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PLANE MODELS OF SMOOTH PROJECTIVE CURVES

CHANGHO KEEM

ABSTRACT. We exhibit a natural relationship between the minimal degree of a plane
model of a smooth projective algebraic curve X of genus g and its geometric proper-
ties; e.g. the existence of a nontrivial morphism from X onto another curve.

1. INTRODUCTION

This article is based on the talk delivered by the author at the Kinosaki Symposium
2006. There are two original research articles which are fairly closely related to what
we are going to present. The first one is the article [9] jointly with G. Martens on the
minimal degree of a plane model of a given algebraic curve and the other one is [3]
jointly with E. Ballico on double coverings of hyperelliptic curves.

Even though some of the mathematical contents which appear in this article can
also be found in the articles mentioned above, the author tries to make this article as
much self-contained as possible so that the readers may obtain a reasonable overview
as well as thorough details on the topics. For this reason, some part of this article
may become very much similar to those in [3] and [9], which are the outcomes of joint
efforts with the author’s collaborators. However, the author wishes to claim that he is
solely responsible for all the possible mistakes and inaccuracies in this article, if there
is any.

The organization of this paper is as follows. In the next section, we start by observing
a couple of examples which may provide a motivation for considering curves without
plane models of small degree. The main aim of the section is to persuade the reader
that the curves without plane model of small degree can be characterized as curves
admitting a degree two morphism onto anther curves. In section three, we treat the
variety of special linear series on double coverings of curves of low genus. Specifically,
we prove that there does not exist a base-point-free and complete net of degree g — 1
on a double covering of a curve of genus two. After mentioning the non-existence of a
base-point-free and complete net of degree ¢ — 1, we discuss about the the primitive
length of a double covering of genus two, which has been left open in one of the author’s
paper published long time ago. In the final section, we raise a question which is related
to the theme of the second and third section.
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For all the notations and conventions used but not explained, we refer the reader
to [2]. Otherwise stated, every curve considered in this paper is smooth irreducible
and projective defined over the field of complex numbers. Throughout X is always a
smooth projective curve of genus g.

2. DOUBLE COVERINGS OF LOW GENUS SPECIAL CURVES

Long time ago (in 1884), Halphen showed that every curve X of genus g can be
embedded in P? as a curve of degree g + 3 such that the hyperplane section in P? is
nonspecial, i.e. every curve of genus g has a nonspecial and very ample linear series of
degree g + 3; cf. [8, page 349; Proposition 6.1].

By projecting from a general point on the embedded curve ¢(X) C P?, one has a
plane model X’ of X C P?, which is (usually) singular.

X 4 oex) c P

N\ |
X/ — IP2

¢ : Halphen’s embedding, deg ¢(X) =g +3

7 : projection from a general point p € X, through which there exist only a finitely
many trisecant lines, whence 7 - ¢ is birational.

deg X' =g +2

Under the circumstance, we may raise the following rather naive but seemingly
natural questions.

Questions 2.1. 1. What degree plane models X may have 7
2. Specifically, what is the minimal degree of a plane model X’ of a given curve X 7

3. Let sx denote the minimal degree of a plane model of X. What is the possible
range of such sx’s among curves X having a fixed genus g 7

The third question can be answered easily as follows. By the genus formula for plane
curves of given degree sx, we have

g=9(X) <p(X') = (sx - 1)2(sx —2)

where p,(X’) is the arithmetic genus of the plane model X’. Therefore it follows that

3+ /8 1
vmozz—%—s.sxﬁg%-?,

where the second inequality comes from the Halphen’s theorem.

Having been able to obtain the interval to which sy may belong, we further ask:
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4. Does every integer in the interval I := [mg, g + 2] occur as sx for some curve X of
genus g 7

5. Denoting by M, the moduli space of smooth algebraic curves of genus g, we also
ask: Is the natural function

Mg 3 X—sxy €N
semi-continuous 7

6. What are the possible {(geometric) descriptions for all those X’s with a fixed sx 7

For this series of questions, it is now fairly clear what needs to be studied. Since we
are looking for morphisms ¢ : X — P2 such that ¢ is generically one to one, we are
indeed chasing for the so-called birationally very ample morphisms into P? so that its
image curve has minimal degree. This can also be realized as

D:={¢*H|H € P*"}
such that
(i) for a general p € X, |D — p| has no base point,
(i) deg D € D is minimal.
We now begin with a couple of examples which provides a motivation for the thesis
to be set up in this article.

Example 2.2. We first consider a curve which is most special in the sense of moduli.
Let X be an hyperelliptic curve, i.e. X € M, ,, where

Mya={X e My I X 5P degn =2}

We claim that sx = g + 2. For otherwise, take d = sy < ¢ + 1. Then there exists gﬁ,
which is birationally very ample and it follows that there also exists a base point free

1
pencil gj_; = |g3 — p|, p € X is a general point inducing a morphism ¢ : X i p1,

P! = P!
s T projection
X = xcP'xP c P
¥
N | projection
P! = P!

Since the morphism 7 x 3 is birationally very ample onto its image, X' is a curve of
type (d — 1,2) on a smooth quadric surface in P3. Hence by the adjunction formula,
we have

g<p(X)=(d-1)-1)(2-1)=d-2
which is just not compatible with the assumption

d=sx<g+1.
21



We next claim that a smooth curve X of genus g having the minimal degree of a
plane model sx = g + 2 must be hyperelliptic: Suppose X ¢ M 5. Then

E!X“’EEI]P’g'I — = X C P
where |K x| the canonical embedding, followed by projections from a general point
(g — 3) times. Therefore we have,

deg X' =deg Kx —(9g—3)=g+1

which implies
Sx S g + 1,
finishing the proof of the claim.

Example 2.3. On the other extreme, if X is a general curve of genus g, it was observed
by Severi [12, Anhang G, §10] that
Sx = [—2(9; 4)] =:m;.

In fact, this follows mainly from the Brill-Noether theorem, which was believed to be
true at that time (and proved later by Griffiths and Harris in late 1970’s): Denoting the
variety of special linear systems of degree d and dimension r by W7 (X), the so-called
“non-existence theorem” asserts that for a general curve of genus g, W7 (X) # 0 if and
only if the Brill-Noether number p(d, g,7) := g— (r+1)(g —d+7) > 0. For r = 2, one
sees that m; is the smallest integer such that p(d, g,2) is non-negative. Moreover, by
the fact that a non-degenerate morphism correspoinding to a special g3 on a general
curve of genus g is not composed with an involution [1] , it follows that m; is indeed
the minimal degree of a plane model of a general curve of genus g.

Recall that, by the theorem of Halphen and the genus formula for plane curves, we

have
Mo =3F VRl '28g+1 <sx<g+2,
and we asked if every integer in the interval
1= [my, g +2]

occur as sx for some curve X of genus g. We now answer this question in the affirmative
(at least partially) as follows.

Example 2.4. There exists a curve X of genus g with sx = m for every m € [mg, m4].
Here we provide an outline of the proof of the existence only for the case m < -‘“2'—7,
which will be enough for the next Corollary 2.5, i.e., for the non-semi-continuity of the
invariant sx.

Claim: For m < 312'1, 3 X e M, with sy =m.

Let X be a smooth model of a general plane nodal curve X’ of geometric genus g,
deg X’ = m. We know that such X or X’ always exists since m > my. Denoting
by Vig the Severi variety of plane curves of degree m of genus g, the plane curve
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X’ is indeed a general member of V,, ;. Note our numerical assumption m < 932’—7 is
equivalent to the condition p(m — 3,9,1) < 0, where p(d,g,7) '=g9— (r+1)(g—d+r
is the Brill-Noether number. By a result of Coppens [6], we have

gon(X)=m—-2 (x)
where the pencil determining the gonality is cut out by lines through a node.

While sy < m is trivially true, the issue here is that we may have smaller degree plane
model of X. We now argue that this is not the case.

(i) Suppose sx < m — 2. By considering a pencil of lines through a general point of
the minimal degree plane model, we see that gon(X) < m — 3, which is contradictory
to the result of Coppens [6].

(i) Suppose sx = m — 1. If a plane model of minimal degree sx is singular, then
gon(X) < m — 3 by projecting from a singular point. Hence the minimal degree plane
model must be a smooth curve of degree m — 1, whereas a smooth curve of degree
m — 1 does not have a base point free and complete g2, by a well known theorem of
Max Noether.

As a by-product, we obtain the following corollary which answers one of our earlier
questions in 2.1.

Corollary 2.5. : The function M, 3 X — sx € N is not semi-continuous.

Proof. If it were upper or lower semi-continuous, then the generic value mg achieved
by a general curve of genus g should be the maximal or minimal value among all the
possible value of sx’s. However, this is not the case as we have seen in the previous
three examples 2.2, 2.3 and 2.4. d

Recall that Example 2.2 asserts; for X € Mg,, sx = g + 2. Therefore, for a non-
hyperelliptic curve

X € M\Mgy,, we have sy < g+ 1.

We now ask if the inequality sx < g + 1 for non-hyperelliptic curve X is indeed
sharp. The following theorem, due to Coppens and Martens, provides an answer for
the question; cf. [7, Proposition 2.2 and 2.6].

Theorem 2.6 (Coppens-Martens). Let X be a curve of genus g > 6 . Then
sx =g+1
if and only of
X is bi-elliptic ;
te. 37 : X — C,degn =2, C an elliptic curve.
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3. DOUBLE COVERINGS OF CURVES OF LOW GENUS

Having seen that the minimal degree of a plane model of a bi-elliptic curve is g + 1
(and that the minimal degree of a plane model of a hyperelliptic curve is g + 2), one
may further ask what is the minimal degree of a plane model of a curve which admitts
a degree two finite morphism onto a curve of genus two. As for bi-elliptic curves, many
things are known and we collect some of them as follows; [4, Remark (2.4.2) and Claim
in p.251].

Remark 3.1. Let 7 : X — C be a double covering of a genus two curve C and assume
g > 11. Then

(1)  WHX)=WIX)+Wie(X) for6<d<g—4

2)  WiX) = Wg(X) + Was(X) for 8<d<g-—2

(3)  WI(X) =W 4(X)+ Wi (2r44)(X) for2r+4<d<g-1landr>3.

To improve Remark 3.1 one step further, we will prove a theorem addressing the non-
existence of a base-point-free and complete net of degree g—1 on a double covering of a
curve of genus two, which will be the essential ingredient for determining the minimal
degree of a plane model of a double covering of a curve of genus two.

Theorem 3.2. A double covering n : X — C of a curve of genus two with g > 11 does
not carry a base-point-free and complete gg_l‘ Furthermore W2_, (X) is irreducible.

Proof. Note that for a double covering X of a curve of genus two, dim W:_l (X)=9-7
and

o 1= T WEHC) + Wyg(X) = K — m*WE(C) — W,_o(X) (3.2.1)
is an irreducible component of maximal dimension; cf. {5, Corollary 2.3] and [4, Claim
(ii) in p.251]. By Remark 3.1 (2), we also note that ¥ is the only component whose
general element has a non-empty base locus. Assume the existence of a component of
W2 ,(X), say %, whose general element is base-point-free. Let gj := 7*g3(C)) and we
choose two sections so,5; € H°(X,g}) without common zeros. For a general L € ¥,
we consider the natural map

H(X,L)® H(X,L) & H°(X,L® g}),
defined by u(to,t1) :==s0-to + 81 - t1; t; € H(X, L).
Claim: h%(X,L ® g3) > 5.
Proof of the Claim. If h°(X, L ® g}) < 4, then
h°(X, L(~g})) = dimker p = 2

by the base-point-free pencil trick. On the other hand, since deg L(—g}) = g—5 < g—4,
L(—g}) is induced by 7 by Castelnuovo-Severi inequality, and hence

L(=g;) = lgs| + A
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for some effective divisor A of degree g — 11. Then we would have L = |g; + g¢| + A,
contradicting L being base-point-free.

Now we consider the following two possibilities separately.

(i) R°(X,L ® g;) > 6: In this case, we have h°(X, KL !(—g})) > 2 by the Riemann-
Roch formula, whereas deg KL™!(—g}) = g — 5 < g — 4. Hence by the Castelnuovo-
Severi inequality and Remark 3.1, we have

KL7(~g1) € Wy_5(X) = m"W,(C) + Wy—o(X) Un*W;(C) + Wy (X),
implying
K- % —{g;} CmW3(C) + W,_o(X) U T*W3(C) + Wy_11(X).

Since the locus K — X — {gi} is irreducible, we have either

Kx == (g} C 7 WH(C) + Wy o(X)
or

K - —{gi} C 7" (W5(C)) + Wo-n(X).
If Kx —X— g3 C n*(W35(C)) + Wy_11(X), then

K=% C m(WHO))+m (Wi(C)) + Wyn(X)
C 7r‘(W53(C)) + Wy-11(X) C Wgs—l(X)a

which is impossible; cf. [2, Lemma 3.5, p.182]. Therefore we must have

K =X —{g;} C m(W;(C)) + W,y_9(X),
immplying K — ¥ C ¥¢ = K — Xy, which is again a contradiction.
(ii) A°(X,L ® g;) = 5: In this case, we have h°(X, L — g}) = dim ker u > 0 and hence

L=g;®O(p1+ -+ pg-s)

and we may assume that h°(X,O(p1 + --- + p,—5)) = 1; otherwise L would not be
base-point-free by Castelnuovo-Severi inequality. We also note that among the points
D1, ,Dg-5, at most one pair of points, say {py_s,Pg-5}, is in the same fiber of T;
otherwise L is not base-point-free either.

(ii-a) {py—6, Pg—s} is in the same fiber of 7: In this case, L = |7*(g3) +p1+- - -+ Ppg—7l-

For j=1,---,9— 7, we consider the complete linear series
7%(92) + Pg—s + Py—s +Pr+ -+ P+ P+ + Byl = |7 (g 1)),
which is base-point-free. Since no two p;’s (for j =1,---,g— 7) are in the same fiber

of 7, p; is not a base point of the linear series

L+ P+ + Byl = |7 (9583) + Pjar + - + pyi]
for each j =1,---,9 — 7. Hence we have

d1m|L+131++;5]| >dim[L+1_71+---+13j-1|,

implying S
[L+ D1+ -+ Dg—r| = 93
25



whose dual is a g2. Since X is neither trigonal nor bi-elliptic by Castelnuovo-Severi
inequality, we are done with this case.

(ii-b) No two among {p;,---,ps-5} are in the same fiber of 7: We may use the
same argument as (ii-a) to deduce |L + Py + -+ + Pg—s| = ggg_fﬁ whose dual is a g7, a
contradiction. O

For the variety of linear series of dimension more than one, one may refine Remark
3.1 as follows.

Theorem 3.3. Let m : X — C be a double covering of a curve of genus two and
g>11. Then

(i) Wi(X) = mWE(C) + Was(X) for 8<d<g-1
(i) Wi(X) = 1" W] ,(C) + Wa_iors0y(X)  for 2r+4<d<gandr>3,

which are irreducible.

Proof. (i) For d < g — 2, it is clear by Remark 3.1 (2). By Theorem 3.2 and the fact
that W2 ,(X) = m*W(C) + W,_1o(X), we have

W2 (X} = W2 ,(X)+ Wi(X) = "W (C) + Wy_o(X).
The irreducibility of those W2Z(X)’s and WT(X)’s is also clear. (ii) is also clear. a

Corollary 3.4. Let 7 : X — C be a double covering of a curve of genus two and
g>11. Then

Sx =g¢.

Proof. By Theorem 3.2 and Remark 3.1 (2), {7, Corollary 2.5], we have sx = g for
the double coverings genus two curves; in fact, the linear series |K — w*g3 —p; — -+ - —
Pg—6| = gg for generically chosen pi, - ,pg—6 € X gives a plane model of X of minimal
degree. O

Theorem 3.2 has another consequence, which determines the so-called primitive
length of double coverings of genus two curves. Recall that a complete and base-
point-free linear series gj; on a given algebraic curve is called primitive if its residual
series is also base-point-free. For a curve of genus g > 4, there always exists primitive
linear series other than the trivial (zero and canonical) linear series. Following [4], let
the primitive length /(X') of X be the cardinality of the finite set of integers consisting
of Clifford indices of all non-trivial primitive linear series on X. It has been shown in
[4] that the primitive length is an invariant detecting double coverings; cf. [4, Theorem
3.4.1]. The results we obtained so far in this section determines the primitive length
of a double covering of a curve of genus two.

Corollary 3.5. Let X be s smooth double covering of a genus two curve C where
g >11. Then

(i) there is no primitive net of degree g — 1;
(il) X has primitive length 5.
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Proof. (i) By Theorem 3.3, W2_,(X) = m*WZ(C) + Wy_o(X) = 7*J(C) + W,_o(X)
and hence every complete net g;‘;_l has non-empty base locus hence not primitive.

(i) Remark that for a base-point-free, complete and non-primitive linear series |D|,
there exists p € X such that h°(X, D + p) = h°(X, D) + 1 and |D + p| is birationally
very ample. By a result of [10], there always exist a base-point-free and complete 951,—3
on X. On the other hand, since there does not exist a birationally very ample and
complete 93_2 on X, any base-point-free and complete g;ua is primitive. Likewise, any
base-point-free and complete g;__z (which we know of its existence by [10]) is primitive
by Theorem 3.2. Therefore the primitive linear series g on X are complete pencils
792, 793, 93, 9g—2> 9g—1 Which have different Clifford indices. d

Corollary 3.4, Theorem 2.6 and Example 2.2 as well indicate that a curve X with
big sx is rather a special curve admitting a morphism of degree two onto a curve of
small genus. Therefore, looking for curves with big sx it seems natural to ask: Does
this simple pattern observed for sx > g+ 1 in Example 2.2 and Theorem 2.6 continue
to hold, i.e., does sx = g + 2 — h imply that C is a double cover of a curve of genus
(at most) h - provided that g is not too small with respect to h 7 It turns out that the
answer to this question is also YES; cf. [9].

Theorem 3.6. Let 0 <t € Z and X .be a curve of genus g with sx = g+ 2 — h. Then
there is an effective polynomial expression p(h) in h such that g > p(h) implies that X
s a double cover of a curve of genus at most h.

Since the proof is somewhat involved using rather conventional (and complicated)
techniques, we do not intend to provide it here. The reader is advised to look at the
paper [9]. Instead we will give the proof of the following proposition which may be
regarded as the converse part of Theorem 3.6. Since we want to produce a very ample
linear series g on X such that r is large w.rt dor a g;: such that d’ is large w.r.t v/
and such that|Kx — g, | is very ample, a reasonable candidate would be |Kx — 7*K¢|.

Proposition 3.7. Let 7 : X -~ C be a double covering of curves of genus g and h,
respectively. If g > 4h, then sx < g+2— h.
Proof. For any covering 7 : X — C and any line bundle M on C, it is known ([8, II,
Ex.5.1; III, Ex.4.1; IV, Ex.2.6]) that
HY(X,m*M) = H°(C,m.n*M) = H(C,m. (7" M ®0, Ox))
= HO(C, M RBoc 7!',.0){)

and that det 7.0x = O¢(~—D) for a divisor D on C such that 2D is linearly equivalent
to the branch divisor B of m (made up by the points of C over which 7 ramifies); in
particular, the vector bundle 7,0x on C of rank deg 7 has degree

—deg D = —%degB = (degm)-(g—-1)—(g—1)<0.

Moreover ([11, I, 1], if deg ® = 2, the rank two vector bundle 7.Ox splits into the line
bundles O¢ and det m.Ox of degree 0 resp. 2(h—1) - (9 —1) =2h—g—1. For a
27



double covering 7 : X — C, we thus obtain
HO(X,n*M) = H°(C,M)® H°(C,M ®o, Oc(—D)),
and, if deg M < deg D = g + 1 — 2h, then H*(C, M ®¢, Oc(—D)) =0, i.e.,
H°(X,m*M) = H°(C,M). (3.7.1)

In particular, taking M = w¢, the canonical sheaf on C, we have
degM =2h -2 < g-—2h
since g > 4h — 2, and so, by (3.7.1),
KX, 7m*K¢) = h°(C,K¢) = h.
We will show that |[Kx — 7*Kc¢| is very ample; since this series is a complete gg_fi’:i
on X, we obtain, by subtracting g — 3k > 0 general points of X from it, a simple net
of degree
(29 —4h+2)—(9—3h)=9g+2—h
on X proving that sy < g+2—h.
In order to show that |K x — 7* K| is very ample, we need to show that
RY(X,(n*K¢e) + P+ Q) < R (n*K¢)

for any two points P, Q on X. Let p := #n(P), ¢ = n(Q), P+ P := n*(p) and
Q+ @ :=7*(q). Then

("Ke)+ P+Q=n"(Kc+p+q - P -Q.
Here, by (3.7.1),
(X, m"(Kc+p+q) =h(C,Kc+p+q) =2h—h+1=h+1

because we still have deg(K¢ + p+ ¢) = 2h < g — 2h. Since |K¢ + p + ¢} is base point
free ([8, IV, 3.2]), so is |7* (K¢ + p + ¢)|, and it follows that

ho((ﬂ'*Kc) + P+ Q) = ho(ﬂ"’(KC +p+ q) _p_ Q/)
< K(n* (Ko +p+9) — 1 = h = h(r"Kc).

Note that Corollary 3.4 is a more precise version of Proposition 3.7 for h = 2.

4. EPILOGUE

We saw in Section 1 that for a smooth curve X of genus g, the minimal degree sx
of a plane model of X lies in the interval

[3+\/8g+1 g
2 7

and that every integer in the sub-interval actually occurs as sx for some curve X of
genus g. However, we still don’t know if the integers in the other part of the interval

28
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really occurs as sy for some curve X of genus g. Of course, reasonable candidates
double coverings of curves of genus h, as we saw for the cases h = 0,1, 2.

The following result due to Dongsoo Shin provides an answer for this question, at
least partially [13].

Theorem 4.1. Let X be a smooth irreducible curve of genus g. If X is a double cover
of a smooth irreducible curve Y of genus h > 2, then

g—2h+3+Clff(Y) <sx <g—2h+2gon(Y),
where CLiff(Y) and gon(Y') denote the Clifford indez and the gonality of Y, respectively.

Recall that a curve of genus g can be embedded in P? as a curve of degree g + 3
by a theorem of Halphen. Naturally, one may want to have a more precise version of
the Halphen’s statement. For example, it would be nice to have a description of those
curves which may be embedded in P? as a curve of degree smaller than g + 3. A first
step toward this direction was obtained by Harris {2, Exercise B, p.221}, who showed
the following using a theorem of Mumford [2, Theorem 5.2, p.193].

Theorem 4.2 (Harris). Let X be a curve of genus g. If X is not hyperelliptic, trigonal
or bi-elliptic, X embeds into P3 as a curve of degree g + 2.

Let
M = {X € M,| X is not hyperelliptic, trigonal or bi-elliptic},
be the classes of curves admitting embeddings of degree g + 2 into P2, Note that if
CLff X > 3 then X € M and hence X carries a very ample gg 2 by Theorem 4.2.
However one has
Ms = {X € M| Cliff(X) > 3} T M.

Therefore one can expect: X € M; may satisfy a stronger condition, say, the
existence of a very ample ¢,, on X.

Again, the following theorem of Dongsoo Shin provides a clue for a possble answer
for the quesion raised above [14]

Theorem 4.3. Let X be a smooth projective algebraic curve of genus g > 21 which is
not a curve of even gonality admitting an automorphism of order two. Suppose that
gon(X) > 7 and X s neither a k-sheeted cover of an elliptic curve with k < 4 nor a
plane curve of degree 8. Then there exists a complete and very ample linear series of
dimension 3 and degree g+ 1 on X.
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