On codim4 \mathbb{Q}－Fano 3 Folds with Fano index 2
Kaori SUZUKI
Interactive Research Center of Science，Tokyo Institute of technology，Japan
Algebraic Geometry Symposium Kinosaki Oct． 22 －Oct．26， 2007

1 Main Results

We study Fano 3－folds with Fano index 2：that is， 3－folds X with Picard rank 1， \mathbb{Q}－factorial terminal singularities and $-K_{X}=2 A$ for an ample Weil di－ visor A ．We gave a first classification of all possible Hilbert series of such polarised varieties X, A and list 33 families that can be realised in codimension up to 4．See，Brown－Suzuki，Fano 3－folds with di－ visible anticanonical class，Manusctipta Math．123， 2007，pp．37－51．
We work over the complex number field \mathbb{C} ．
2 The classification of \mathbb{Q}－Fano 3－folds
The Fano index $f=f(X)$ of a Fano 3－fold X is the largest positive integer such that $-K_{X}=f A$ for some Weil divisor A ．Equality of divisors denotes linear equivalence of some multiple．A Weil divisor A is called a primitive ample divisor．

History		
1．Smooth	Iskovskikh	
2．Toric	Borisov－Borisov	（1993）
3．$f=1$		

Graded Ring Method

\longrightarrow Altinok，Brown，Corti ，Fletcher，Reid
4．$f \geq 2$ and codimension up to 3
Graded Ring Method \longrightarrow Suzuki［Su1］

3 The graded ring method

A Fano 3－fold X with primitive ample divisor A has a graded ring $R(X, A)=\bigoplus_{n>0} H^{0}\left(X, \mathcal{O}_{X}(n A)\right)$ ． This graded ring is finitely generated．The Hilbert series of X, A is $P(X, A)=\sum_{n=0}^{\infty} \chi\left(\theta_{X}(n A)\right) t^{n}$ ． Each $\chi\left(\theta_{X}(n A)\right)$ is given by the singular Riemann－ Roch formula（［YPG，Su2］）and then

Thm 1 （［Su2］）

$$
\begin{aligned}
P_{X, A}(t)= & \frac{1}{1-t}+\frac{t}{(1-t)^{4}} A^{3} \\
& +\frac{t}{(1-t)^{2}} \frac{A c_{2}(X)}{12}+\sum_{p \in \mathcal{B}} c_{p}(t)
\end{aligned}
$$

where，$c_{p}(t)$ is equal to
$\frac{1}{1-t^{r}}\left(\sum_{k=1}^{r-1}\left(\frac{-i_{k}\left(r^{2}-1\right)}{12 r}+\sum_{j=1}^{i_{k}-1} \frac{\overline{b j}(r-\overline{b j})}{2 r}\right) t^{k}\right)$.
1． \bar{x} ：the smallest residue $\bmod r$
2． $\mathcal{B}:=\left\{\frac{1}{r_{n}}\left(a_{n}, r_{n}-a_{n}, 2\right)\right\}(n=1,2,3 \ldots)$ ．
3．i ：the smallest positive integer which satisfies $n A \sim_{\mathbb{Q}} i K_{X}$.

A choice of minimal homogeneous generating set $x_{0}, \ldots, x_{N} \in R(X, A)$ determines an embedding $X \hookrightarrow \mathbb{P}^{N}=\mathbb{P}\left(\alpha_{0}, \ldots, \alpha_{N}\right)$ for some weighted projective space \mathbb{P}^{N} ，where $x_{i} \in H^{0}\left(X, \mathcal{O}_{X}\left(\alpha_{i} A\right)\right)$ ． With this embedding，we say that X has codimen－ sion $N-3$ ．

$$
\begin{aligned}
& \text { Ex. } 1 \quad \text { Codimension } 1 \text { hypersurface case } \\
& \mathcal{B}=\left\{\frac{1}{3}(1,2,2), \frac{1}{5}(1,4,2), \frac{1}{11}(3,8,2)\right\}
\end{aligned}
$$

$$
P(X, t)=\frac{1-t^{38}}{\left(1-t^{2}\right)\left(1-t^{3}\right)\left(1-t^{5}\right)\left(1-t^{11}\right)\left(1-t^{19}\right)}
$$

$\Longrightarrow X_{38} \subset \mathbb{P}(2,3,5,11,19)$
It is known that the embedding of codimension 2 ［resp．3］is defined by the complete intersection ［resp．five maximal Pfaffians of a 5×5 skew ma－ trix］． 36 can be realized by (X, A) of codimension up to 3 ．
Next we consider the embedding of codimension 4．If $\left|-K_{X}\right|$ contains a $K 3$ surface S ，we may com－ pare with those of $[B]$ to the constructions we might make．
Consider $X \subset \mathbb{P}(2,2,3,5,5,7,12,17)$ with $\mathcal{B}=$ $\left\{\frac{1}{17}(5,12,2)\right\}$ as an example．

Ex． 2 Codimension 4 case

$$
\begin{aligned}
& S \subset \mathbb{P}(2,3,5,5,7,12,17) \\
& { }_{i} \text { Type I projection from } 1 / 17(5,12 \text {; } \\
& T_{10,12,14,15,17} \subset \underset{P}{ } \subset(2,3,5,5,7,12) \\
& \text { Type I pmjection from } 1 / 12(5,5)
\end{aligned}
$$

ing Type II unprojection，we construct from the example above
$\mathbb{P}(2,5,12) \subset Y_{10,12,14,15,17} \subset \mathbb{P}(2,2,3,5,5,7,12)$
as a linear suhspace in the codimension 3 weak Fano 3－fold．By projection and unprojection again， we have \mathbb{Q}－Fano 3－fold in codimension 4.

4 Database

We use computer programs hy Magma at the final stage．
If there is a \mathbb{Q}－Fano 3－fold X of Fano index 2， there must be integer solutions r_{k}, a_{k} of the follow－ ing equations and inequalities：
$\frac{\text { Conditions }}{\text { 1. } \sum_{k=1}^{m}\left(r_{k}-\frac{1}{r_{k}}\right)<24,\left(r_{k}, a_{k}\right)=1}$
\quad and $\left(2, r_{k}\right)$
$=1$ for all \mathbf{k}

2． $0 \leq A^{3} \leq 4 / 5 A C_{2}$（Kawamata Boundedness）
3．$\chi\left(\mathcal{O}_{\mathrm{X}}(-A)\right)=0$

Then we have whole possible candidates of \mathcal{B} and their Hilbert series．As a result，we have the follow－ ing list of \mathbb{Q}－Fano 3 －folds in codimension 4

Remark Lists of examples available at

http：／／malham．kent．ac．uk／grdh／FanoForm．php

Question

The existence problem of two remaining candi－ dates
1． $\mathcal{B}=\{5 \times 1 / 3(1,2,2), 1 / 5(1,4,2)\}, A^{3}=1 / 15$
2． $\mathcal{B}=\{3 \times 1 / 3(1,2,2), 1 / 5(2,3,2), 1 / 7(1,6,2)\}$ ， $A^{3}=1 / 35$
is still open，but both are expected not to exist．

Ambient $\mathbb{1 p}^{7}$	Basket \mathcal{B}	A^{3}
$\overline{\mathbb{F}(1,1,1,1,1,1,1,1)}$	nonsingular	6
$\mathbb{P}(1,1,1,1,1,2,2,3)$	$\frac{1}{3}$	10／3
$\mathbb{P}(1,1,1,2,2,2,3,3)$	$2 \times \frac{1}{3}$	5／3
$\mathbb{P}(1,1,1,2,2,2,3,5)$	$\frac{1}{1}(2,3,2)$	8／5
$\mathbb{P}(1,1,1,2,2,3,4,5)$	$\frac{1}{5}(1,4,2)$	7／5
$\mathbb{P}(1,1,2,2,2,3,3,3)$	$3 \times \frac{1}{3}$	1
$\mathbb{P}(1,1,2,2,2,3,3,5)$	$\frac{1}{3}, \frac{1}{5}(2,3,2)$	14／15
$\mathbb{P}(1,1,2,2,2,3,5,7)$	$\frac{1}{7}(2,5,2)$	6／7
$\mathbb{P}(1,1,2,2,3,3,4,5)$	$\frac{1}{3}, \frac{1}{5}(1,4,2)$	11／15
$\mathbb{P}(1,1,2,2,3,3,4,7)$	$\frac{1}{(}(3,4,2)$	5／7
$\mathbb{P}(1,1,2,3,4,5,6,7)$	$\frac{1}{7}(1,6,2)$	$3 / 7$
$\mathbb{P}(1,2,2,3,3,3,4,5)$	$3 \times \frac{1}{3}, \frac{1}{3}(1,4,2)$	$2 / 5$
$\mathbb{P}(1,2,2,3,3,3,4,7)$	$2 \times \frac{1}{3}, \frac{1}{7}(3,4,2)$	8／21
$\mathbb{P}(1,2,2,3,3,4,5,5)$	$\frac{1}{3}, \frac{1}{5}(1,4,2), \frac{1}{5}(2,3,2)$	1／3
$\mathbb{P}(1,2,2,3,3,4,5,7)$	$\frac{1}{5}(2,3,2), \frac{1}{=}(3,4,2)$	11／35
$\mathbb{P}(1,2,2,3,3,5,8,11)$	$\frac{1}{11}(3,8,2)$	3／11
$\mathbb{P}(1,2,2,3,4,5,5,7)$	$\frac{1}{5}(1,4,2), \frac{1}{7}(2,5,2)$	9／35
$\mathbb{P}(1,2,3,4,4,5,5,5)$	$3 \times \frac{1}{5}(1,4,2)$	1／5
$\mathbb{P}(1,2,3,4,4,5,5,9)$	$\frac{1}{5}(1,4,2), \frac{1}{9}(4,5,2)$	8／45
$\mathbb{P}(1,2,3,4,4,5,9,13)$	$\frac{1}{13}(4,9,2)$	2／13
$\mathbb{P}(1,2,3,4,5,5,6,7)$	$\frac{1}{3}, \frac{1}{5}(1,4,2), \frac{1}{7}(1,6,2)$	17／105
$\mathbb{P}(1,2,3,4,5,5,6,11)$	$\frac{1}{3}, \frac{1}{11}(5,6,2)$	$5 / 33$
$\mathbb{P}(1,2,3,4,5,6,7,7)$	$\frac{1}{7}(1,6,2), \frac{1}{7}(3,4,2)$	1／7
$\mathbb{P}(1,2,3,5,6,7,8,9)$	$2 \times \frac{1}{3}, \frac{1}{9}(1,10,2)$	1／9
$\mathbb{P}(1,2,5,7,8,9,10,11)$	$\frac{1}{5}(2,3,2), \frac{1}{1}(1,10,2)$	$3 / 5$
$\mathbb{P}(2,2,3,3,4,5,5,5)$	$\frac{1}{3}, 3 \times \frac{1}{5}(2,3,2)$	2／15
$\mathbb{P}(2,2,3,3,4,5,5,7)$	$2 \times \frac{1}{3}, \frac{1}{5}(2,3,2), \frac{1}{7}(2,5,2)$	13／105
$\mathbb{P}(2,2,3,3,4,5,7,9)$	$3 \times \frac{1}{3}, \frac{1}{9}(2,7,2)$	1／9
$\mathbb{P}(2,2,3,5,5,7,12,17)$	$\frac{1}{17}(5,12,2)$	1／17
$\mathbb{P}(2,3,3,4,5,5,6,7)$	$5 \times \frac{1}{3}, \frac{1}{5}(1,4,2)$	1／15
$\mathbb{P}(2,3,3,4,5,7,10,13)$	$2 \times \frac{1}{3}, \frac{1}{13}(3,10,2)$	
$\mathbb{P}(2,3,4,5,5,6,7,7)$	$\frac{1}{3}, \frac{1}{5}(1,4,2), \frac{1}{5}(2,3,2), \frac{1}{7}(3,4,2)$	1／21
$\mathbb{P}(2,3,4,5,5,6,7,9)$	$2 \times \frac{1}{3}, \frac{1}{5}(2,3,2), \frac{1}{9}(4,5,2)$	2／45
$\mathbb{P}(2,3,5,6,7,7,8,9)$	$3 \times \frac{1}{3}, \frac{1}{5}(2,3,2), \frac{1}{7}(1,6,2)$	1／35
$\underline{\mathbb{P}(2,5,5,6,7,8,9,11)}$	$2 \times \frac{1}{5}(2,3,2), \frac{1}{11}(5,6,2)$	1／55

Tatle ： \mathbb{Q}－Fano 3 －folds in codimension 4

References

［B］G．Brown，A database of polarised K 3 surfaces， Exp．Math．16，2007，7－20．
［BS2］G．Brown，K．Suzuki，Computing Fano 3－folds of index ≥ 3 ，will apper in Japan．Journal of Indusfrial and Applied Mathematics．
［Su1］K．Suaki，On \mathbb{Q}－Fano 3－folds with Fano index ≥ 2 ， Univ．of Tokyo Ph．D．thesis， 2003.
［Su2］K．Suvuki，On \mathbb{Q}－Fano 3－folds with Fano index ≥ 9 ， K．Suzuki，On \mathbb{Q}－Fano 3－folds with Fano index \geq ，
Manuscripta Mathematica 114，2005，Springer， Manuscrip
229－246．
［YPG］M．Reid，Young person＇s guide to canonical singularities，Algehraic Geometry（1985），ed． S．Bloch，Proc．of Sym．Pure Math．46， AMS．（1987），voll，345－414．

