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Abstract. We will present some recent results on an extension
to virtually smooth schemes of the theorems of Grothendieck–
Riemann-Roch and Hirzebruch–Riemann-Roch; we also define the
virtual χ−y-genus of a proper virtually smooth scheme, and show
its polynomiality. These results were obtained jointly with L. Göttsche:
complete proofs can be found in [FG].

Contents

1. Introduction 2
2. Classical Riemann–Roch Theorems 3
2.1. Grothendieck groups 3
2.2. Perfect complexes 4
2.3. Chern character and Todd class 4
2.4. Statement of the Theorems 5
3. Virtually smooth schemes 5
3.1. Hidden smoothness 5
3.2. Virtually smooth schemes 6
3.3. Examples 6
3.4. The intrinsic normal cone 7
3.5. Known results 7
3.6. Families of virtually smooth schemes 8
4. Virtual RR theorems 9
4.1. Statements 9
4.2. The τ class 9
4.3. Outline of the proof of virtual GRR 10
5. Virtual χ−y–genus 10
5.1. Classical χ−y-genus 10
5.2. Definition and polynomiality 10
6. Other results and comments 11
6.1. Other results 11
6.2. Relation with dg-schemes 12
6.3. Possible developments 12
References 13

1

-50-

代数幾何学シンポジウム記録

2007年度   pp.50-62



2 BARBARA FANTECHI

1. Introduction

The Riemann-Roch theorem for curves, in its original form, states
that for a line bundle L on a smooth projective curve C one has

dim H0(X,L) − dim H0(X,KX ⊗ L−1) = deg L + 1 − g.

It is easy to generalize it to vector bundles, and indeed to any coher-
ent sheaf. To extend it to higher dimensional smooth manifolds, one
has to rewrite the left hand side as χ(X,L) =

∑
(−1)i dim H i(X,L);

the theorem determines the Euler characteristic of a vector bundle E
(or any element of K0(X), see below) on a smooth proper variety X
in terms of intersection numbers of the Chern classes of E and of TX ,
and it is called Hirzebruch-Riemann-Roch (HRR) Theorem.

Grothendieck applied his philosophy of studying morphisms instead
of objects, and recast the theorem in a much more general form, produc-
ing a modified version of the Chern character, the τ class, which com-
mutes with proper pushforward: this is called Grothendieck–Riemann–
Roch Theorem (GRR). HRR is the special case of GRR where the
target of the morphism is a point.

HRR allows one to define a number of interesting invariants of smooth
proper varieties, such as the χ−y and elliptic genus, that carry informa-
tion about the topology and are invariant not only under isomorphism
but also under smooth deformations. Indeed, these invariants go back
to Hirzebruch’s original proof of HRR.

Versions of GRR, and hence of HRR, have been developed for sin-
gular schemes (see [Fu] for a very readable account, including lots of
history) and for DM algebraic stacks (by Toen in [T]).

In this paper we extend this circle of ideas (GRR, HRR and the
χ−y and elliptic genus) to the case of virtually smooth schemes, that is
schemes admitting a (1-perfect) obstruction theory, which arise natu-
rally in many defintions of enumerative invariants. We further assume
these schemes to admit a global embedding in a smooth scheme (e.g.,
this is true for quasiprojective schemes).

The motivation for this paper are two-fold. On the one hand, there is
an abstract interest in extending to virtually smooth schemes as many
as possible of the classical constructions available for smooth varieties,
in particular those that yield deformation invariant numerical results.

The more practical motivation is to provide some necessary tools for
an ongoing joint project of L. Göttsche, T. Mochizuki, H. Nakajima
and K. Yoshioka [GMNY] on K-theoretic Donaldson invariants and
their generalizations.
In [GNY] K-theoretic Donaldson invariants have been introduced as
holomorphic Euler characteristic of certain “determinant” line bundles
on moduli spaces of stable sheaves on surfaces; in the rank two case
their wallcrossing formulas have been determined via the Nekrasov par-
tition function, under assumptions which eventually ensure that the
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moduli spaces will be nonsingular.
Combining virtual Riemann Roch with results of Mochizuki [Mo] al-
lows to extend these results to arbitrary rank, with no restrictions on
the singularities of the moduli space.

The work presented here has two natural directions of development:
one is to extend it to at least some virtually smooth DM stacks (see
the section of comments, at the end of the paper); the other is to
generalize further GRR by allowing also Y , and not just X, to be
virtually smooth. The latter is very natural but at the moment we
don’t know of any applications.

The main difference between this exposition and that in [FG] is that
here we try to be accessible to a wider audience, and in particular
make it more evident where in the proof each assumption is used; in
the comment section, we will discuss which of the assumptions are
necessary even to be able to state the relevant results, and which are
introduced only to make the proof work.

We have tried to give references for all definitions and results going
beyond Hartshorne’s text [Ha]; for the reader’s convenience, we have
tried whenever possible to refer to the book of Fulton [Fu] instead of
the original literature.

I would like to thank the organizers of the Kinosaki Symposium for
inviting me to present my work, and in particular Professor Ito for her
generous hospitality and help.

2. Classical Riemann–Roch Theorems

2.1. Grothendieck groups. Let K0(X) be the Grothendieck group of
locally free sheaves on a scheme X, i.e. the free abelian group generated
by locally free sheaves modulo the relations [E] = [E ′] + [E/E ′] for
every bundle E and every subbundle E ′. The abelian group K0(X) is
a ring, with ⊕ and ⊗ as operations, and is contravariant under arbitrary
morphisms.

One can similarly define the Grothendieck group of coherent sheaves,
K0(X); it is a K0(X) module, and there is a natural injective mor-
phism of K0(X)-modules K0(X) → K0(X) (since every locally free
sheaf is coherent), which is an isomorphism iff X is smooth (see e.g.
[Fu], Appendix B.8.3). K0(X) is covariant for proper morphism, with
pushforward defined by f∗[F ] =

∑
(−1)nRnf∗F .

A special class of morphisms are the so-called perfect morphisms, i.e.
those that factor into a closed embedding followed by a smooth map.
For these one can define proper pushforward on K0 and pullback on
K0 (see [Fu] Example 15.1.8 and references therein). The zero section
of a vector bundle and any morphism with smooth target are examples
of perfect morphisms: we will use both these examples.
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2.2. Perfect complexes. We denote by Dcoh(X) the derived category
of coherent sheaves on X; we denote by D≤0

coh(X) the subcategory of
complexes whose positive degree cohomology vanishes, and by Db

coh(X)
that of complexes with finitely many nonzero cohomology sheaves . We
say that a complex E ∈ Dcoh(X) is perfect if it is locally isomorphic
to a finite complex of locally free sheaves; a (global) resolution is an
isomorphism of E with a finite complex of locally free sheaves. We say
that a complex E is perfect of amplitude contained in [a, b] if locally
one can find resolutions of the form [Ea → Ea+1 → . . . → Eb], with
each Ei locally free. For brevity, we also say that E is a [a, b]-perfect
complex.

If E ∈ Db
coh(X) is a complex, then one can associate to it the class

[E] =
∑

i h
i(E) ∈ K0(X); this is clearly invariant under quasiisomor-

phisms. If E is perfect and has a global resolution, then [E] ∈ K0(X).
Its (locally constant) rank can then be defined as

∑
i(−1)i rk Ei, if

[Ea → Ea+1 → . . . → Eb] is a resolution of E.
It is easy to see that a resolution always exists if X has enough locally

frees, i.e., if every coherent sheaf is a quotient of a locally free sheaf.
In particular, every embeddable scheme (i.e., one that can be realized
as closed subscheme of a smooth scheme) has enough locally frees (see
e.g. [Ha], Exercise III.6.8).

2.3. Chern character and Todd class. For a scheme X, we let
A∗(X) be the Chow ring with rational coefficient, and A∗(X) the Chow
group with rational coefficients. A∗(X) is a graded ring, contravariant
under arbitrary morphisms, and A∗(X) is a graded A∗(X) module,
covariant under proper morphisms. They reproduce in an algebraic
context the same properties of cohomology and homology in the usual
topological settings.

Let E be a rank r vector bundle on a scheme X, xi its Chern roots
(see e.g., [Fu] Remark 3.2.3). The Chern character ch and the Todd
genus td are defined as

ch(E) :=
∑
i=0r

exi td(E) :=
r∏

i=0

xi

1 − e−xi
.

Remark 2.1. There are unique functorial extensions

ch : K0(X) → A∗(X) ring hom

td : K0(X) → A∗(X)× group hom

where A∗(X)× is the group of multiplicative units in A∗(X). Here
functorial means that they commute with pullback via arbitrary mor-
phisms.
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2.4. Statement of the Theorems. The theorem of Grothendieck
Riemann Roch measures the failure of the Chern character to commute
with proper pushforward between smooth varieties in terms of Todd
classes of the tangent bundles involved.

Theorem 2.2. (Grothendieck–Riemmann–Roch) Let f : X → Y be
a proper morphism of smooth varieties, V ∈ K0(X) (e.g., V a vector
bundle on X). Let [X] ∈ Adim X(X) the fundamental class. Then:

ch(f∗(V )) · td(TY ) ∩ [Y ] = f∗(ch(V ) · td(TX) ∩ [X]) ∈ A∗(Y ).

Note that f is perfect, hence f∗V is well defined as an element in
K0(Y ); moreover, we can rewrite the statement as

ch(f∗V ) ∩ [Y ] = f∗(td(Tf ) · ch(V ) ∩ [X]).

GRR can be extended to singular schemes, see [Fu] Chapter 18, and
also

Theorem 2.3. (Hirzebruch–Riemann–Roch) Let X be a smooth proper
variety, V ∈ K0(X). Then

χ(X,V ) = deg(ch(V ) · td(TX) ∩ [X]).

Remark 2.4. Hirzebruch Riemann Roch is Grothendieck Riemann Roch
in the case where Y is one point.

3. Virtually smooth schemes

3.1. Hidden smoothness. If X is a fine moduli space, then for every
point x ∈ X deformation theory allows to construct an obstruction
space T 2

xX, with the property that, locally analytically or formally
near x, X can be described as the zero locus of dim T 2

xX functions
whose differential vanishes at x in dim TxX variables.

In particular, this implies that X is smooth at x if (but not only if!)
T 2

xX is zero; more generally, dimx X ≥ d(x) := dim TxX − dim T 2
xX.

We say that X has expected dimension d if d(x) = d at every x ∈ X.

Example 3.1. If X is a fine moduli scheme (or DM algebraic stack) of
surfaces, x = [S]; then TxX = H1(S, TS) and T 2

xX = H2(S, TS); since
in this case necessarily H0(S, TS) = 0, one has that d([S]) = −χ(S, TS),
and by Riemann Roch it only depends on the Chern numbers of S.

Schemes of expected dimension d, usually arising as moduli schemes,
may in fact have many components of varying dimensions and arbitrary
singularities.

When Gromov Witten invariants were in the process of being defined,
Kontsevich [K] proposed a hidden smoothness philosophy: namely, that
one should be able to extend to schemes with expected dimension d
several properties of d–dimensional smooth schemes, by introducing an
additional, “hidden” structure that is smooth in a suitable sense.
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3.2. Virtually smooth schemes. Let X be a scheme, LX ∈ D≤0
coh(X)

its cotangent complex. The definition is somewhat involved, but for the
purpose of this paper it is enough to know that if i : X → M is a closed
embedding in a smooth scheme,

τ≥−1LX =
[
IX/I2

X → i∗ΩM |X
]
.

In the following we write L̃X instead of τ≥−1LX .

Definition 3.2. An obstruction theory for a scheme X is a pair (E, ϕ)
such that
(1) E is a [−1, 0] perfect complex in Db

coh(X);

(2) ϕ : E → L̃X is a morphism with h0(ϕ) iso, h−1(ϕ) onto.

Remark 3.3. (a) In practice E is an obstruction theory iff ∀x ∈ X, one
has natural isomorphisms h0(E∨(x)) = TxX and h1(E∨(x)) = T 2

xX.
(b) If ψ : E → LX is a morphism, then it induces a natural morphism
ϕ = τ≥−1ψ : E = τ≥−1E → L̃X ; so if we formulate Definition 3.2(2)

with LX instead of L̃X we get a stronger, if more natural, assumption.

Definition 3.4. A virtually smooth scheme X of dimension d is a
scheme X together with an obstruction theory (E, ϕ) of rank d admit-
ting a global resolution.

Remark 3.5. When we say “Let X be a virtually smooth scheme” we
mean that we have fixed an obstruction theory ϕ : E → LX . A scheme
X may not have any obstruction theory, or it may have many of dif-
ferent dimensions.

3.3. Examples. Any smooth scheme X of dimension d has a natural
structure of virtually smooth scheme of dimension d, with E = LX =
ΩX in degree zero.

More generally, assume that X is a local complete intersection (lci)
scheme, i.e., for one (or every) closed embedding i : X → M in a
smooth variety, then IX/I2

X is locally free. Then E = LX is a natural
obstruction theory on X.

Therefore, virtually smooth schemes generalize both smooth and lci
schemes.

The moduli scheme of morphisms from a projective curve C to a
smooth projective variety V of homology class β is virtually smooth of
dimension

d := (g − 1) dim V + c1(TV ) · β.

The Hilbert scheme of closed subschemes of dimension ≤ 1 of a
Calabi Yau threefold is virtually smooth of dimension zero.

The moduli scheme of stable sheaves on a smooth projective sur-
face S is virtually smooth, with tangent space at a point [E] being
Ext1(E,E) and obstruction space Ext2(E,E).

These obstruction theories can be used to define Gromov-Witten,
Donaldson-Thomas, and Donaldson invariants, respectively.
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3.4. The intrinsic normal cone. Let X be a scheme, E an obstruc­
tion theory of dimension d, and [E- 1 ---> E 0] a global resolution of 
E. One can naturally associate to these data a cone C c E 1 := 
Spec Sym E-1 , of pure dimension equal to d + rk E-1 = rk E 0 , and 
invariant under the natural action of Eo := Spec Sym E 0 via fiberwise 
translation. 

Indeed, there is a natural cone stack ([x over X, of pure dimension 
zero, which can be defined as the stack quotient [Cx;M/TMix] for any 
closed embedding of X in a smooth scheme M; the fact that E is an 
obstruction theory translates precisely into having a closed embedding 
of ([x inside <t := [Ed E0], independent of the choice of resolution, and 
C c E 1 is just the inverse image of ([x. 

Proposition 3.6. Let p : C ---> X be the natural projection. Then 

Tc(Oc) = p*(tdEo) n [C]. 

This result is Proposition 3.1 in [FG]; it is proven by reducing it to 
the a similar statement, where Cis replaced by Cx;M, the normal cone 
of some closed embedding of X into a smooth variety M, and E0 is 
replaced by TM lx. If one assumes that the T map could be extended 
to Artin stacks with the same properties, then the Proposition takes 
the simple form Tc( Oc) = [ ([]. 

3.5. Known results. 

Definition 3. 7. Let X be a virtually smooth scheme of dimension d. 
Then one can define for X the following: 

(1) a virtual fundamental class [X]vir E Ad(X); 
(2) a virtual structure sheafO'JF E Ko(X); 
(3) a virtual tangent bundle TJt E K 0 (X). 

We give an explicit definition, based on the choice of a resolution 
[E- 1 ---> E 0] of E. Let C c E 1 be the cone introduced in §3.4; recall 
that C has pure dimension rk E 0

. Let s0 : X ---> E 1 be the zero section; 
since E 1 is a vector bundle, s0 is a perfect morphisms. 

(1) Define [Xtir := s0[CJ, where so :X ---> E 1 is the zero section. 

(2) Define O)t := s0(0c) := 2::.:; Torf'(Oc, Oso(X))· 
(3) Using §2.2, we define TJt := [Ev] E K 0 (X). 

The fact that T);ir does not depend on the resolution chosen follows 
from the arguments in §2.2. 

Theorem 3.8. [X]vir and O)t only depend on the obstruction theory 

up to isomorphism in D~oh (X). 

The independence on the choice of resolution is important because 
usually even when the obstruction theory has a resolution there is no 
natural one. To prove the Theorem, one can compare two different 
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obstruction theories with a third, dominating both in a natural way
(as done in [BF]).

Alternatively, one can show that [X]vir and Ovir
X can be defined with-

out using the global resolution, by replacing C by CX , E1 by E, and
using intersection theory on Artin stacks as in [Kr].

Remark 3.9. If X is a smooth scheme with the natural virtual smooth
structure, then we can choose E0 = ΩX , E−1 the rank zero bundle; then
C = E1 = X, and Ovir

X = OX , [X]vir = [X], T vir
X = [TX ] ∈ K0(X).

3.6. Families of virtually smooth schemes. One of the key prop-
erties of the objects we define in this paper (virtual versions of Euler
characteristic, χ−y and elliptic genus) is that, like their classical coun-
terparts, they are deformation invariant. Here we explain what we
mean by this.

Let f : X → B be a morphism of schemes; one can define the relative
cotangent complex Lf ∈ D≤0

coh(X) (or LX/Y ) by showing that there is a
natural morphism f∗LB → LX and letting Lf be the mapping cone of
this morphism.

If X is embeddable, we can explictly construct τ≥−1Lf as follows.
Write f as p ◦ i, where i : X → W is a closed embedding and p :
W → B is a smooth morphism: for instance, if j : X → M is a closed
embedding in a smooth variety, you can take W = B × M , i = (f, j)
and p = pB. Then τ≥−1Lf = [IX/I2

X → i∗ΩW/B], where IX is the ideal
sheaf of X in W .

Definition 3.10. Let f : X → B be a morphism, with B a smooth
scheme. A relative obstruction theory of (relative) dimension d for f
(or for X over B) is a morphism ϕ : E → Lf ∈ D≤0

coh(X) such that E

is a rank d perfect complex in D
[−1,0]
coh (X), h0(ϕ) is an isomorphism and

h−1(ϕ) is surjective. In particular, for every b ∈ B, the pullback of Eb

of E to Xb is an obstruction theory for Xb.
A family of virtually smooth schemes with base B is a morphism f :
X → B together with a relative obstruction theory of dimension d for
f ; this gives each fiber Xb over a closed point b a natural structure
of virtual smooth scheme of dimension d. The family is proper, or a
family of proper virtually smooth schemes, if the morphism f is proper.

Note that in the definition of virtually smooth family no flatness
condition is imposed: in particular, the fibers of f may have different
dimensions.

All the deformation invariance results described here follow imme-
diately from the following Lemma, which is Lemma 3.15 in [FG]. Its
proof is based on the principle of conservation of number (as in [Fu],
Chapter 10) together with the definition and properties of a relevant
version of the virtual fundamental class. It is usually more useful to
apply this lemma then to know its proof.
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Lemma 3.11. Let f : X → B be a proper family of virtually smooth
scheme, with basis a smooth, connected variety B; let α ∈ A∗(X). Then

deg(α ∩ [Xb]
vir)

does not depend on the choice of b, closed point in B.

4. Virtual RR theorems

4.1. Statements.

Theorem 4.1. (virtual Grothendieck–Riemann–Roch) Let X be a vir-
tually smooth scheme, V ∈ K0(X), Y a smooth scheme, f : X → Y a
proper morphism. Then the following equality holds in A∗(Y ) ⊗ Q:

ch(f∗(V ⊗Ovir
X )) · td(TY ) ∩ [Y ] = f∗(ch(V ) · td(T vir

X ) ∩ [X]vir).

Corollary 4.2. (virtual Hirzebruch–Riemann-Roch theorem) If X is
a proper virtually smooth scheme and V ∈ K0(X), then

χvir(V ) := χ(V ⊗Ovir
X ) = deg(ch(V ) · td(T vir

X ) ∩ [X]vir).

Remark 4.3. (1) HRR is the special case of GRR when Y a point; the
applications use HRR and deformation invariance.
(2) The differences between the two statement of GRR can be summa-
rized as follows:

• replace X smooth by X virtually smooth in the assumptions;
• replace V = V ⊗OX by V ⊗Ovir

X ;
• replace TX by T vir

X ;
• replace [X] by [X]vir.

4.2. The τ class. A key point of the proof is the so-called τ class.
For any embeddable scheme X, there is a group homomorphism τX :
K0(X) → A∗(X), enjoying the following properties:

(1) covariance: for every proper morphism f : X → Y of embed-
dable schemes, f∗ ◦ τX = τY ◦ f∗.

(2) smooth scheme: if X is smooth and V ∈ K0(X) = K0(X), then
τX(V ) = (ch(V ) · td(TX)) ∩ [X];

(3) K0-module: for any F ∈ K0(X) and V ∈ K0(X), one has
τX(V ⊗ F ) = ch(V ) ∩ τX(F );

(4) lci contravariance: if f : X → Y is an lci (hence perfect by ?)
morphism of embeddable schemes, then for every F ∈ K0(X)
one has f ∗(τY (F )) = td(Tf ) ∩ τX(f ∗F ).

Note that by the smooth case and the K0-module properties, if X is
smooth and V ∈ K0(X) = K0(X), then τX(V ) = (ch(V )·td(TX))∩[X].

The class τX plays a fundamental role in the generalization of the
RR theorems to singular schemes, in that the classical GRR can be
restated as the covariance property for τ ; therefore, extending to sin-
gular schemes the homomorphism τ with its property yields the natural
generalization of GRR.
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4.3. Outline of the proof of virtual GRR. The proof is based on
a series of reduction steps.

Step 1. It is enough to show that τX(OX)vir = td(T vir
X ) ∩ [X]vir;

this reduction is an easy consequence of the covariance, module and
smooth case properties of τ . Notice that this way we do not have any
more V ∈ K0(X) in the statement; moreover, notice the analogy with
the smooth scheme property of the τ class. Indeed, one could view this
as a as a virtual analogue of the smooth scheme property.

Step 2. It is enough to show that for one resolution [E−1 → E0] of
E one has

s∗0(τE1(OC)) = td E0 ∩ [X]vir,

where C ⊂ E1 is the inverse image of the intrinsic normal cone as
explained in §3.4. This uses only the lci property of τ .

Step 3. Finally, one reduces (by covariance property of τ) to Prop. 3.6.
This way, even the obstruction theory has been eliminated and we are
reduced to a property of normal cones.

5. Virtual χ−y–genus

5.1. Classical χ−y-genus. Let E be a vector bundle on a scheme X.
Define

Λt(E) :=
∑

[ΛiE]ti ∈ K0(X)[t], St(E) :=
∑

[SiE]ti ∈ K0(X)[[t]].

Define a group homomorphism Λt : K0(X) → K0(X)[[t]]× by

Λt([E] − [F ]) = Λt(E) · S−t(F ).

If X is a smooth proper scheme, the χ−y genus is defined as

χ−y(X) := χ(Λ−y(ΩX)) =
∑
n≥0

(−y)nχ(Ωn
X) ∈ Z[y].

This notation is standard but can be confusing for the non-expert:
indeed in χ−y and in Λt the index should be viewed as a variable in a
polynomial (with coefficients in K0(X) and Z, respectively).

The χ−y-genus is a polynomial of degree less than or equal to dim X;
since the topological Euler characteristic e(X) is equal to∑

p,q

dim Hq(X, Ωp
X) =

∑
p

χ(Ωp
X),

one has e(X) = χ−1(X). Analogously, the signature σ(X) equals
χ1(X).

5.2. Definition and polynomiality. Let X be a proper virtually
smooth scheme of dim d. Define Ωn,vir

X by

Λ−y((T
vir
X )∨) =

∑
n≥0

(−y)nΩn,vir
X ∈ K0(X)[[y]].
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Note that Ωn,vir ∈ K0(X) need not be zero for n > d, the virtual
dimension of X.

Then we define the virtual χ−y-genus of X as

χvir
−y(X) := χvir(Λ−y((T

vir
X )∨)) =

∑
n≥0

(−y)nχvir(Ωn,vir
X ) ∈ Z[[y]].

Theorem 5.1. (1) χvir
−y(X) is a polynomial of degree ≤ d;

(2) χvir
−1(X) = deg(cd(T

vir
X ) ∩ [X]vir);

(3) if d is odd, then χvir
1 (X) = 0.

The proof of this (Theorem [FG], Theorem 4.5) only depends on the
statement of HRR and some standard techniques in manipulating for-
mal power series with coefficients in a graded ring. We do not include a
proof since we have given two in [FG]: one (presented directly after the
statement) is very short, the other (in the Appendix) is very detailed
and suitable also for non-experts.

We can therefore define the virtual Euler char evir(X) := χvir
−1(X)

and the virtual signature σvir(X) := χvir
1 (X); they are deformation

invariant and agree with the classical definition if X is smooth.
More generally, for X a proper, virtually smooth scheme of dim d

and V ∈ K0(X), we define

χvir
−y(X,V ) := χvir(V ⊗ Λ−y((T

vir
X )∨)) ∈ Z[[y]].

Theorem 5.2. (1) χvir
−y(X,V ) is a polynomial of degree ≤ d;

(2) χvir(V ⊗ Ωn,vir
X ) = 0 if n > d.

The proof is very similar to that of the previous theorem. Again,
χvir
−y(X,V ) is deformation invariant and agrees with the classical defi-

nition if X is smooth.
Theorems 5.1 and 5.2 are an immediate consequence of deformation

invariance in case X is virtually smoothable: i.e., it is a fiber of a family
of vortually smooth schemes with smooth, connected bases B whose
general fiber is smooth with obstruction theory equal to the cotangent
bundle.

6. Other results and comments

6.1. Other results. In the paper [FG], some more results are extended
from smooth to virtually smooth proper schemes. In particular,

(1) We prove a weak virtual version of Serre’s duality theorem,
namely if X is a proper virtually smooth scheme of dimension
d, then for every V ∈ K0(X)

χvir(V ) = (−1)dχvir(V ∨ ⊗ det(T vir
X )∨).

(2) We define a virtual analogue of the elliptic genus, and prove
suitable weak modularity properties, generalizing the classical
ones.
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12 BARBARA FANTECHI

(3) We prove virtual localization formulas for χvir, χvir
−y and the

virtual elliptic genus, in the same set-up as Graber–Pandhari-
pande’s virtual localization formula for [X]vir.

6.2. Relation with dg-schemes. Ciocan-Fontanine and Kapranov
have proven in [CF-K3] virtual GRR and HRR under the additional
assumption that X is a quasiprojective scheme and that its obstruction
theory comes from a structure of [0, 1]–dg scheme.

In general, constructing a dg-scheme structure (see [CF-K1], [CF-K2])
is much more difficult than an obstruction theory. It is not known
whether every obstruction theory is induced by a [0, 1]-dg scheme struc-
ture.

The applications in [GMNY] require to apply the virtual RR theo-
rem to a DM moduli stack M of stable sheaves with fixed determinant.
This can be done easily, since the coarse moduli space M of M is a
quasiprojective scheme (hence embeddable), and the natural obstruc-
tion theory on M descends to M for trivial reasons, so one can easily
reduce the problem to working with M and our theorem applies.

It is expected (and indeed claimed in [CF-K1]) that the moduli stack
M carries a dg structure induced by the one on dg-Quot, and it is
possible that such a structure descends to M . However, this is for the
moment not explicitly proven or claimed anywhere; in fact, a theory
of dg-DM stacks has not been explicitely developed yet, to the best of
our knowledge.

6.3. Possible developments. The theorem of virtual GRR as stated
has an asymmetric formulation, in that X is supposed to be virtu-
ally smooth, while Y is smooth. A more natural statement would be
obtained as follows.

First, define a morphism of virtually smooth schemes f : (X,EX) →
(Y,EY ) to be a morphism f : X → Y together with a morphism
f ♯ : f ∗EY → EX in Db(X) such that the composition of f ♯ with the
structure map EX → L̃X is the same as the composition of the structure
morphism f ∗EY → f ∗L̃Y with the natural morphism f ∗L̃Y → L̃X , and
moreover such that the mapping cone Ef of f ♯ is [−1, 0] perfect.

Then, define a virtual τ homomorphism for virtually smooth schemes,
τ vir
X : K0(X) → A∗(X) by

τ vir
X (V ) := ch(V ) · td(T vir

X ) ∩ [X]vir.

Also define, for every proper morphism f : X → Y of virtually
smooth schemes, a virtual pushforward morphism f vir

∗ : K0(X) →
K0(Y ), and for every morphism of virtually smooth schemes as virtual
pullback f ∗

vir : A∗(X) → A∗(Y ), in such a way that the usual properties
of τ hold for τ vir if we replace all the morphisms by their virtual versions
(note that f∗ : A∗(X) → A∗(Y ) and f ∗ : K0(Y ) → K0(X) coincide
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with their virtual counterpart, since their definition in the classical case
doesn’t use smoothness.

This would in particular imply virtual GRR, and really provide an
extension of the τ classes to virtually smooth schemes with properties
analogous to those for smooth schemes. There is currently work in
progress in this direction by Göttsche and myself and by C. Manolache.

It would also be natural to do the same replacing everywhere embed-
dable schemes with quasiprojective Deligne-Mumford stacks, and cor-
respondingly replacing the results of Fulton on the τ class for schemes
by those of [T] for algebraic stacks.
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