
MACKEY-FUNCTOR STRUCTURE ON THE BRAUER GROUPS
OF A FINITE GALOIS COVERING OF SCHEMES

HIROYUKI NAKAOKA

Abstract. For any finite étale covering of schemes, we can associate two
homomorphisms for Brauer groups, namely the pull-back and the norm map.

These homomorphisms make Brauer groups into a bivariant functor (a Mackey
functor). Restricting to a finite Galois covering of schemes, we obtain a coho-
mological Mackey functor on its Galois group. This is a generalization of the

result for rings by Ford [5]. Applying Bley and Boltje’s theorem [1], we can
derive certain isomorphisms for the Brauer groups of intermediate coverings.

1. Introduction

In this paper, a scheme S is always assumed to be Noetherian, and π(S) denotes
its étale fundamental group. Since we use Čech cohomology, we assume S satisfies
the following:

Assumption 1.1. For any finite set E of poits of S, there exists an open set U ⊂ S,
such that U contains every point in E.

As for the étale fundamental group and related notion, we follow the terminology
in [9]. For example a finite étale covering is just a finite étale morphism of schemes.

Our aim is to make the following generalization of the result for rings by Ford
[5].

Corollary (Corollary 4.2). Let π : Y → X be a finite Galois covering of schemes
with Galois group G. Then the correspondence

H ≤ G 7→ Br(Y/H)

forms a cohomological Mackey functor on G.

This follows from our main theorem;

Theorem (Theorem 3.5). Let S be a connected Noetherian scheme. Let (FEt/S)
denote the category of finite étale coverings over S. Then, the Brauer group functor
Br forms a cohomological Mackey functor on (FEt/S).

As in Definition 3.1, a Mackey functor is a bivariant pair of functors Br =
(Br∗,Br∗). For any morphism π : Y → X, the contravariant part Br∗(π) : Br(X) →
Br(Y ) is the pull-back, and Br∗(π) : Br(Y ) → Br(X) is the norm map defined later.

By applying Bley and Boltje’s theorem (Fact 5.2) to Corollary 4.2, we can obtain
certain relations between Brauer groups of intermediate coverings:
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2 HIROYUKI NAKAOKA

Corollary (Corollary 5.3). Let X be a connected Noetherian scheme and π : Y →
X be a finite Galois covering with Gal(Y/X) = G.
(i) Let ℓ be a prime number. If H ≤ G is not ℓ-hypoelementary, then there is a
natural isomorphism of Zℓ-modules⊕

U=H0<···<Hn=H
n:odd

Br(Y/U)(ℓ)|U | ∼=
⊕

U=H0<···<Hn=H
n:even

Br(Y/U)(ℓ)|U |.

(ii) If H ≤ G is not hypoelementary, then there is a natural isomorphism of abelian
groups ⊕

U=H0<···<Hn=H
n:odd

Br(Y/U)|U | ∼=
⊕

U=H0<···<Hn=H
n:even

Br(Y/U)|U |.

2. Restriction and corestriction

Remark 2.1. For any scheme X, there exists a natural monomorphism

χX : Br(X) ↪→ Br′(X) := H2
et(X, Gm,X)tor ,

such that for any morphism π : Y → X,

Br(X)

H2
et(X, Gm,X)

Br(Y )

H2
et(Y, Gm,Y )

� _

χX��

� _

χY��

π∗
//

π∗
//

�

is a commutative diagram.

Here π∗ : Br(X) → Br(Y ) is the pull-back of Azumaya algebras, while π∗ :
H2

et(X, Gm,X) → H2
et(Y, Gm,Y ) is defined as the composition of the canonical mor-

phism
H2

et(X,π∗Gm,Y ) → H2
et(Y, Gm,Y )

and
H2

et(π♯) : H2
et(X, Gm,X) → H2

et(X,π∗Gm,Y ),

where π♯ : Gm,X → π∗Gm,Y is the canonical (structural) homomorphism of étale
sheaves on X. We call these π∗ the restriction maps.

Remark 2.2. For any finite étale covering π : Y → X, there exists a homomorphism
of étale sheaves on X

NY/X : π∗Gm,Y → Gm,X

which induces the norm map for finite étale ring extensions.

When π : Y → X is a finite étale covering, the canonical homomorphism
H2

et(X,π∗Gm,Y ) → H2
et(Y, Gm,Y ) becomes isomorphic (cf. [6]). By composing

H2
et(NY/X) with the inverse of this canonical isomorphism, we define the core-

striction map for cohomology groups:

corπ : H2
et(Y, Gm,Y )

∼=→ H2
et(X,π∗Gm,Y )

H2
et(NY/X)
−→ H2

et(X, Gm,X).
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Proposition 2.3. Let π : Y → X as before. There exists a corestriction homo-
morphism for Brauer groups

corπ : Br(Y ) → Br(X),

such that
Br(Y )

H2
et(Y, Gm,Y )

Br(X)

H2
et(X, Gm,X)

� _

χY
��

� _

χX
��

corπ //

corπ

//

�

is commutative.

To construct cor : Br(Y ) → Br(X), we define a monoidal functor

NY/X : q-Coh(Y ) → q-Coh(X).

Lemma 2.4. Let π : Y → X be a finite étale covering of constant degree d. There
exists a monoidal functor (unique up to a natural isomorphism)

Nπ = NY/X : q-Coh(Y ) → q-Coh(X),

(q-Coh(X) : the category of quasi-coherent Zariski sheaves on X). such that
(i) When Y is isomorphic to a disjoint union of d-copies of X, i.e. when Y =⨿
1≤i≤d

Yi and ∃ηi : X
∼=→ Yi, then NY/X is defined by

NY/X(F) := η∗
1(F|Y1) ⊗OX · · · ⊗OX η∗

d(F|Yd
) (∀F ∈ q-Coh(Y )).

(ii) For any pull-back by a morphism f : X ′ → X

Y ′

Y

X ′

X

¤g

��

π′
//

f

��
π

//

there exists a natural isomorphism of monoidal functors

NY ′/X′ ◦ g∗
∼=−→ f∗ ◦ NY/X .

Proof. When Y is isomorphic to a disjoint union of d-copies of X, then NY/X is
defined by as in (i).

For a general case, remark that

Remark 2.5. For any finite étale covering π : Y → X of constant degree d, there
exists a fpqc morphism f : X ′ → X such that Y ×X X ′ is isomorphic to a disjoint
union of d-copies of X ′.

Y ′ ∼=
⨿
d

X ′

Y

X ′

X

¤g

��

π′
//

f

��
π

//

For any F ∈ q-Coh(Y ), put F := NY ′/X′(g∗(F)). Then F descends to yield
NY/X(F) ∈ q-Coh(X). Thus we obtain a monoidal functor NY/X . This construc-
tion does not depend on the choice of f , up to an isomorphism of monoidal functors.
By the reduction to the disjoint-union case as above, we can show (ii). ¤
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While this NY/X is a generalization of the norm functor for a finite étale ring
extension (Knus-Ojanguren [8], Ferrand [4]), it is also possible to define NY/X by
gluing those for affines.

Lemma 2.6. Let π : Y → X be a finite étale covering of constant degree d. NY/X

has the following properties:
(0) NY/X is monoidal.
(1) For any F ,G ∈ q-Coh(Y ), there exists a functorial morphism

θY/X : NY/X(HomOY
(F ,G)) → HomOX

(NY/X(F),NY/X(G)).

(1+) Moreover if G is locally free of finite rank, this is an isomorphism.
(2) There exists a natural isomorphism

NY/X(O⊕n
Y ) ∼= O⊕nd

X .

(2+) More generally, if F is locally free OY -module of finite rank n, then NY/X(F)
becomes locally free OX-module of rank nd.

For a general (non-constant degree) π : Y → X, we can define the norm functor
on each connected component of X as above, and glue them to obtain the norm
functor NY/X : q-Coh(Y ) → q-Coh(X).

Proof. Conditions (0) and (2) follow from the definition of NY/X . By taking an
affine cover X =

∪
i∈I

Ui, (2+) reduces to the case where X,Y are affine, shown by

Ferrand [4]. As for condition (1), existence of θY/X simply follows from the fact
that NY/X is a monoidal functor between closed symmetric monoidal categories.
(1+) is shown by a reduction to the affine case. ¤
Proof. (proof of Proposition) By the above lemma, especially we have an isomor-
phism

NY/X(Mn(OY )) ∼= Mnd(OX)
of OX -algebras, for any finite étale covering Y/X of constant degree d.

Remark that for any OY -algebra A of finite type, A is an Azumaya algebra if and
only if A is étale locally isomorphic to Mn(OY ). Thus for any Azumaya algebra
A, there exists a covering V := {Vi

gi−→ Y }i∈I of Y in the étale topology (simply
written ‘V ∈ Covet(Y )’) such that

g∗i A ∼= Mni(OVi) (∃ni ∈ N).

Replacing V by its refinement, we may assume that there exists a covering U =
{Ui

fi→ X}i∈I ∈ Covet(X) such that

V = π∗U := {Y ×X Ui
prY→ Y }i∈I .

Then we have f∗
i NY/X(A) ∼= NVi/Ui

(g∗i A) ∼= Mnd
i
(OUi). Thus NY/X(A) also

becomes an Azumaya algebra.
By the isomorphism

NY/X(End(E)) ∼= End(NY/X(E)) (∀E : locally free of finite rank)

and the monoidality of NY/X , we obtain a well-defined homomorphism

corπ : Br(Y ) Br(X)

∈ ∈

A NY/X(A).

//

� //
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By using Čech cohomology, we can show the commutativity of

Br(Y )

H2
et(Y, Gm,Y )

Br(X)

H2
et(X, Gm,X).

� _

χY
��

� _

χX
��

corπ //

corπ

//

�

¤

3. Brauer-group Mackey functor

For any profinite group G, let (fin. G-space) denote the category of finite discrete
G-spaces and equivariant G-maps.

Definition 3.1. Let C be a Galois category, with fundamental functor F (i.e.
there exists a profinite group π(C) such that F gives an equivalence from C to
(fin. π(C)-space)).

A cohomological Mackey functor on C is a pair of functors M = (M∗,M∗) from
C to Ab, where M∗ is contravariant and M∗ is covariant, satisfying the following
conditions:
(0) M∗(X) = M∗(X)(=: M(X)) (∀X ∈ Ob(C)).

(1) (Additivity) For each coproduct X
iX
↪→ X

⨿
Y

iY←↩ Y in C, the canonical mor-
phism

(M∗(iX),M∗(iY )) : M(X
⨿

Y )→M(X) ⊕ M(Y )

is an isomorphism.
(2) (Mackey condition) For any pull-back diagram

Y ′

X ′

Y

X ,

¤π

��

ϖ′
//

π′

��
ϖ

//

the following diagram is commutative:

M(Y )

M(X)

M(Y ′)

M(X ′)

M∗(π)
��

M∗(ϖ′) //

M∗(π′)
��

M∗(ϖ)
//

�

(3) (Cohomological condition) For any morphism π : X → Y in C with X and Y
connected, we have

M∗(π) ◦ M∗(π) = multiplication by deg(π)

where deg(π) := ♯F (Y )/♯F (X).

M(X)

M(Y )

M(X)

M∗(π) 44jjjjjjjj
M∗(π)

**TTTTTTTT

deg π

22
�
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A standard example is the cohomological Mackey functor on a profinite group G
(in terminology of [1], a cohomological Mackey functor on the finite natural Mackey
system on G):

Definition 3.2. Let G be a profinite group, and put C := (fin. G-space), F := id.
A cohomological Mackey functor on C is simply called a cohomological Mackey
functor on G, and their category is denoted by Mackc(G).

Remark 3.3. Since any object X in (fin. G-space) is a direct sum of transitive G-
sets of the form G/H where H is a open subgroup of G, a Mackey functor on G is
equivalent to the following datum:
An abelian group M(H) for each open H ≤ G, with structure maps
- a homomorphism resH

K : M(H) → M(K) for each open K ≤ H ≤ G,
- a homomorphism corH

K : M(K) → M(H) for each open K ≤ H ≤ G,
- a homomorphism cg,H : M(H) → M(gH) for each open H ≤ G and g ∈ G,
where gH := gHg−1, satisfying certain compatibilities (cf. [1]). Here M(G/H) is
abbreviated to M(H) for any open H ≤ G.

Example 3.4. In this notation, for any G-module A and any n ≥ 0, the group
cohomology

H 7→ Hn(H,A) (∀H ≤ G open)

becomes a cohomological Mackey functor on G, with appropriate structure maps.

For any finite étale covering π : Y → X, put Br∗(π) := resπ and Br∗(π) := corπ.
Then we obtain a cohomological Mackey functor Br (and similarly Br′, H2

et(−, Gm)):

Theorem 3.5. For any connected Noetherian scheme S, we have a sequence of
cohomological Mackey functors on (FEt/S)

Br ↪→ Br′ ↪→ H2
et(−, Gm).

Proof. We only show Mackey and cohomological conditions. Since restrictions and
corestrictions are compatible with inclusions

Br(X) ↪→ Br′(X) ↪→ H2
et(X, Gm,X),

it suffices to show for H2
et(−, Gm).

(Mackey condition) For any pull-back diagram

Y

X

Y ′

X ′

¤π

��

ϖ′
oo

π′

��
ϖ

oo

in (FEt/S), we have a commutative diagram

π∗Gm,Y

Gm,X

π∗ϖ
′
∗Gm,Y ′

ϖ∗π
′
∗Gm,Y ′

ϖ∗Gm,X′

∼=

.

NY/X

��

π∗(ϖ′
♯) //

ϖ∗(NY ′/X′ )

��

ϖ♯

//

�
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This yields a commutative diagram

H2
et(Y, Gm,Y )

H2
et(X, Gm,X)

H2
et(Y ′, Gm,Y ′)

H2
et(X

′, Gm,X′) .

corπ

��

resϖ′ //

corπ′

��

resϖ

//

�

(Cohomological condition) For any morphism π : Y → X in (FEt/S) with X and
Y connected, since

NY/X ◦ π♯ : Gm,X → Gm,X

is equal to the multiplication by d = deg(π)

Gm,X

π∗Gm,Y

Gm,X ,

π♯ 22ddddddd
NY/X

,,ZZZZZZZ

d

22�

we obtain corπ ◦ resπ = d.

H2
et(X, Gm,X)

H2
et(Y, Gm,Y )

H2
et(X, Gm,X)H2

et(X,π∗Gm,Y )

resπ

44jjjjjjjjjjjjjjj

corπ

**TTTTTTTTTTTTTTT
∼= can.

OO

� �

H2
et(π♯)

00aaaaaaaaaa
H2

et(NY/X)
..]]]]]]]]]]

d

55
�

¤

4. Restriction to a finite Galois covering

Thus we have obtained a Mackey functor Br on (FEt/S). By pulling back by a
quasi-inverse S of the fundamental functor

F : (FEt/S) ≃−→ (fin. π(S)-space),

we can obtain a Mackey functor on π(S):

Corollary 4.1. There is a sequence of cohomological Mackey functors

Br ◦ S ↪→ Br′ ◦ S ↪→ H2
et(−, Gm) ◦ S

on π(S), where Br ◦ S := (Br∗ ◦ S, Br∗ ◦ S) and so on.

Corollary 4.2. Let X be a connected Noetherian scheme. For any finite Galois
covering π : Y → X with Gal(Y/X) = G, there exists a cohomological Mackey
functor Br on G which satisfies

Br(H) ∼= Br(Y/H) (∀H ≤ G),

with structure maps induced from restrictions and corestrictions of Brauer groups.
(We abbreviate Br(G/H) to Br(H).)
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Proof. By the previous corollary, we have a cohomological Mackey functor Br ◦ S
on π(X). Since there is a projection pr : π(X) →→ Gop, we can regard any finite
Gop-set naturally as a finite π(X)-space, to obtain a functor

(fin. Gop-space) → (fin. π(X)-space).

Pulling back by this functor, and taking the opposite Mackey functor,
we obtain

Mackc(π(X)) Mackc(Gop) Mackc(G)

∈ ∈

M MG .

// op //

� //

In terms of subgroups of G, MG satisfies

MG(H) = M(pr−1(Hop)) (∀H ≤ G).

Applying this to Br ◦ S, we obtain Br := (Br ◦ S)G ∈ Mackc(G). Since the
equivalence S : (fin. π(X)-space) ≃−→ (FEt/X) satisfies

S(π(X)/pr−1(Hop)) ∼= Y/H,

we have
Br(H) ∼= Br(Y/H).

¤

Similarly we can define Br′ (and also (H2
et(−, Gm) ◦ S)G). Since Mackc(G) is an

abelian category with objectwise (co-)kernels (see for example [3]), we can take the
quotient Mackey functor Br′ /Br ∈ Mackc(G), which satisfies

(Br′ /Br)(H) ∼= (Br′(Y/H))/(Br(Y/H)).

5. Application of Bley and Boltje’s theorem

Let ℓ be a prime number. For any abelian group A, let

A(ℓ) := {m ∈ A | ∃e ∈ N≥0, ℓ
em = 0}

be the ℓ-primary part. This is a Zℓ-module.

Definition 5.1 ([1]). For any finite group H,
H is ℓ-hypoelementary ⇔

def
H has a normal ℓ-subgroup with a cyclic quotient.

H is hypoelementary ⇔
def

H is ℓ-hypoelementary for some prime ℓ.

Fact 5.2 ([1]). Let M be a cohomological Mackey functor on a finite group G.
(i) Let ℓ be a prime number. If H ≤ G is not ℓ-hypoelementary, then there is a
natural isomorphism of Zℓ-modules⊕

U=H0<···<Hn=H
n:odd

M(U)(ℓ)|U | ∼=
⊕

U=H0<···<Hn=H
n:even

M(U)(ℓ)|U |.

(ii) If H ≤ G is not hypoelementary and M(U) is torsion for any subgroup U ≤ H,
then there is a natural isomorphism of abelian groups⊕

U=H0<···<Hn=H
n:odd

M(U)|U | ∼=
⊕

U=H0<···<Hn=H
n:even

M(U)|U |.

Here, |U | denotes the order of U .
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Applying this theorem to Br, we obtain the following relations for the Brauer
groups of intermediate étale coverings:

Corollary 5.3. Let X be a connected Noetherian scheme and π : Y → X be a
finite Galois covering with Gal(Y/X) = G.
(i) Let ℓ be a prime number. If H ≤ G is not ℓ-hypoelementary, then there is a
natural isomorphism of Zℓ-modules⊕

U=H0<···<Hn=H
n:odd

Br(Y/U)(ℓ)|U | ∼=
⊕

U=H0<···<Hn=H
n:even

Br(Y/U)(ℓ)|U |.

(ii) If H ≤ G is not hypoelementary, then there is a natural isomorphism of abelian
groups ⊕

U=H0<···<Hn=H
n:odd

Br(Y/U)|U | ∼=
⊕

U=H0<···<Hn=H
n:even

Br(Y/U)|U |.

Finally, we derive some numerical equations related to Brauer groups from Corol-
lary 5.3.

Definition 5.4. Let G be a finite group. For any subgroups U ≤ H ≤ G, put

µ(U,H) :=
∑

U=H0<···<Hn=H

(−1)n, Möbius function.

If m (resp. mℓ) is an additive invariant of abelain groups (resp. Zℓ-modules)
which is finite on Brauer groups, we obtain the following equations:

Corollary 5.5. Let π : Y → X as before, G = Gal(Y/X).
(i) If H ≤ G is not ℓ-hypoelementary,∑

U≤H

|U | · µ(U,H) · mℓ(Br(Y/U)(ℓ)) = 0.

(ii) If H ≤ G is not hypoelementary,∑
U≤H

|U | · µ(U,H) · m(Br(Y/U)) = 0.

For a prime ℓ and an abelian group A, its corank is defined as rankZℓ
(Tℓ(A)),

where Tℓ(A) = lim
←−

n

Ker(ℓn : A → A). In this note, we denote this by

rkℓ(A) := rankZℓ
(Tℓ(A)).

Br(X)(ℓ) is known to be of finite corank, for example in the following cases ([7]):
- (C1) k: a separably closed or finite field, X: of finite type /k, and proper or
smooth /k, or char(k) = 0 or dim X ≤ 2.
- (C2) X: of finite type /Spec(Z), and smooth /Spec(Z) or proper over ∃open
⊂ Spec(Z).

Remark that if Y/X is a finite étale covering and X satisfies (C1) or (C2), then
so does Y .

Example 5.6. Assume X satisfies (C1) or (C2). For any non-ℓ-hypoelementary
subgroup H ≤ G, we have an equation∑

U≤H

|U |µ(U,H) · rkℓ(Br(Y/H)(ℓ)) = 0.
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10 HIROYUKI NAKAOKA

Another example is related with the comparison of Br and Br′. By Gabber’s
lemma, for any finite étale covering Y/X, we have

Br′(X)/Br(X) ↪→ Br′(Y )/Br(Y ).

In particular, if Br(Y ) ⊂ Br(Y )′ is of finite index, then so is Br(X) ⊂ Br(X)′.

Example 5.7. Assume X satisfies [Br′(Y ) : Br(Y )] < ∞. Then for any non-
hypoelementary subgroup H ≤ G, we have an equation∑

U≤H

|U |µ(U,H) · [Br′(Y/U) : Br(Y/U)] = 0.
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