2007年度 pp.120 120

Classification of non-symplectic automorphisms of order 3 on K3 surfaces

Shingo TAKI (Graduate School of Mathematics Nagoya University)

In this poster, we study non-symplectic automorphisms
of order 3 on algebraic
$$K3$$
 surface X over C which act triv-
induces their fixed locus in terms of the invariants of
selementary lattices S_X . In particular we shall
haracterize their fixed locus in terms of the invariants of
selementary lattices S_X . In particular we shall
nonophism q on X . i.e. $q^{W} = (1 + \sqrt{-3}/2)\omega_X$. (ω_X) :
This poster is devoted to study of non-symplectic automorphic
nonophism q on X . i.e. $q^{W} = (1 + \sqrt{-3}/2)\omega_X$. (ω_X) :
Main Theorem
Let ρ be the Picard number of X and let s be the
minimal number of generators of S_X/S_X .
(1) $22 - \rho - 2s < 0 \Rightarrow \exists \varphi$.
Moreover $X^{\psi} := (x < X|\psi(x) = x)$ has the form
 $\left\{ \prod_{i=1}^{1} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ \prod_{i=1}^{1} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ \prod_{i=1}^{1} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ \prod_{i=1}^{i} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ Were $M = q^2 - 2s < 0 \Rightarrow \exists \varphi$.
(2) $22 - \rho - 2s < 0 \Rightarrow \exists \varphi$.
(3) $22 - \rho - 2s < 0 \Rightarrow \exists \varphi$.
(4) $U_i^{(i)} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ \prod_{i=1}^{i} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ \prod_{i=1}^{i} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ Were $M = q^2 - 2s / 4$.
(4) $U_i^{(i)} \{P_i\} \prod C^{(i)} \prod_{j=1}^{i} S_X = U(3) \oplus E_0^{i}(3) \\ Were $M = q^2 - 2s / 4$.
(5) $Et C D ea fiscal irreducible curve and Q a point on C. Then q^{φ} can be written as $\binom{0}{0} \frac{0}{2}$ under some appropriate
local coordinates around P .
(b) $Et C D ea fiscal irreducible curves are aronoth.(c) $U_i^{(i)} \frac{1}{2} (D_i) \frac{1}{2} (D_i)$$$$$$

L:3-elementary lattice $\Leftrightarrow L^*/L \simeq (\mathbb{Z}/3\mathbb{Z})^s$. An even indefinite 3-elementary lattices were classified by A.N. Rudakov and I.R. Shafarevich.

We can calculate M, N and the genus of C_k .

-120-

 \Downarrow