by (C')2.

THEoREM 2. Let C be a rationai unicuspidai piane curve with k nm 2. CT'hen
(C')2 r: -2 if and only of C is projectively equivalent to one of the Orevkov's

curves.
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   We next consider the class of the curves with n rm 2. For a cusp P of C,
we denote the multipl,icity sequence of the cusp by Mp(C"), or simply mp. We
use the abbreviation mk for a subsequence of inp' comsisting of k comsecutive
n}'s. Fer examp}e, (2k) means an A2k singti}arky. Tke set of the mu}tiplicity
sequeRces of tke cusps ef C wru 5e cailed the numefNicai data of C. For example,
the ratieRa} quartic wigh three cusps has tke Rwr}erical data {(2), (2), (2År}.

'I'REoREM 3. [rhe numericaS datg of a rgSienai bicuspielag piane cuTve C wii-h
(C')2 = -1 coincides with one of those in the fotiowing tabte, where a is a

positive integer.

No. IVumericaldata Degree

1 {(ab+b-1
'
ab-1,b.-i,b-1),((ab)27ba)} fotr21 2ab+b-1

2 {(ab+b,ab ,ba), ((ab+1)2,ba)} fok2? 2ab+b+1
3 {(ab+1, ab-bma+-1,ba-i),((ab)2,ba)} foin3? 2ab+1

4 {(ab+b,ab, ba), ((ab+b-1)2,ba,b-1)} fok3? 2ab+2b-l

Cenverseiy, fer a given nume?'z'cai dgtg i# the abeve tabie, Shere exists a rgtiengi

cuspidag piane curwe having that datG.

REMARK. In [Fei, Fenske constructed sequences of ratienal bicuspidal plane
curves. The numerical data ofthe curves with (C')2 == -1 among them coincide

with the data 1, 2 and 3 with a = 1 in Theorem 3.

   Now we pass to the cewse: n ) 3. There are no known examples of curves with
n. 2 5. There is only one known curve C with n = 4. The curve C is a quintic
curve with (C')2 = -7. 'lhe bound given by Theorern 1 is the best possible
one for n = 3 as the quartic curve C with three cusps satisfies (C')2 == -2.

Moreover, we prove the following:

THEoREM 4. Let C be a ratienal cwspidai pgane euf've wi#h three c#sps. Then
(C')2 = -2 if and ongy ifC ceincides z{sith the guartic curz;e hasing three'c#sps.

2 Preliminary results

In this section, we prepare preliminaries for the proofs of our theorems. Let D

be a reduced effective divisor with only simple normal crossings on a smooth
surface. Let r denote the weighted dual graph of P. We sometimes do not
distinguish between r and D. We define a blow-up over r as the weighted
dual graph of the reduced total transform of D via the blow-up at a point
P E D. The converse modification of the graph is callecl the contraction of the

vertex correspending te the exceptiona} curve. The blew-up is ca}}ed sprouting
(resp. subeivisienai) if P is a smooth point (resp. nede) eÅí Z]). Let Pi,---,Dr
be tke irreduc}b}e comaponents of P. We defiote by dÅqr) tke determiRagt gf the

r Å~ r matrix (-9P3-). By ceRveRtiea, we set d(r) : 1 iÅí r is empty.

   Assume that r is connected and linear. Give r an erientation ftein an end
point of r to the other. There are two such orientations if r År 1. The }inear
graph r together with one of the orientations is called a twig. The empty
graph is, by definition, a twig. If necessary, renumber Di,...,D. so that the
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orientation of the twig r is frern Di to D. and DiDi+i = 1 for i mh- 1,...,r- 1.
We denote I" by l-D?,...,-D;l. The twig is called rational if every P, is
ragieRal. be this Rgte, we always asstime that every twlg is rational. Tke twig
r is cal}ed admissibie Mt is iiot empty and P,2• S -2 feT each i.

  Let A xe [ai,...,a.l be an admissible twig. "l[rhe rational nurnber e(A) :=
d([a2,...,a.])!d(A) is called the inductance of the twig A. By [Fu, Corollary
3.8], the function e defines a one-to-one correspondence between the set of all
the admi$sible twigs and the set of rational numbers in the interval (O,1). Fora
given admissib}e twig A, the admissib}e twig A' with e(XÅr ::: 1 -e(lar, • • . ,gi])

is cal}ed the ad3'eint ef A (IY?k, 3.91). For an integer n with n k g, we put-

       n
t. = 2,...,2 . For non-empty twigs A= [ai,...,a.], B = [bi,...,b,], we write
A*B= lai,-•+,ar"i,ar+bi-1,b2,...,b.]. The following lemma will be useful
for computing the adjoints of admissible twigs.

LEM!!A 5. Irhe foiSeR?i-ng assertiens hejd true.

(i? For a positive integer n and an admissibge tutg A, we have iA,n + 1]' =

   tn *A'.

 (ii? For an admissibte twig 2tl == [ai,..•,aTi, we have A' = ta.-i * ''' * tai-i•

  We will use the following lemma, which can be proved by using [Fu, Propo-
sitieR 4.71•

LEMMA 6. Let Al be an admissibie twig and a a positive integer. Let B be a twig
which is empty or admissible. Assume that the twig [A,1,B] is obtained fro7rb
the twig [a] by blow-ups T and that Ia] is the image of A under rr.

  (i) There exists apositive integern sueh thatA' = [B,n+1,tawwi]. Moreover,
    ifB pt Åë, then A= la] * t. *B'.

Gi) The first n bjow-vps of rr are spreuting and the remaiRins enes
   divisional.

are sub-

Conversely, for given positive integers a, n and an admtssible twig B,
[[a] *t. *B',1,B] shninles to la].

the twig

3 Ontlixes ef the preefs

Let C be a rational cuspidal plane curve and "Pi,...,P. the cukgps of C. Let
a : V - P2 be the composite of a shortest sequence of blow-ups such that the
reduced total transform D : : apmi(C) is a simple normal crossing divisor. Since

C is ratienal and cuspidal, X := V X D is a Q-homo}ogy p}ane. Let C' denote
the p!oper transferm ef C. For each k, the dttal graph of g-i(2k) ÅÄ C' h3s the

follewing shape.

           B(k)
         s

os---#---•
  AgkÅr ASkÅr

B(k)

ol       ?
BEts)", i

      s
BSit'

WthCi
  ASk) p5k)
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Here D8k) is the exceptional curve of the last blow-up over Pk and gk l) 1.

The morphism a contracts Agf) + D8k) + BEf) to a (-1)-curve E, which is the

image of ASft), Ag:)ew, H- JEY+BSP-, to a (-1)-curve, whiÅëh is the image of AX.)-,,

and so eB. The self-lntersectioA number of every irreducible component of Al-k)

akd B5•foÅr is iess than -i for eack i. See lgK, MaSa] for detall. We glve tke

graphs AgkÅr,...,ASf) Åqresp. BlkÅr,...,g5f.)) the orieRtation from the left-haRd

side to the right (resp. from the bottom to the top) iR t,he above figuTe. We
assign each vertex the self-intersection number of the corre$ponding curve as
its weight. With these orientations and weights, we regard AS•k) and Bl.k) as

tvv'igs. Let a(k) be the cornposite of the blow-ups over .Ple of cr, There exists a
decomposition a(k) nm ff8k)oaSk) o• • •oa6f.) such that cr,(-k) contracts [Al•k), 1, B,(•k)]

to a (-1)-curve four euch i ) 1. Let p[kÅr denote the nurnber of the sprouting

blow-ups in af-k) with respect to the (-1)-curve. The following lemma follows

from Lemma 6.

LEMMA 7. We have A5•k) : t,fk) * B5.k)\ and AS.k)' ... {B5,k),p;,kÅr "}-g.

3.l Tkeereml
Let K be a canonical diviser on V. Let wk (resp. Ph) be the number of the
subdivisional (resp. sprouting) blow-ups of a over ,Pk, where the first b}ow-
up over Pk is regarded as the subdivisional one. TheQrem 1 follows from the
following lemma.

LEMMA 8. Supposan in 3. We have

                                              n
               OKK(K+D) == 7- 2n - (C')2 -Åípk .

                                             kme1

Mereever, we have (C')2 K 7-3n. The equagity hogds ifa#d enly ifK(KÅÄD) =
g ang the duai graph ef ff-i(Pk). is iinegr fgr eGch k.

PRgoF. We have K(K-}- ") = 7- D2 - 2:=,(wle ÅÄPk). By IMaSa, Leifima 41,
we get the desiTed equality. By [To3, Lemma 4.ll (cÅí (BLMIN, Proposition 5.81),

O ( K(K+D). The second blow-up of a over Pk is a sprouting one for each k.

Hence (C')2 S7- 3n. O
3.2 Theorem2
Assume that n : 1, (C')2 : -2 and K = 2. We omit the (ic)'s of AS.k), B5.k),

etc. for the sake of simplicity. We see that one and only one of the two irreducible

components of D - Pe - C' meeting with De inust be a (•-2)-curve. Let F6
denote the Åq-2)-curve and S2 the remaining oRe. Let cre : Y - V' be the
contractioR ef De axie C'. Since (F5)2 = g oR Y', there exists a Pi-gbratieR
p' : Y' - Pi such thaÅí E5 is a nensiRg{ilar fiber. Put p := p' o se : Y - Pi.
SiRce it(P2 X C) = 2, there exists anirreducib}e component S! of P - Do - FI6

ineeting with E6 on V. Plit Fo = F6 + Po + C'. The curve Si (resp. S2) is
a 1-section (resp. 2--section) of p. The divisor D contains no other sections of
p. A general fiber of plx is isomorphic to C" = Pi X {3 points}. The surface

M
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(IIIia)

 T21 E21
tf--vv....... k,2 F5  T23 E22kt4

Sl F6 Do S2

(IIIib)

k,2 F6"T23

Sl F6 Do S2

k,i E,,k,2 F5..-lll,li23 E,,k,4
b- - - • -twe-*-"-•••- -•- • "*-                       •---e(IIIia)

 + Sl(IV2a) F6
   fi"{ .pt'."'---O-*tt
       rrli El T12 Fil F12

(III,b)

 +
(IV2a)

.-lll'iL-xi .--IY'i2-s2 F5,-1!il'L.3 k'4

     F6
   Tii Ti2 Fn Fi2

(IIIia)

 + Si
(IV2b)

   F{

 T21

F12 i

 T22 T23 T24
 Do

ff1 T12

(IIIib)

 +
(IV2b)

k,2FSk,3 k,4

  Fl1F{
 Fi2iYii

Figure 1: Dual graphs of Si -i- S2 + Fe i-t- Fi + F2
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         k-times

                       ...-•--4-*--O---"'''''         •-----•                                -7 -7;
   -4
                (IIIia)

[.
H",J

   k-times

                  5
             -

- 7

(IIIIa) + (IV2b)

Figure 2: The dual graphs of D + Ei + E2

X = V X D is a Q-homology plane. Such fibrations had already been classified
in [MiSu].

   Frrom [MiSu], one can deduce that p has at most two singular fibers Fi, F2
other than Fo. The fiber Fi (resp. F2) meets with S2 in one point (resp. two
points). For each i, let Ei be the sum of all the irreducible components of Fi
which are not components of D. It follows from [MiSu] that the dual graph
of Si + S2 + Fo + Fi + F2 must be one of those in Figure 1. In the figure, *
(resp. .) is a (-1)--curve (resp. (-2)-curve), Fi = Tn+Ei +Ti2+F{+Fn +Fi2,
F2 = T2i + E2i + T22 + I75 + T23 + E22 + T24 and E2 = E2i + E22. The divisor
Ti)• may be empty for each i,o'.

   There exists a birational morphism q ; V - Zd from V onto the Hirzebruch
surface Åíd of degree d for some d. The morphism q is the composite of the suc-
cessive contractions of the (-1)-curves in the singular fibers of p. By Lemma 7,

ff gives equations on the twigs Ai and Bi. Similar to a, g gives equations on
twigs for each type of the fibration p. One can prove that the equations for
type (IIIia) and (IIIia) + (IV2b) have solutions, whose weighted dual graphs
coincide. with those in Figure 2, where k ) O. The equations for the remain-
ing types have no solution. From the definition of C4k and C4'k, one can show
that C coincides with C4(k+i) (resp. CX(k+i)) if the fibration is of type (IIIi.)

(resp. (IIIia) + (IV2b))•

3.3 Theorem3
Assume that n = 2 and (C')2 = -1. Put 176 = D8'). Let
be the contraction of C'. Since (F6)2 = O on V', there exists
p' : V' - Pi such that F6 is a nonsingular fiber. Put p = p'

ao :V- V'
a Pi-fibration

ouo :V- Pl
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E,,...--.Z],2 F{k,3    T14

sl =::----H--Lwwww s3
           F5 cs
      ''"'•-*--SF--•.--.                             VA.---- V      T2i ff22 T22 Fi T23                                      ff22 T24

Figure 3: The dual graph of D + Ei -t- JEil2

and Fo = F6 + C'. Let Si and S3 be the irreducible components of Agl) + BEI)

meeting with D8i). Put S2 = D82). The curves Si, S2 and S3 are 1-sections

of p. The divisor D comtains no other sections of p. A general fiber of plx is
isomorphic to C"" ww Pi X {3 points}. In the same way as in the previous case,

we use the knowledge of C**-fibrations on Q-homo}ogy planes.
   From IMiSu], one can deduce that p has two singu}ar ftbers Fi, F2 other
thaR Fg. For eack i, iei Eal be the sim]L cf a}} the irreducib}e eompoReRts cf Fi
wkick are Rot components of 9. It fol}ews fycm ll {iSttl tkaKke dua} grapk gi

D + gi ÅÄ E2 module the permutatien ef Si and S3 must be that iR Figure 3.
In the figure, Ft nm Tii -i- Eii + Tn + F;• + Ti3 + Ei2 -- Ti4 and Ei =: Eii + Ei2

for i = 1,2. The divisor Ti]• may be empty for each i,i Similar to the previotts

case, we deal with the equations on twigs obtained from w and those given by
Lemma 7. The weighted dual graphs of the solutions of the equations modulo
the permutation of aF7i and P2 coincide with those in Figure 4. In the figure, the

graphs (1),...,(4) corre$pond to curves having the numerical data 1,...,4 in
Theorem 3, respeetively.
   For the proof of the converse assertion, let r be one of the weighted dual
graphs in Figure 4. It fo}!ows from [Fu, Proposition 4.71 that the sub-.qTaphs
Ffi, Fi and F2 ot' 'r c,an be contracted to three disjoint O-Åq)urves. After the
ceRtractien, Si , S2 and S3 become disjgiRt {]FcuTves and meet with eaeh curve
F{ tra!isveTsa}ly. K"kus r caft be Tea}lzed by b}ow-ups over tkree sectieiis aRd
fiber$ ef :e. By Lemma 6, r - Ei - E2 - C' caR be centracted to twe peint$
of P2. Hence a}l the rmmedcal data in Theorem 3 cEm be realized as those ef
rational cuspidai plane curves.

3.4 Theorem 4
Assume that n rm 3. By Lemma 8, we have (C')2 S -2. Suppose (C')2 == -2.
By Lemma 7 and Lemma 8, we get the following:

LEMMA 9. The foltowing assertions hold for each k.

(i) gk == l and pSkÅr =xx 2.

(il) A:fe} = ti * BSkÅr' and ASk)' = IBSkÅr,21.

  Let ao : Y ---, V' be the contraction ef Dg2} and Dg3). since ffg(c')2 = g,

there exists a Pi-fibration p' : V' - Pi. Because cro(D - C')oo(C') = 5, the
fibration p'lx is a C(4')--fibration. Dissimilar to the previous cases, we do not
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 b-2 -b -a-1
---•-•--1

  a-1
e-•---••---

                            --•---••••••---*za                L.

                                    v      -4 b-2 -3 a-2                                           -3 -a-l
  (l) a= l,b=2 (l) aÅr l, bÅr2

                                 -3 aww2 -3 -a-1
                                   (1) aÅr 1, b == 2        (lÅr a -- }, bÅr2

        b-2 -b-i a-l                                       -a -i     t-vv--x -      "--•-•••-•---*+--••••-----" *

      L,                                       -1

                 --•--••---*-o------•                X.1 -.-2 -3N'""Z;Y.r"'1,

                         (2)

                      b-2 -b-l a-2 -3 -a-l b-2 mbw2
                    "----•--•-----*-on---••••••-*-EE'ill'+'lT

L,
         v            b b-1 -a-l a-1
     (3) a =: 1                                 (3) aÅr1

         b-2 wwb .3 a-1      PM-wts '

     v

Figure 4: The duai graph of D + Ei + -Ei)2

           o`e--••--
 a-2
                     -b-1

 •-----"-o--"----•-•---*         "b-2 -3 g-1                  -a-i
     (4)
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have the knowledge of C(4")-fibrations on Q-homology planes. But one can

determine the structure of the fibration by usirig the fact that our fibration
is gbtained from a ratigRai cu$pida} plaRe eurve with three cusps. Simi}ar tg
the previous cases, we deai wit}} the equations eii twigs obtained Åírom v aRd
thos.e given by Lemma 9. By analyzing the equations, one can prove that the
equations have only one solution, which corresponds to the quartic curve vvtith
three cusps.
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