代数幾何学シンポジウム記録 2009年度 pp.125-125 On the construction of a complete fan associated to the moduli space of polarized logarithmic Hodge structures

Kenta Watanabe

Dept. of Math., Osaka Univ., Japan. u390547e@ecs.cmc.osaka-u.ac.jp

Introduction 1

The notion of polarized logarithmic Hodge structure (PLH) was introduced by professor Kazuya Kato and professor Sampei Usui. Roughly speaking, the ne moduli space of PLH is described as follows.

D = (polarized Hodge structures with a " -level structure ") \cap

 $D = \{ -nilpotent orbit | \in \}$

=(polarized logarithmic Hodge structures with a "-level structure "whose "local monodromies are in the directions in ")

Here D is a classifying space of polarized Hodge structures, is a discrete subgroup of Aut(D), and is a fan consisting of rational nilpotent cones in Lie(Aut(D)) which is strongly compatible with

In the classical situation, that is, D is a symmetric Hermitian domain, the toroidal projective compactic cation D of Dwas constructed with a su ciently big fan , called a projective fan, by A. Ash, D. Mumford, M. Rapoport and Y. S. Tai.

For general D, Kato and Usui introduced a "complete fan "as a generalization of a projective fan, and they gave a conjecture of the existence of such fans.

Example (KU) For D with $h^{2,0} = h^{0,2} = 2$, $h^{1,1} = 1$, the fan Ξ consisting of all rational nilpotent cones whose rank are less than or equal to one in Lie(Aut(D)) is complete.

Theorem There is no complete fan for D with $h^{2,0} = h^{1,1} = h^{1,0}$

Nakayama. Now, I try to construct a complete fan in the new sense for D with $h^{2,0} = h^{1,1} = h^{0,2} = 2$.

$\mathbf{2}$ Nilpotent orbit

In this section, we recall the de nition of nilpotent orbit. We x a 4-tuple $\Phi_0 = (w, (h^{p,q})_{p,q \in \mathbb{Z}}, H_{\mathbb{Z}}, \langle , \rangle)$, where $H_{\mathbb{Z}}$ is a free \mathbb{Z} -module of rank $p,qh^{p,q}$, and \langle , \rangle is a non-degenerate bilinear form on $H_{\mathbb{Q}} := \mathbb{Q} \otimes_{\mathbb{Z}} H_{\mathbb{Z}}$ which is symmetric if w is even and skewsymmetric if w is odd. Let D be the classifying space of polarized Hodge structures of type Φ_0 , and D be the compact dual of D.

Let

$$G_{\mathbb{Z}} := \operatorname{Aut}(H_{\mathbb{Z}}, \langle , \rangle)$$

and for $R = \mathbb{Q}, \mathbb{R}, \mathbb{C}$, let $H_R := R \otimes_{\mathbb{Z}} H_{\mathbb{Z}}, G_R := \operatorname{Aut}(H_R, \langle , \rangle)$ $\mathfrak{g}_R := \operatorname{Lie}(G_R)$

$$= \{ N \in \operatorname{End}_R(H_R) \mid \langle Nx, y \rangle + \langle x, Ny \rangle = 0 \text{ for all } x, y \in H_R \}.$$

Definition (KU) A subset of $\mathfrak{g}_{\mathbb{R}}$ is said to be a nilpotent cone, if the following conditions are satis ed.

(1) = $\mathbb{R}_{\geq 0}N_1 + \cdots + \mathbb{R}_{\geq 0}N_n$ for some $n \geq 1$ and for some $N_1,\ldots,N_n \in$.

(2) Any element of is nilpotent as an endomorphism of $H_{\mathbb{R}}$.

(3) [N, N'] = 0 for any $N, N' \in$ as endomorphisms of $H_{\mathbb{R}}$,

where [N, N'] := NN' - N'N. A nilpotent cone is said rational, if we can take $N_1, \ldots, N_n \in \mathfrak{g}_{\mathbb{Q}}$

-125-

Definition (KU) Let = $_{1 \leq j \leq r}(\mathbb{R}_{\geq 0})N_j$ be a rational nilpotent cone. A subset Z of \check{D} is said to be a -nilpotent orbit if there is $F \in \check{D}$ which satis are $Z = \exp(\mathbb{C})F$ and satis are the following two conditions.

(1)
$$N_j F^p \subset F^{p-1} \ (1 \le j \le r, p \in \mathbb{Z}).$$

(2) $\exp(\sum_{1 \le j \le r} z_j N_j) F \in D \text{ if } z_j \in \mathbb{C} \text{ and } \operatorname{Im}(z_j) \gg 0.$

3 Complete fan

be a fan in $\mathfrak{g}_{\mathbb{O}}$, i.e., a fan consisting of rational nilpotent Let cones.

Definition (N) is complete in the new sense if it satis es the following condition.

$$\bigcup_{\sigma \in \mathbf{I}} = \bigcup_{\sigma \in \mathbf{N}}$$

, where N is the set of all rational nilpotent cones in $\mathfrak{g}_{\mathbb{R}}$ such that there is a *nilpotent* orbit.

A special case 4

In this section, we consider the construction of a complete fan in the new sense for D with $h^{2,0} = h^{1,1} = h^{0,2} = 2$. Let $H_{\mathbb{Z}} = \bigoplus_{1 \le j \le 6} \mathbb{Z}e_j$, and let $(\langle e_i, e_j \rangle)_{1 \le i,j \le 6} = \begin{pmatrix} -1_2 & O & O \\ O & H & O \\ O & O & H \end{pmatrix}$, where $H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

Let $H_{\mathbb{Q}}^{''} = \mathbb{Q}e_1 \oplus \mathbb{Q}e_2$, and let $a \in H_{\mathbb{Q}}^{''}$. De ne $N_a, N_a^{'}, N_0 \in \mathfrak{g}_{\mathbb{Q}}$ By Theorem, the de nition of complete fan was modi ed by Chikara as follows. Nakayama. Now, I try to construct a complete factor is the

$$\begin{split} N_a(e_i) &= -\langle a, e_i \rangle e_5 \ (i = 1, 2), \ N_a(e_6) = a, \\ N_a(e_i) &= 0 \ (i \neq 1, 2, 6); \\ N_a^{'}(e_i) &= -\langle a, e_i \rangle e_3 \ (i = 1, 2), \ N_a^{'}(e_4) = a, \\ N_a^{'}(e_i) &= 0 \ (i \neq 1, 2, 4); \\ N_0(e_4) &= -e_5, \ N_0(e_6) = e_3, \ N_0(e_i) = 0 \ (i \neq 4, 6). \end{split}$$

Then, for $a, b, c \in H_{\mathbb{Q}}^{"} \setminus \{0\}$ such that $\langle a, b \rangle = 0$, we consider the rational nilpotent cones of rank one $(a,b) = \mathbb{R}_{>0}(N_a + N'_b),$ $(c) = \mathbb{R}_{>0}N_c$, and $_0 = \mathbb{R}_{>0}N_0$. We note that these nilpotent cones are belong to N. Denote the weight ltration associated to (a,b), (c), and to $_0$ by W^1 , W^2 and W^3 respectively.

Here, let $G^0_{\mathbb{R}}$ be the connected component of $G_{\mathbb{R}}$ containing 1, for the Zariski topology. For each i, let P_i be the \mathbb{Q} -parabolic subgroup of $G_{\mathbb{R}}$ consisting of all elements g of $G_{\mathbb{R}}^0$ such that $gW^i =$ W^i . Let \mathfrak{p}_i be the Lie algebra of P_i , let $n(\mathfrak{p}_i)$ be the nilradical of \mathfrak{p}_i , and let N_i be the set of all elements $\in \mathbb{N}$ such that $\subset n(\mathfrak{p}_i)$.

In general, for a rational nilpotent cone , denote the weight ltration associated to by W(). Since, for any $\in \mathbb{N}$, there exists an element $g \in G_{\mathbb{Q}}$ and $i \in \{1, 2, 3\}$ such that $gW() = W^i$, and since, if $W() = W^i$ for some *i*, then $\in N_i$, we try to construct a complete fan in the new sense which is compatible with $G_{\mathbb{Z}}$ by the following ways.

Method 1. We try to construct a "local complete fan $_0$ " satisfying $\bigcup_{\sigma \in 0} = \bigcup_{\sigma \in N_0}$. Here $N_0 = \bigcup_{1 \le i \le 3} N_i$.

2. We try to glue the fans obtained by the adjoint actions of all elements of $G_{\mathbb{Z}}$ on $_0$.