2007年度 pp.119 119

On codim4 Q-Fano 3 Folds with Fano index 2

Kaori SUZUKI Interactive Research Center of Science, Tokyo Institute of technology, Japan Algebraic Geometry Symposium Kinosaki Oct. 22 - Oct. 26, 2007

1 Main Results

We study Fano 3-folds with Fano index 2: that is, 3-folds X with Picard rank 1, Q-factorial terminal singularities and $-K_X = 2A$ for an ample Weil divisor A. We gave a first classification of all possible Hilbert series of such polarised varieties X, A and list 33 families that can be realised in codimension up to 4. See, Brown-Suzuki, Fano 3-folds with divisible anticanonical class , Manusctipta Math. 123, 2007, pp.37–51.

We work over the complex number field $\mathbb{C}.$

2 The classification of \mathbb{Q} -Fano 3-folds

The Fano index f = f(X) of a Fano 3-fold X is the largest positive integer such that $-K_X = fA$ for some Weil divisor A. Equality of divisors denotes linear equivalence of some multiple. A Weil divisor A is called a *primitive ample divisor*.

History1. SmoothIskovskikh (1980)2. ToricBorisov-Borisov (1993)3. f = 1MMP \longrightarrow Mori, Mukai, Takagi (many)Graded Ring Method \longrightarrow Altinok, Brown,Corti , Fletcher, Reid4. $f \ge 2$ and codimension up to 3Graded Ring Method \longrightarrow Suzuki [Su1]

3 The graded ring method

A Fano 3-fold X with primitive ample divisor A has a graded ring $R(X, A) = \bigoplus_{n\geq 0} H^0(X, \mathcal{O}_X(nA))$. This graded ring is finitely generated. The *Hilbert* series of X, A is $P(X, A) = \sum_{n=0}^{\infty} \chi(\theta_X(nA))t^n$. Each $\chi(\theta_X(nA))$ is given by the singular Riemann-Roch formula ([YPG, Su2]) and then

A choice of minimal homogeneous generating set $x_0, \ldots, x_N \in R(X, A)$ determines an embedding $X \hookrightarrow \mathbb{P}^N = \mathbb{P}(\alpha_0, \ldots, \alpha_N)$ for some weighted projective space \mathbb{P}^N , where $x_i \in H^0(X, \mathcal{O}_X(\alpha_i A))$. With this embedding, we say that X has codimension N-3.

It is known that the embedding of codimension

2 [resp.3] is defined by the complete intersection [resp. five maximal Pfaffians of a 5×5 skew matrix]. 36 can be realized by (X, A) of codimension up to 3.

Next we consider the embedding of codimension 4. If $|-K_X|$ contains a K3 surface *S*, we may compare with those of [B] to the constructions we might make.

Consider $X \subset \mathbb{P}(2, 2, 3, 5, 5, 7, 12, 17)$ with $\mathcal{B} = \{\frac{1}{17}(5, 12, 2)\}$ as an example.

Ex.2 Codimension	4 case	
S	\subset	$\mathbb{P}(2,3,5,5,7,12,17)$
Type I pro	jection fi	rom 1/17(5,12)
$T_{10,12,14,15,17}$	\subset	$\mathbb{P}(2, 3, 5, 5, 7, 12)$
Type I pro	jection fi	rom 1/12(5,7)
$Z_{10,12}^{*}$	\subset	$\mathbb{P}(2, 2, 3, 5, 5, 7)$

Using Type II unprojection, we construct from the example above

 $\mathbb{P}(2,5,12) \subset Y_{10,12,14,15,17} \subset \mathbb{P}(2,2,3,5,5,7,12)$

as a linear subspace in the codimension 3 weak Fano 3-fold. By projection and unprojection again, we have Q-Fano 3-fold in codimension 4.

4 Database

We use computer programs by Magma at the final stage.

If there is a Q-Fano 3-fold X of Fano index 2, there must be integer solutions r_k , a_k of the following equations and inequalities:

<u>Conditions</u> 1. $\sum_{k=1}^{m} (r_k - \frac{1}{r_k}) < 24, (r_k, a_k) = 1$ and $(2, r_k) = 1$ for all k 2. $0 \le A^3 \le 4/5AC_2$ (Kawamata Boundedness) 3. $\chi(\mathcal{O}_X(-A)) = 0$

Then we have whole possible candidates of \mathcal{B} and their Hilbert series. As a result, we have the following list of \mathbb{O} -Fano 3-folds in codimension 4.

<u>Remark</u> Lists of examples available at http://malham.kent.ac.uk/grdb/FanoForm.php

Question

The existence problem of two remaining candidates

1. $\mathcal{B} = \{5 \times 1/3(1, 2, 2), 1/5(1, 4, 2)\}, A^3 = 1/15$ **2.** $\mathcal{B} = \{3 \times 1/3(1, 2, 2), 1/5(2, 3, 2), 1/7(1, 6, 2)\}, A^3 = 1/35$

is still open, but both are expected not to exist.

Ambient \mathbb{P}^7	Basket \mathcal{B}	A^3
$\mathbb{P}(1,1,1,1,1,1,1,1)$	nonsingular	6
$\mathbb{P}(1, 1, 1, 1, 1, 2, 2, 3)$	$\frac{1}{3}$	10/3
$\mathbb{P}(1, 1, 1, 2, 2, 2, 3, 3)$	$2 \times \frac{1}{3}$	5/3
$\mathbb{P}(1, 1, 1, 2, 2, 2, 3, 5)$	$\frac{1}{5}(2,3,2)$	8/5
$\mathbb{P}(1, 1, 1, 2, 2, 3, 4, 5)$	$\frac{1}{5}(1, 4, 2)$	7/5
$\mathbb{P}(1, 1, 2, 2, 2, 3, 3, 3)$	$3 \times \frac{1}{3}$	1
$\mathbb{P}(1, 1, 2, 2, 2, 3, 3, 5)$	$\frac{1}{3}, \frac{1}{5}(2, 3, 2)$	14/15
$\mathbb{P}(1, 1, 2, 2, 2, 3, 5, 7)$	$\frac{1}{7}(2, 5, 2)$	6/7
$\mathbb{P}(1, 1, 2, 2, 3, 3, 4, 5)$	$\frac{1}{3}, \frac{1}{3}(1, 4, 2)$	11/15
$\mathbb{P}(1, 1, 2, 2, 3, 3, 4, 7)$	$\frac{1}{7}(3, 4, 2)$	5/7
$\mathbb{P}(1, 1, 2, 3, 4, 5, 6, 7)$	$\frac{1}{7}(1, 6, 2)$	3/7
$\mathbb{P}(1, 2, 2, 3, 3, 3, 4, 5)$	$3 \times \frac{1}{3}, \frac{1}{5}(1, 4, 2)$	2/5
$\mathbb{P}(1, 2, 2, 3, 3, 3, 4, 7)$	$2 \times \frac{1}{3}, \frac{1}{7}(3, 4, 2)$	8/21
$\mathbb{P}(1, 2, 2, 3, 3, 4, 5, 5)$	$\frac{1}{3}, \frac{1}{5}(1, 4, 2), \frac{1}{5}(2, 3, 2)$	1/3
$\mathbb{P}(1,2,2,3,3,4,5,7)$	$\frac{1}{5}(2,3,2), \frac{1}{7}(3,4,2)$	11/35
$\mathbb{P}(1, 2, 2, 3, 3, 5, 8, 11)$	$\frac{1}{11}(3, 8, 2)$	3/11
$\mathbb{P}(1,2,2,3,4,5,5,7)$	$\frac{1}{5}(1, 4, 2), \frac{1}{7}(2, 5, 2)$	9/35
$\mathbb{P}(1,2,3,4,4,5,5,5)$	$3 \times \frac{1}{5}(1, 4, 2)$	1/5
$\mathbb{P}(1,2,3,4,4,5,5,9)$	$\frac{1}{3}(1, 4, 2), \frac{1}{9}(4, 5, 2)$	8/45
$\mathbb{P}(1,2,3,4,4,5,9,13)$	$\frac{1}{13}(4,9,2)$	2/13
$\mathbb{P}(1, 2, 3, 4, 5, 5, 6, 7)$	$\frac{1}{3}, \frac{1}{5}(1, 4, 2), \frac{1}{7}(1, 6, 2)$	17/105
$\mathbb{P}(1, 2, 3, 4, 5, 5, 6, 11)$	$\frac{1}{3}, \frac{1}{11}(5, 6, 2)$	5/33
$\mathbb{P}(1,2,3,4,5,6,7,7)$	$\frac{1}{7}(1, 6, 2), \frac{1}{7}(3, 4, 2)$	1/7
$\mathbb{P}(1, 2, 3, 5, 6, 7, 8, 9)$	$2 \times \frac{1}{3}, \frac{1}{9}(1, 10, 2)$	1/9
$\mathbb{P}(1,2,5,7,8,9,10,11)$	$\frac{1}{5}(2,3,2), \frac{1}{11}(1,10,2)$	3/5
$\mathbb{P}(2, 2, 3, 3, 4, 5, 5, 5)$	$\frac{1}{3}, 3 \times \frac{1}{5}(2, 3, 2)$	2/15
$\mathbb{P}(2,2,3,3,4,5,5,7)$	$2 \times \frac{1}{3}, \frac{1}{5}(2, 3, 2), \frac{1}{7}(2, 5, 2)$	13/105
$\mathbb{P}(2,2,3,3,4,5,7,9)$	$3 \times \frac{1}{3}, \frac{1}{9}(2, 7, 2)$	1/9
$\mathbb{P}(2,2,3,5,5,7,12,17)$	$\frac{1}{17}(5, 12, 2)$	1/17
$\mathbb{P}(2,3,3,4,5,5,6,7)$	$5 \times \frac{1}{3}, \frac{1}{5}(1, 4, 2)$	1/15
$\mathbb{P}(2,3,3,4,5,7,10,13)$	$2 \times \frac{1}{3}, \frac{1}{13}(3, 10, 2)$	
$\mathbb{P}(2, 3, 4, 5, 5, 6, 7, 7)$	$\frac{1}{3}, \frac{1}{3}(1, 4, 2), \frac{1}{3}(2, 3, 2), \frac{1}{7}(3, 4, 2)$	1/21
$\mathbb{P}(2, 3, 4, 5, 5, 6, 7, 9)$	$2 \times \frac{1}{3}, \frac{1}{5}(2, 3, 2), \frac{1}{9}(4, 5, 2)$	2/45
$\mathbb{P}(2,3,5,6,7,7,8,9)$	$3 \times \frac{1}{3}, \frac{1}{5}(2, 3, 2), \frac{1}{7}(1, 6, 2)$	1/35
$\mathbb{P}(2,5,5,6,7,8,9,11)$	$2 \times \frac{1}{5}(2,3,2), \frac{1}{11}(5,6,2)$	1/55

Table 1: Q-Fano 3-folds in codimension 4

References

- [B] G. Brown, A database of polarised K3 surfaces, Exp. Math.16, 2007,7–20.
- [BS2] G. Brown, K. Suzuki, Computing Fano 3-folds of index ≥ 3, will apper in Japan Journal of Industrial and Applied Mathematics.
- [Su2] K. Suzuki, On Q-Fano 3-folds with Fano index ≥9, Manuscripta Mathematica 114, 2005, Springer, 229–246.
- [YPG] M. Reid, Young person's guide to canonical singularities, Algebraic Geometry(1985), ed. S.Bloch, Proc. of Sym. Pure Math. 46, A.M.S. (1987), vol1, 345-414.