Global monodromy modulo 5 of quintic-mirror family

Kennichiro Shirakawa (Osaka University)

Abstract

When we fix a symplectic basis of the third cohomology group of a nonsingular fibre of quintic-mirror family, the global monodromy Γ is a subgroup of symplectic group $\operatorname{Sp}(4,\mathbb{Z})$. The generators of Γ are well studied by Candelas, de la Ossa, Green and Parks. We consider calculating components of matrixes which are elements of Γ under this situation. In main result, elements of a subgroup Γ' of $\operatorname{GL}(4,\mathbb{Z})$ which is isomorphic to Γ are represented by components modulo 5.

Quintic-mirror family

Let $(x_1 : \cdots : x_5)$ be the homogeneous coordinates of \mathbb{P}^4 and let $\psi \in \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$. We give a hypersurface Q_{ψ} of \mathbb{P}^4 by

$$Q_{\psi} := \{ x \in \mathbb{P}^4 \mid \sum_{i=1}^5 x_i^{5} - 5\psi \Pi_{i=1}^5 x_i = 0 \}.$$

A finite group G acts on Q_{ψ} as follows.

 μ_5 : the group of 5-th root of $1 \in \mathbb{C}$,

$$\widetilde{G} := (\mu_5)^5 / \{ (\alpha_1, \cdots, \alpha_5) \in (\mu_5)^5 \mid \alpha_1 = \cdots = \alpha_5 \},$$

$$G := \{ (\alpha_1, \cdots, \alpha_5) \in \widetilde{G} \mid \alpha_1 \cdots \alpha_5 = 1 \},$$

$$G \times Q_{\psi} \to Q_{\psi} ;$$

$$((\alpha_1, \cdots, \alpha_5), (x_1 : \cdots : x_5)) \mapsto (\alpha_1 x_1 : \cdots : \alpha_5 x_5).$$

When we divide the hypersurface Q_{ψ} by G, canonical singularities appear. For $\psi \in \mathbb{C} \subset \mathbb{P}^1$, it is known that there is a simultaneous minimal desingularization of these singularities, and we have the family $(W_{\psi})_{\psi \in \mathbb{P}^1}$ of the mirror to the above hypersurface. When ψ belongs to $\mu_5 \subset \mathbb{C} \subset \mathbb{P}^1$, W_{ψ} has one ordinary double point. W_{∞} is a normal crossing divisor in the total space. The other fibres of $(W_{\psi})_{\psi}$ are smooth with Hodge numbers $h^{p,q} = 1$ for p+q = 3, $p,q \geq 0$.

By the action of

 $\alpha \in \mu_5, \ (x_1, \cdots, x_5) \ \mapsto (x_1, \cdots, x_4, \alpha^{-1}x_5),$

we have the isomorphism from the fibre over ψ to the fibre over $\alpha\psi.$ Let $\lambda=\psi^5$ and let

$$(W_{\lambda})_{\lambda} = ((W_{\psi})_{\psi})/\mu_{5}$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\lambda\text{-plane}) = (\psi\text{-plane})/\mu_{5}.$$

This family $(W_{\lambda})_{\lambda}$ is so-called quintic-mirror family. Quintic-mirror family was constructed by Greene and Plesser.

Local monodromy

Let $b \in \mathbb{P}^1 - \{0, 1, \infty\}$. Candelas, de la Ossa, Green and Parks constructed a symplectic basis $\{A^1, A^2, B_1, B_2\}$ of $H_3(W_b, \mathbb{Z})$ and calculated the monodromies around $\lambda =$ $0, 1, \infty$ on the period integrals of a holomorphic 3-form on this basis. By the relation between the symplectic basis $\{\beta^1, \beta^2, \alpha_1, \alpha_2\}$ of $H^3(W_b, \mathbb{Z})$ which is the dual basis of $\{B_1, B_2, A^1, A^2\}$ and the period integrals, we have the matrix representations of the local monodromies for the basis $\{\beta^1, \beta^2, \alpha_1, \alpha_2\}$. We recall their results.

Matrix representations A, T, T_{∞} of local monodromies around $\lambda = 0, 1, \infty$ for the basis $\{\beta^1, \beta^2, \alpha_1, \alpha_2\}$ are as follows:

$$A = \begin{pmatrix} 11 & 8 & -5 & 0 \\ 5 & -4 & -3 & 1 \\ 20 & 15 & -9 & 0 \\ 5 & -5 & -3 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$T_{\infty} = \begin{pmatrix} -9 & -3 & 5 & 0 \\ 0 & 1 & 0 & 0 \\ -20 & -5 & 11 & 0 \\ -15 & 5 & 8 & 1 \end{pmatrix}.$$

Global monodromy

Let \langle , \rangle be the anti-symmetric bilinear form on $H^3(W_b, \mathbb{Z})$ defined by the cup product. Global monodromy Γ is $\operatorname{Im}\left(\pi_1(\mathbb{P}^1 - \{0, 1, \infty\}) \to \operatorname{Aut}\left(H^3(W_b, \mathbb{Z}), \langle , \rangle\right)\right).$

When we take $\{\beta^1, \beta^2, \alpha_1, \alpha_2\}$ as the basis $H^3(W_b, \mathbb{Z})$, Aut $(H^3(W_b, \mathbb{Z}), \langle , \rangle)$ is identified Sp $(4, \mathbb{Z})$, and Γ is the subgroup of Sp $(4, \mathbb{Z})$ which is generated by A and T.

Lemma There exisits $P \in GL(4, \mathbb{Q})$ such that

$$P^{-1}A^{-1}P = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 5 & 5 & 5 & -4 \end{pmatrix}, P^{-1}T^{-1}P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

 $\Gamma' := \{ P^{-1}XP \in GL(4,\mathbb{Z}) \mid X \in \Gamma \}$ is isomorphic to Γ as group.

Main result

Let
$$X \in \Gamma'$$
. Then, $X \equiv \begin{pmatrix} 1 & n & 3n^2 + 2n & a \\ 0 & 1 & n & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \pmod{5}.$

Here n, a, b, c is the elements of \mathbb{Z} .

References

- [COGP] P. Candelas, C. de la Ossa, P. S. Green, and L. Parks, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74.
- [M] D. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), no. 1, 223–247.