
ALGEBRAIC SPACES AND SCHEMES

KAZUHIRO FUJIWARA

Abstract. In this paper, a relation between formal algebraic paces and formal schemes is
discussed. In particular, we show that, for a formal algebraic space, there is a modification
which is a formal scheme (equivalence theorem) under a mild assumption.

1. Introduction

Algebraic spaces were first introduced by M. Artin in around 1970. An algebraic space X
is written as a quotient S/R as a sheaf on the large étale site of the schemes, where S and

R are schemes, and R is an étale equivalence relation, i.e., each projection R→ S×S
pri→ S

is étale.
Though it is a rather technical object, it appears naturally in algebraic geometry, in

particular as the coarse moduli spaces of various moduli spaces.
Over C, a GAGA-type functor

{ Algebraic spaces /C}
an
→ { Complex analytic spaces }

is defined by taking the quotient S(C)/R(C) in the category of complex analytic spaces.
Artin showed that this functor induces a categorical equivalence

{ Proper algebraic spaces /C}
an
' { Moishezon spaces }.

One of the purpose of this article is to consider a non-archimedian analogue of the GAGA-
functor.

Let us recall the non-archimedian analogue of the complex analytic spaces briefly. We
fix a pair (V, a) of a valuation ring V and a non-zero element a ∈ V . We assume V is
complete for the a-adic topology, and denote the fraction field by K. As an analogue of the
complex analytic spaces, Tate defined the notion of rigid analytic spaces over K [8]. After
Tate, Raynaud made clear the relationship between rigid analytic spaces over K and formal
schemes over V , and any formal scheme X of finite type over V defines a rigid analytic
space (X)rig, which is viewed as a birational equivalence class of X modulo admissible blow
ups in the category of formal schemes [6].

Then we have the following theorem (joint work with F. Kato):

Theorem 1.1. There is a GAGA functor

{ Separated algebraic spaces /K}
an
→ { Rigid analytic spaces /K}

with obvious properties (commutes with fiber products, etc.).

Let us sketch the idea of the proof of theorem 1.1 briefly. The details will appear in a
book in preparation [4] (cf. also our survey article [3]).

Using the Nagata embedding theorem for algebraic spaces, it suffices to construct the
GAGA functor for proper algebraic spaces over K (we hope to include a proof of embedding
theorem as well in [4]). For a proper algebraic space Y over K, take a proper model Y ′ of Y
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2 KAZUHIRO FUJIWARA

over V as an algebraic space using the Nagata embedding theorem, then set X = ̂̃Y . Then
we have a formal scheme X ′ and a formal modification X ′ → X by the following theorem:

Theorem 1.2. (Equivalence theorem) Let X be a formal algebraic space of finite type over
V . Then there is an admissible blow up X ′ → X such that X ′ is a formal scheme.

Since X ′ is a formal scheme over V , one has the generic fiber (X̂ ′)rig as a rigid analytic
space of Tate-Raynaud. This is independent of any choices of X and X ′, and is the desired
space Y an.

Remark 1.3. (1) The equivalence theorem is shown by using Nagata’s method of using
Zariski’s Riemann spaces.

(2) The existence of a GAGA-functor is also shown by Conrad-Temkin [2] (the existence
of rigid-analytic quotients by étale equivalence relations).

In the rest of the article, we discuss the main ingredients of the proof of the equivalence
theorem.

2. Formal schemes and their Visualization

For simplicity, we restrict our consideration to the noetherian case, and fix a noetherian
formal scheme S as a base space in the sequel. For basic properties of formal schemes in the
noetherian case, see [EGA]. The treatment of formal schemes including both noetherian
and valuation rings will be offered in [4].

When X is a formal scheme of finite type over S, X is regarded as an inductive limit

X = lim−→
n

Xn

in the category of topologically local ringed spaces, where

Xn = SpecOX/In+1,

I is an ideal of definition of X.
Let X ′ be an admissible blow up of X, i.e,

X ′ ' Bl(J)∧,

Bl(J) = Proj⊕n≥0J
n,

where J is a coherent ideal which contains IN for some N (i.e., open for the I-adic topology).
The category BX of all admissible blowing ups of X is naturally filtered.

Then the Zariski-Riemann space ZR(X) of X is defined as

ZR(X) = lim
←−

π:X′→X,π∈BX

X ′

in the category of local ringed spaces.
By the definition, a point of ZR(X) is described as a compatible system {xX′}X′∈BLX

,
where xX′ is a point of X ′ as a topological space.

Note that any morphism Spf V → X, where V is a valuation ring which is complete for
IV -adic topology, defines a point of ZR(X) in the following way: By the valuative criterion
for properness, Spf V → X is factored into Spf V → X ′ → X for any admissible blow up
X ′ of X, and hence the images of the closed point of Spf V forms a compatible system and
is a point of ZR(X).

It is verified that any point of ZR(X) is obtained from some valuation ring V and a
morphism Spf V → X in this way, so ZR(X) is regarded as a space of arcs since Spf V is
an analogue of an arc.
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The following theorem is the formal scheme analogue of Zariski’s theorem for algebraic
function fields, which plays a central role in the following:

Theorem 2.1. When X is coherent, i.e., quasi-compact and quasi-separated, ZR(X) is
quasi-compact and quasi-separated as a topological space.

3. Variant for formal algebraic spaces

We generalize the visualization construction for formal algebraic spaces. First we recall
basic properties of algebraic spaces:

• (Knudson [5]) Let X be a coherent (=quasi-compact and quasi-separated) algebraic
space. Then the following conditions are equivalent:
(1) The global section functor from the category of quasi-coherent sheaves

Γ : QcohX → (Ab)

is exact.
(2) X is an affine scheme.

• Let X be a coherent algebraic space, X0 a closed subspace defined by a quasi-
coherent ideal sheaf J which is nilpotent (J s = 0 for some s ≥ 1). If X0 is a scheme,
then X is also a scheme.
• (The existence of a stratification by schemes, [5], [7]) Let X be a coherent algebraic

space. Then there is a stratification Z0 = X0 ⊃ Z1 ⊃ · · ·ZN ⊃ ZN+1 = ∅ where Zα

is finitely presented closed subspace, and each strata Wα = Zα \ Zα+1 is a scheme.
• (Chow’s lemma) Let S be a scheme, X be an algebraic space which is separated

and finitely presented over S. For a quasi-compact open subspace U ⊂ X which is
a scheme, there is an admissible blow up X ′ → X centered in X \U such that X ′ is
a scheme. If U is quasi-projective over S, one may take X ′ to be quasi-projective.
• (Limit theorem, [5], [7]) Let X be a coherent algebraic space. Then any quasi-

coherent sheaf on X is the inductive limit of sub quasi-coherent sheaves of finite
type.
• (Extension theorem, [5], [7])) Let X be a coherent algebraic space, j : U ↪→ X be

a quasi-compact open immersion. For any quasi-coherent sheaf F of finite type
on U , there is a quasi-coherent sheaf G of finite type on X which extends F , i.e.,
G |U = F .

The notion of formal algebraic spaces is defined as in the definition of formal schemes,
using algebraic spaces instead of schemes.

As in §2, we consider the noetherian case for simplicity, and fix a noetherian formal
scheme S as a base space. Let f : X → S be a formal algebraic space of finite type. By
Xét, we denote the étale topos associated to the small étale site of X. Then we define the
Zarski-Riemann space ZR(X) of X by

ZR(X) = lim←−
π:X′→X,π∈BX

(X ′)ét.

Here the limit is the 2-projective limit in the category of local ringed topoi, and hence
ZR(X) is a local ringed topos. Since objects in BX and morphisms are coherent, the
projective limit is also coherent as a topos. Recall that, for a topos T , a point of T is a
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geometric morphism p : Sets→ T . By Deligne’s theorem (the existence of sufficiently many
points for a coherent topos [SGA4-2]), ZR(X) has sufficiently many points, and we have
the following proposition:

Proposition 3.1. Let S be a noetherian formal scheme, f : X → S a formal algebraic
space of finite type. Then ZR(X) is a coherent topos, with sufficiently many points.

More intuitively, points of ZR(X) are described as follows as in the formal scheme case:
By the definition, a point of ZR(X) is described as a compatible system {xX′}X′∈BLX

,
where xX′ is a geometric point of (X ′)ét as a topos. Any point of (X ′)ét as a topos
corresponds a geometric point of X ′ (i.e., a morphism Spec k → X ′ where k is separably
closed).

As in the formal scheme case, any morphism Spf V → X, where V is a strict henselian
valuation ring which is complete for IV -adic topology, defines a point of ZR(X).

It is verified that any point of ZR(X) is obtained from some strict henselian valuation
ring V and a morphism Spf V → X.

4. Equivalence theorem

Recall the equivalence theorem in the noetherian case:

Theorem 4.1. (Equivalence theorem) Fix a noetherian formal scheme S, and a formal
algebraic space X of finite type over S. Then there is an admissible blow up X ′ → X such
that X ′ is a formal scheme.

First we reduce the proof of theorem 4.1 to the following lemma by Nagata’s termination
argument using the coherence of ZR(X):

Lemma 4.2. (Key lemma) Assumptions are as in theorem 4.1. Take any point x of ZR(X)
corresponding to η : Spf V → X, where V is a strict henselian valuation ring which is
complete for IV -adic topology. Then there is an open subspace Ux of some admissible blow
up X ′ of X such that

• η → Xét is factored into η → (Ux)ét → Xét.
• Ux is a formal scheme.

Assume the Key lemma. For any point x of ZR(X), we take an open subspace Ux of
some admissible blow up of X given by the lemma. Then {(Ux)rig}x: points of ZR(X) covers
ZR(X). By the quasi-compactness,

ZR(X) =

N⋃

i=1

(Uxi
)rig.

for a finite number of points x1, . . . , xN . By replacing Uxi
if necessary, we may assume

that there is an admissible blow up X ′ with an invertible ideal of definition, and any Uxi
is

an open subspace of X ′. Since (Uxi
)rig covers ZR(X) and X ′ admits an invertible ideal of

definition, X ′ =
⋃N

i=1 Uxi
, and hence (X ′)0 is a scheme since it is covered by open subspaces

which are schemes. By Knudsen’s theorem recalled in §3, X ′ is a formal scheme.

5. Open interior trick

We prove the Key lemma using Néron blow ups and Chow’s lemma for algebraic spaces.
In this section, we assume that the height of V is one. Assume that I is invertible, and

OX has no I-torsions.
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Take a stratification Z0 = X0 ⊃ Z1 ⊃ · · ·ZN ⊃ ZN+1 = ∅ where Zα is finitely presented
closed subspace, and each strata Wα = Zα \ Zα+1 is a scheme over S0.

X0 =
∐

0≤α≤N

Wα.

Assume rigid point η : Spf V → X lies above Wβ. We may remove Zβ+1 from X, and
assume that Zβ is closed in X0. Let J be the ideal defining Zβ . J is finitely generated. Let
Z → X be the blow up of (I, Jn) for n ≥ 1, W be the open part of Z where IOZ generates
(I, Jn)OZ .

First we prove that W0 is a scheme. The projection W0
p
→ X0 is quasi-projective, and the

fibers over X0 \Zβ is empty. Let H = ker(OX0
→ p∗OW0

) be the ideal defining the scheme
theoretical image of p. Since H|X0\Zβ

= O|X0\Zβ
, there is m ≥ 1 such that Jm ⊂ H. Let C

be the closed subspace of X0 defined by Jm. Then W0
p
→ X0 is factorized as W0

p0

→ C
i

↪→ X0.
Since i is a closed immersion and p is quasi-projective, p0 is also quasi-projective. Since C
is a nilpotent thickning of Zβ, C is a scheme by Knudson’s theorem (cf. §3). It also follows
that W0 is a scheme, and hence W is a formal scheme.

It is clear that η lifts to W if n is sufficiently large. So the Key lemma is shown in the
height one case.

Remark 5.1. For two ideals I, J on a scheme X, π : X ′ = Bl((I, J))→ X be the blow up
of X with respect to (I, J). Let Y be the open subspace of X where IOY generates (I, J)OY .
Y is called the Néron blow up of X. In the proof, we have used the notion of tube in rigid
geometry, and the fact that these tubes are approximated by Néron blowing ups.

6. Closure trick

We prove the general case of the Key lemma. Let η ′ be the height one point associated to
η : Spf V → X (the point defined by the associated height one valuation of V ). By taking
a blow up, we may assume that there is a quasi-compact open subspace U of X which is
an affine formal scheme, and η′ sits inside U0.

Since the height one case is already shown, after replacing X by an admissible blow up
if necessary, we may assume that the closure U0 in X0 is a scheme.

Lemma 6.1. There is an admissible blow up X̃ → X centered in X0 \ U0 such that

(1) There is an invertible admissible ideal J on X̃ which define a Cartier divisor on U0

whose support is U0 \ U0 set-theoretically.
(2) IO

X̃0\U0
is zero.

Proof. By Chow’s lemma for algebraic spaces (cf. §3), there is an admissible blow up
X ′ → X which is centered on X0 \U0 such that the closure U0 in X ′ is a scheme. Since U0

is quasi-compact, there is a finitely presented closed subscheme Z0 of X0 whose support is
U0 \ U0 set-theoretically. By blowing up Z0 and taking the strict transform of U0, we may
assume that Z0 is a Cartier divisor. By taking some mutiple of Z0 and lifting the defining
ideal IZ0

in U0 to an admissible ideal I ′ of X ′, we get the desired X̃ → X by blowing up
I ′. �

By applying lemma 6.1, we may assume that there is an admissible invertible ideal J on
X which satisfies the conclusion of lemma 6.1. For n ≥ 2, consider the blow up Z → X of
(I, Jn), and V denotes the part where JnOZ generate (I, Jn)OZ . V contains U canonically,
and the fiber of V0 → X0 over X0 \ U0 is empty. It is easy to see V0 → X0 factors through
V0 → U0 ↪→ X0. Since V0 is affine over X0, V0 → U0 is also affine. It follows that V0 is a
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scheme since U0 is, and hence V is a formal scheme. It is easy to see that η is inside V rig,
and the claim follows.
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du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la
collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 270.
Springer-Verlag, Berlin-New York, 1972.

-112-


