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NONRATIONAL WEIGHTED HYPERSURFACES

TAKUZO OKADA∗

1. Introduction

We say that a normal projective variety defined over the field C of complex numbers is a

Q-Fano variety if its anticanonical divisor is an ample Q-Cartier divisor. In [7], Kollár gives

examples of nonrational Fano manifolds of arbitrary dimension ≥ 3.

Theorem 1.1 ([7], Theorem 4). If d ≥ 2⌈(n+3)/3⌉ then a very general hypersurfaces Xd ⊂ Pn+1

of degree d defined over C is not ruled.

By convention we say that Xd is very general when it does not belong to countable union

of suitable proper closed subvarieties. In this article, we apply Kollár’s techniques to weighted

hypersurfaces. We show that, under certain conditions on the weights and the degree, the

weighted hypersurface is not ruled, in particular, it is nonrational (Theorem 1.7). As a result,

we obtain nonrational Q-Fano threefolds with at most terminal singularities and infinitely many

families of nonrational Q-Fano varieties with at most log terminal singularities of arbitrary

dimension ≥ 4 (cf. Section 3). These examples are rationally connected because a normal

projective variety, defined over C, with at most log terminal singularities whose anticanonical

divisor is nef and big is rationally connected ([11]). Let us begin with basic definitions.

Definition 1.2. Let X be a variety of dimension n over a field k.

• We say that X is rational if there is a birational map Pn
k 99K X.

• We say that X is ruled (resp. uniruled ) if there is a variety Y of dimension n − 1 over

k and a birational map (resp. dominant rational map) Y × P1
k 99K X.

• In positive characteristics, we say that X is separably uniruled if the above rational map

Y × P1
k 99K X is also separable.

• Let k̄ be an algebraic closure of k. We say that X is geometrically ruled if Xk̄ =

X ×Spec k Spec k̄ is ruled.

Definition-Lemma 1.3. Let c0, . . . , cn be positive integers and k a field. The weighted projec-

tive space Pk(c0, . . . , cn) over k is defined by

Pk(c0, . . . , cn) := Proj k[x0, . . . , xn],

where k[x0, . . . , xn] is the graded polynomial ring with deg xi = ci. The variables x0, . . . , xn are

called homogeneous coordinates.

*) The author is supported by JSPS Research Fellowships for Young Scientists.
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2 TAKUZO OKADA

One dimensional torus Gm = Spec k[t, t−1] acts on An+1
k by xi 7→ xi⊗tci and then Pk(c0, . . . , cn)

is the geometric quotient (An+1
k \ {0})/Gm.

Let X be a closed subscheme of the weighted projective space P = Pk(c0, . . . , cn) and let

τ : An+1
k → P be the canonical morphism. The punctured affine cone C∗

X of X is defined by

C∗
X = τ−1(X) and the affine cone CX of X is the scheme theoretic closure of C∗

X in An+1
k .

Definition 1.4. A closed subscheme X in Pk(c0, . . . , cn) is called quasi smooth if its affine cone

CX is smooth outside the origin.

For details of a weighted projective space, we refer the reader to [4]. In this article, we mainly

consider the weighted projective space P(a0, . . . , an, b), where the homogeneous coordinates are

x0, . . . , xn and y with deg xi = ai and deg y = b. For a field k and a positive integer d, we denote

by Hd(k) the k-vector space k[x0, . . . , xn]d, the degree d part of the graded ring k[x0, . . . , xn]

whose grading is given by deg xi = ai.

Before stating the main theorems, we need to introduce conditions on positive integers

p, n, a0, . . . , an, b and d.

Condition 1.5.

(1) n ≥ 3 and a0 = 1.

(2) d = pb + 1.

(3) gcd{a1, · · · , an} = 1 and there are at least two i among 1, · · · , n such that ai is coprime

to p.

(4)
∑n

i=0 ai < d <
∑n

i=0 ai + b.

(5) For any algebraically closed field k of characteristic p, a general weighted hypersurfaces

of degree d in P|(a1, . . . , an) is quasi smooth.

Condition 1.6. (Omit).

We give up introducing Condition 1.6 above because it is technical. Now we can state the

main theorems of this article.

Theorem 1.7. Assume that (p, {ai}, b, n, d) satisfies Condition 1.5 and 1.6. Then, the weighted

hypersurface

Xf := (ypx0 − f(x0, . . . , xn) = 0) ⊂ PC(a0, a1, . . . , an, b)

of degree d is a non-ruled log terminal Q-Fano variety of dimension n for a very general f =

f(x0, . . . , xn) ∈ Hd(C).

Theorem 1.8. Assume that (p, {ai}, b, n, d) satisfies Condition 1.5 and 1.6. Let k be an alge-

braically closed field of characteristic p. Then, the weighted hypersurface

Xf := (ypx0 − f(x0, . . . , xn) = 0) ⊂ P|(a0, a1, . . . , an, b)

is not separably uniruled for a general f = f(x0, . . . , xn) ∈ Hd(k).
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NONRATIONAL WEIGHTED HYPERSURFACES 3

Suppose that (p, {ai}, b, n, d) satisfies Condition 1.5. Then, although it is not obvious, we see

that the weighted hypersurface Xf defined over C is quasi smooth for a general f ∈ Hd(C). In

particular, it has only quotient singularities. The second inequality in Condition (1.5.4) implies

that Xf is a Q-Fano variety. The following result of Matsusaka reduces Theorem 1.7 to 1.8 (cf.

[9, Section 4.4]).

Theorem 1.9 ([10],Appendix, Theorem 1.1, [8], IV, Theorem 1.6). Let R be an excellent discrete

valuation ring and X a normal irreducible scheme. Let T be Spec R and φ : X → T a proper

surjective morphism with connected fibers. Then the following assertions hold.

(1) If the generic fiber of φ is ruled over the quotient field of R, then every irreducible

component of the special fiber of φ is ruled over the residue field of R.

(2) If the generic fiber of φ is geometrically ruled, then every reduced irreducible component

of the special fiber of φ is geometrically ruled.

The following Lemma, which is due to Kollár, is a key to the proof of Theorem 1.8.

Lemma 1.10 ([7], Lemma 7). Let X be a smooth proper variety and M a big line bundle on X.

Assume that there is an injection M ↪→ Ωi
X for some i > 0. Then X is not separably uniruled.

A line bundle L on a normal projective variety is said to be big if some positive multiple of L
defines a birational map onto its image.

2. Sketch of the proof of main theorems

As we explained in the previous section, Theorem 1.7 follows from Theorem 1.8. By Lemma

1.10, Theorem 1.8 is proved if we construct a desingularization φ : Y → Xf and a big line bundle

on Y which is contained in Ωi
Y for some i. Throughout this section, we assume the following.

Assumption 2.1.

• (p, {ai}, b, n, d) satisfies both Condition 1.5 and 1.6.

• We work over an algebraically closed field k of characteristic p.

• The weighted homogeneous polynomial f = f(x0, . . . , xn) is a general element of Hd(k)

and X = Xf .

• We denote by A the integer

A = d −
∑n

i=0
ai.

As a first step, we describe the singularities of X without proofs and construct a desingular-

ization of X.
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Lemma 2.2. X ∩ D+(x0) has only isolated singularities which are isomorphic to the origin of

the hypersurface defined by one of the following equations.

νp =


ξ1ξ2 + ξ3ξ4 + · · · + ξn−1ξn + g1 if n is even ,

ξ2
1 + ξ3ξ4 + · · · + ξn−1ξn + g2 if n is odd and p ̸= 2,

ξ2
1 + ξ2ξ3 + · · · + ξn−1ξn + ξ3

1 + g3 if n is odd and p = 2,

where gi = gi(ξ1, . . . , ξn) consists of monomials of degree ≥ 3 and the coefficient of ξ3
1 in g3 is

zero. Moreover, these singularities can be resolved by successive blow ups.

Put

Xqs := X \ (Sing(X) ∩ D+(x0)) and Uqs := Xqs ∩ D+(x0 · · ·xny).

The affine cone CXqs is smooth outside the origin, and this yields the following lemma.

Lemma 2.3. Uqs ⊂ Xqs is a toroidal embedding without self-intersection.

Here, we give a definition of a toroidal embedding. For details, we refer the reader to [6].

Definition 2.4. Let X be an algebraic variety defined over an algebraically closed field k and

U a smooth Zariski open subset of X.

We say that U ⊂ X is a toroidal embedding if for every closed point x ∈ X there is a pair (S, s)

of an affine toric variety S and its point s, and an isomorphism of k-local algebras ÔX,x
∼= ÔS,s

such that the ideal in ÔX,x generated by the ideal of X \U corresponds under this isomorphism

to the ideal in ÔS,s generated by the ideal of S \ T , where T is the big torus of S.

We say that U ⊂ X is a toroidal embedding without self-intersection if it is a toroidal embed-

ding and every irreducible component of X \ U is normal.

For a subset I ⊂ {0, . . . , n + 1}, we define

ZI :=
(⋂

i∈{0,...,n+1}\I
(xi = 0)

) ⋂(⋂
i∈I

(xi ̸= 0)
) ⋂

Xqs,

where we write xn+1 = y. The toroidal embedding Uqs ⊂ Xqs has a stratification by locally closed

subsets {ZI | I ⊂ {0, . . . , n+1}}. For a subset I ⊂ {0, . . . , n+1}, we define rI := gcd{ai | i ∈ I},
where an+1 = b. We put

I := {I ⊂ {0, . . . , n + 1} | rI > 1, and if rI | d then |I| > 1}.

A stratum ZI is contained in the singular locus of Xqs if and only if I ∈ I, that is, we have

Sing(Xqs) =
⋃

I∈I
ZI .

Corollary 2.5. There exists a desingularization φ : Y → X with the following properties.

(1) Around the singular points on X ∩ D+(x0), φ is the composition of blow ups at each

singular points.

(2) The restriction φ : φ−1(Xqs) → Xqs is a resolution of the toroidal embedding Uqs ⊂ Xqs.
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As a second step, we construct a big line bundle on a smooth model Y of X. There is a

natural projection

π : P(a0, a1, . . . , an, b) \ {(0 : · · · : 0 : 1)} → P(a0, a1, . . . , an).

Let V be the smooth locus of P(a0, a1, . . . , an). Put U = π−1(V ) and X◦ = X∩U . By Condition

(1.5.3), we see that U is smooth and the codimension of X \ X◦ in X is greater than or equal

to 2. By a slight abuse of notation, the restriction of π on X◦ is again denoted by π : X◦ → V .

For an integer l, we denoted by OX◦(l) the restriction of the tautological sheaf O(l) of

P(a0, a1, . . . , an, b) on X◦. The sheaf OX◦(l) is invertible on X◦ for every integer l since O(l) is

invertible on U .

Lemma 2.6. Notation as above.

(1) There is an exact sequence ; 0 → π∗Ω1
V → Ω1

U |X◦ → OX◦(−b) → 0.

(2) There is an exact sequence ; 0 → OX◦(−d) δ−→ Ω1
U |X◦ → Ω1

X◦ → 0,

and we have Im δ ⊂ π∗Ω1
V .

(3) There is an exact sequence ;

0 → Coker[OX◦(−d) δ−→ π∗Ω1
V ] → Ω1

X◦ → OX◦(−b) → 0.

Proof. There is a locally splitting exact sequence

0 → π∗Ω1
V → Ω1

U → OU (−b) → 0.

Pulling back this sequence to X◦ we obtain (1). The existence of the exact sequence of (2) is

a general fact. (3) follows from (1) and (2). We check locally to see that Im δ is contained in

π∗Ω1
V .

Take a point u ∈ X◦. We can choose local coordinates z1, . . . , zn, w of U at u so that

z1, . . . , zn form local coordinates of V at π(u) and X◦ is defined by the equation wpg′(z1, . . . , zn)−
f ′(z1, . . . , zn) = 0 around u, where g′, f ′ and w correspond to x0, f and y respectively. We see

that Im δ is generated by

d(wpg′ − f ′) = pwp−1g′dw + wpdg′ − df ′ = wpdg′ − df ′

and, thus, it is contained in π∗Ω1
V . ¤

Notice that X◦ is not smooth in general. It may have isolated singular points on X◦∩D+(x0)

as described in Lemma 2.2. If we restrict the sequences in (1), (2) and (3) of Lemma 2.6 on the

smooth locus of X◦, then those are exact sequences of locally free sheaves.

Definition 2.7. Let M◦ be the double dual of∧n−1 (
Coker[OX◦(−d) δ−→ π∗Ω1

V ]
)

and M = i∗M◦, where i : X◦ ↪→ X is the embedding.
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6 TAKUZO OKADA

Lemma 2.6 implies that

M ∼= OX

(
d −

∑n

i=0
ai

)
= OX(A),

and M ⊂ (Ωn−1
X )∨∨. By Condition (1.5.4), M is ample.

In the following, we fix a desingularization φ : Y → X which satisfies properties (1) and (2)

of Lemma 2.5. Let F be the exceptional divisor of φ which is obtained by resolving isolated

singular points on X ∩ D+(x0). Let E be the exceptional divisor of φ : Y → X away from F ,

that is, E is obtained by resolving the singularities of the toroidal embedding Uqs ⊂ Xqs and

then let E = ∪iEi be the irreducible decomposition. Let M be a Weil divisor on X such that

OX(M) ∼= M. The restriction of OY (⌊φ∗M⌋) on Y \ (E ∪ F ) can be seen as a subsheaf of

Ωn−1
Y |Y \(E∪F ).

Definition 2.8. For each i, let γi be the largest integer such that OY (⌊φ∗M⌋+γiEi) is contained

in Ωn−1
Y generically around Ei. We define L := OY (⌊φ∗M⌋ +

∑
γiEi).

By the definition, we have L|Y \F ⊂ Ωn−1
Y |Y \F .

Lemma 2.9. L is a subsheaf of Ωn−1
Y .

Proof. Put X0 = X ∩ D+(x0), Y0 = φ−1(X0) and φ0 = φ|Y0 : Y0 → X0. We need to show that

L|Y0 = φ∗
0(M|X0) ⊂ Ωn−1

Y0
. The restriction of the projection

π0 = π|X0 : X0 → D+(x0) ⊂ P(a0, a1, . . . , an)

is identified with the morphism

Spec A[ν]/(νp − f ′) → Spec A = An,

where A = k[ξ1, . . . , ξn] and f ′ = f(1, ξ1, . . . , ξn) ∈ A. Consider the homomorphism of A-

modules ρf ′ : A → Ω1
A determined by ρf ′(1) = df ′. We have δ|X0 = −π∗

0ρf ′ and this im-

plies that M|X0 = π∗
0Q, where Q is the invertible sheaf on An associated with the A-module

(
∧2 Coker(ρf ′))∨∨.

With the notation of [7], the invertible sheaf π∗
0Q is generated by a (n − 1)-form η which

is of type eta (cf. Remark 2.10 below and [7, Definition 22.3]) and φ∗
0η does not have a pole

along exceptional divisors of φ0 (cf. [7, Section 22, 23]). Therefore, we have L|Y0 = φ∗
0(π

∗
0Q) ⊂

Ωn−1
Y0

. ¤

Remark 2.10. It is shown in [7, Lemma 16] that M|X∩D+(x0) = OX∩D+(x0) ·η, where

η = (±)
dξ2 ∧ · · · ∧ dξn

∂
∂ξ1

(νp − f ′)
= (±)

dξ1 ∧ dξ3 ∧ · · · ∧ dξn

∂
∂ξ2

(νp − f ′)
= · · · = (±)

dξ1 ∧ · · · ∧ dξn−1

∂
∂ξn

(νp − f ′)
,

is a (n − 1)-form on X.
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NONRATIONAL WEIGHTED HYPERSURFACES 7

Let l be a sufficiently divisible positive integer so that M[l] is an invertible sheaf on X, where

M[l] is the double dual of M⊗l. Then, there are integers ε′i such that

L⊗l = φ∗M[l] ⊗OY (−
∑

i
ε′iEi).

Put εi = ε′i/l. The rational number εi does not depend on the choice of l.

To conclude that the line bundle L is big, we need to lift global sections of M[l] to those of

L⊗l. In other words, we need to bound the rational number εi from above.

Lemma 2.11. Let Ei be an exceptional divisor of φ : Y → X whose center is Z̄I for some

I ⊂ {1, . . . , n + 1}. Then, we have A > rIεi.

Proof. We give only a sketch of the proof. Let x ∈ ZI be a point. We can find a rational

(n − 1)-form ωx on X such that M[l] ⊂ OX,x ·ω⊗l
x . By the definition of εi, we see that εi is not

greater than the order of the pole of φ∗ωx along Ei.

Since Uqs ⊂ Xqs is a toroidal embedding, there is a local model (SI , sI), which consists of

an affine toric variety SI and its point sI , of Xqs at x. In particular, we have an isomorphism

ÔX,x
∼= ÔSI ,sI

of k-local algebras. We can write down explicitly the rational (n − 1)-form ωI

on SI such that it corresponds to ωx after passing to the completion. Let φI : S′ → SI be the

resolution of toric varieties and E′ the exceptional divisor of φI which corresponds formally to

Ei. We can compute the order ordE′(φ∗
IωI) of the pole of φ∗

IωI along E′. Condition 1.6, which

we omit, is nothing but the condition to ensure the inequality A/rI > ordE′(φ∗
IωI). ¤

Lemma 2.12. L is a big line bundle on Y .

Proof. Put amax = max{a1, . . . , an}. By Lemma 2.11, we have lεi ≤ Al/rI − amax for all

sufficiently large and divisible l. We see that

φ∗L⊗l = M[l] ⊗ φ∗OY

(
−

∑
i
lεiEi

)
⊃ M[l] ⊗ φ∗OY

(
−

∑
εi>0

(Al/rI − amax)Ei

)
.

Consider the global sections xAl
0 , xAl−a1

0 x1, . . . , x
Al−an
0 xn of M[l] ∼= OX(Al). Let U be a suffi-

ciently small open subset of X such that U ∩ZI ̸= ∅. Then xrI
0 |U ∈ OU and it vanishes along Z̄I .

Hence, for each i, the section xAl−ai
0 xi = (xrI

0 )Al/rI−aix
(rI−1)ai

0 xi vanishes along each singular

stratum Z̄I with multiplicity at least Al/rI − amax and thus lifts to a global section of L⊗l.

The global sections xAl
0 , . . . , xAl−an

0 xn define a dominant map X 99K Pn. Therefore, L is

big. ¤

As we explained in the beginning of this section, Theorem 1.8 follows from Lemma 2.9, 2.12

and 1.10.

3. Examples of nonrational Q-Fano varieties

In this section, we present some examples of nonrational Q-Fano varieties which are obtained

by Theorem 1.7. When one looks for concrete examples, Condition (1.5.5) is not easy to use.

The following gives a sufficient condition for it.
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Lemma 3.1. Let p be a prime number and a1, . . . , an, d positive integers with p - d and n ≥
3. Let k be an algebraically closed field of characteristic p and consider the polynomial ring

k[x1, . . . , xn]. Let Λd be the k-vector space k[x1, . . . , xn]d of the weighted homogeneous polynomial

of degree d, where the grading is given by deg(xi) = ai. Assume that there exist positive integers

m1, . . . ,mn such that at least one of the following holds

(1) Λd ⊃ {xm1
1 , . . . , xmn

n },
(2) Λd ⊃ {xm1

1 x2, xm2
2 , . . . , xmn

n }, p - m1,

(3) Λd ⊃ {xm1
1 x2, xm2

2 x1, xm3
3 , . . . , xmn

n }, p - (m1m2 − 1).

(4) Λd ⊃ {xm1
1 x2, xm2

2 x3, xm3
3 , . . . , xmn

n }, p - m1m2.

(5) Λd ⊃ {xm1
1 x3, xm2

2 x3, xm3
3 , . . . , xmn

n }, p - m1m2.

Then, Spec k[x1, . . . , xn]/(f) is smooth outside the origin for a general f ∈ Λd.

There are lists [5, 16.6], [1, Table 1] and [2, Table 1] of weighted hypersurfaces which are

Q-Fano threefolds with at most terminal singularities. We obtained Table 1 below by choosing

members of those lists that satisfy both Condition 1.5 and 1.6. The integer c in Table 1 is

defined as c := −d +
∑n

i=0 ai > 0 so that we have OX(−KX) ∼= OX(c). The singular points

of X and types of singularities of X are written in the last column. Pi stands for the point

(0 : · · · : 0 : 1 : 0 : · · · : 0), where the 1 is in the i-th position, and Pij is a point contained in the

singular stratum Z{i,j}. As a result, we obtain the following examples.

Theorem 3.2. Let p, a0, . . . , a3, b and d be integers listed in Table 1. Then, the weighted hyper-

surface

Xf := (ypx0 − f(x0, . . . , x3) = 0) ⊂ PC(a0, a1, a2, a3, b)

is a non-ruled Q-Fano threefold with at most terminal singularities for a very general f ∈ Hd(C).

Remark 3.3. [5, 16.6] (resp. [2, Table 1], [1, Table 1]) is the list of Q-Fano weighted hy-

persurfaces of dimension three which have at most terminal singularities with c = 1 (resp.

c = 2, c ≥ 3).

It is proved in [3] that a general member of each of the 95 families listed in [5, 16.6] are

(birationally) rigid, which implies the nonrationality of the general member. Thus, among the

twelve families of our examples, No. 5 and 8 are new and the remaining ten provide the known

cases with an alternate proof of nonrationality.

Let m,n be integers such that 4 ≤ n, 0 < m < n and let l be an odd integer such that

n − m + 1 < l < 2(n − m). Then, for every odd positive integer a with a > (m + 1)/2, the

combination

(p, a0, . . . , am, am+1, . . . , an, b, n, d) = (2, 1, . . . , 1, a, . . . , a, (al − 1)/2, n, al)

satisfies Condition 1.5 and 1.6.
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NONRATIONAL WEIGHTED HYPERSURFACES 9

Table 1. A List of (p, {ai}, b, n, d) satisfying Condition 1.5 and 1.6.

d p (a0, . . . , a3, b) c Singularities

No. 1 5 2 (1, 1, 1, 1, 2) 1 P4 : 1
2(1, 1, 1)

No. 2 7 2 (1, 1, 1, 2, 3) 1 P3 : 1
2(1, 1, 1), P4 : 1

3(1, 1, 2)

No. 3 9 2 (1, 1, 1, 3, 4) 1 P4 : 1
4(1, 1, 3)

No. 4 10 3 (1, 1, 1, 5, 3) 1 P4 : 1
3(1, 1, 2)

No. 5 10 3 (1, 1, 2, 5, 3) 2 P4 : 1
3(1, 1, 2)

No. 6 15 2 (1, 1, 2, 5, 7) 1 P2 : 1
2(1, 1, 1), P4 : 1

7(1, 2, 5)

No. 7 15 2 (1, 1, 3, 4, 7) 1 P3 : 1
4(1, 1, 3), P4 : 1

7(1, 3, 4)

No. 8 15 2 (1, 2, 3, 5, 7) 3 P1 : 1
2(1, 1, 1), P4 : 1

7(1, 3, 4)

No. 9 16 3 (1, 1, 2, 8, 5) 1 P23 : 1
2(1, 1, 1), P4 : 1

5(1, 2, 3)

No. 10 21 2 (1, 1, 3, 7, 10) 1 P4 : 1
10(1, 3, 7)

No. 11 22 3 (1, 1, 3, 11, 7) 1 P2 : 1
3(1, 1, 2), P4 : 1

7(1, 3, 4)

No. 12 28 3 (1, 1, 4, 14, 9) 1 P23 : 1
2(1, 1, 1), P4 : 1

9(1, 4, 5)

Theorem 3.4. Let m,n be integers such that 4 ≤ n and 0 < m < n, and let l be an odd

positive integer such that n−m + 1 < l < 2(n−m). Then, for every odd positive integer a with

a > (m + 1)/2, the weighted hypersurface

Xf := (y2x0 − f(x0, . . . , xn) = 0) ⊂ P(
m+1︷ ︸︸ ︷

1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a, (al − 2)/2)

of degree al is a non-ruled log terminal Q-Fano variety for a very general f(x0, . . . , xn) ∈ Hal(C).

Remark 3.5. The singular locus of Xf is the union of Z̄I1 = (x0 = · · · = xm = y = 0) ∩ Xf

and ZI2 = {Pn+1}. The singularity of Xf at each point of Z̄I1 is of type

1
a(

m+1︷ ︸︸ ︷
1, . . . , 1,

n−m−2︷ ︸︸ ︷
0, . . . , 0, b) = 1

a(
m+1︷ ︸︸ ︷

2, . . . , 2,

n−m−2︷ ︸︸ ︷
0, . . . , 0,−1)

and that of Xf at Pn+1 is of type

1
b (

m︷ ︸︸ ︷
1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a) = 1

b (

m︷ ︸︸ ︷
l, . . . , l,

n−m︷ ︸︸ ︷
1, . . . , 1),

where b = (al − 1)/2.
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