2009年度 pp.116 116

The Clebsch-Gordan problem for quiver representations

Martin Herschend

Graduate School of Mathematics, Nagoya University

Quivers. A quiver Q is a directed graph consisting of a set of vertices Q_0 and a set of arrows Q_1 . Below are some examples of quivers:

 $\bullet \rightarrow \bullet \rightarrow \bullet \qquad \bullet \frown \qquad \bullet \rightrightarrows \bullet$

Representations. A representation V of a quiver Q consists of a collection of vector spaces V_x , where $x \in Q_0$ and linear maps $V(\alpha) : V_x \to V_y$, where $x \xrightarrow{\alpha} y \in Q_1$. Given representations V and W we define their direct sum $V \oplus W$ and tensor product $V \otimes W$ by

 $\begin{aligned} (V \oplus W)_x &= V_x \oplus W_x, \qquad (V \oplus W)(\alpha) = V(\alpha) \oplus W(\alpha), \\ (V \otimes W)_x &= V_x \otimes W_x, \qquad (V \otimes W)(\alpha) = V(\alpha) \otimes W(\alpha). \end{aligned}$

Clebsch-Gordan problem. Find the decomposition

 $V \otimes W = \bigoplus_i U_i$

into indecomposable representations U_i for each pair of indecomposable representations V, W.

Known solutions. For the loop quiver

$$Q:\bullet$$

the Clebsch-Gordan problem was solved by Aitken (1935) over an algebraically closed ground field of characteristic zero. For algebraically closed ground fields of positive characteristic the solution was found by Iima-Iwamatsu (2006). Finally, over any perfect ground field the solution was found by Darpö-H (2008).

For Dynkin quivers the solution is known for type \mathbb{A} , \mathbb{D} , and \mathbb{E}_6 . The Clebsch-Gordan problem has also been solved for a fairly large class of tame algebras called string algebras.

String algebras. Let *I* be an ideal in the path algebra &Q generated by a set of paths such that the quotient algebra $\Lambda = \&Q/I$ is finite dimensional. Then Λ is called a string algebra if

- 1. For each vertex $x \in Q_0$ there are at most two arrows starting (respectively ending) at x.
- 2. For each arrow $\alpha \in Q_1$ there is at most one $\beta \in Q_1$ such that $\alpha \beta \notin I$ and at most one $\gamma \in Q_1$ such that $\gamma \alpha \notin I$.

Strings and bands. For a quiver morphism $F: P \to Q$ we call (F, P) a shape over Q if for distinct arrows $x \xrightarrow{\alpha} y$ and $x' \xrightarrow{\alpha'} y'$ in $P, F\alpha = F\alpha'$ implies $x \neq x'$ and $y \neq y'$. With each shape we associate two functors

$$\operatorname{rep}_{\Bbbk} P \underset{F^*}{\overset{F_*}{\underset{F^*}{\longleftarrow}}} \operatorname{rep}_{\Bbbk} Q.$$

A shape $\mathbf{F} = (F, L)$ is called linear if the underlying graph of L is Dynkin of type A. Let V be the representation

 $k \xrightarrow{1} \cdots \xrightarrow{1} k$

and set $S_{\mathbf{F}} = F_* V$. The representations $S_{\mathbf{F}}$ are called strings.

A shape $\mathbf{G} = (G, Z)$ is called cyclic if it has trivial automorphism group and the underlying graph of Z is extended Dynkin of type $\tilde{\mathbb{A}}$. Let M be a $\mathbb{k}[T, T^{-1}]$ module and $\gamma \in Z_1$. Furthermore, let W be the representation

where all arrows act as identity except γ which acts by multiplication with T. Set $B_{\mathbf{G}}(M, \gamma) = G_*W$. The representations $B_{\mathbf{G}}(M, \gamma)$ are called bands.

It is a classical result due to several authors including Gelfand-Ponomarev and Ringel-Butler that for string algebras, the indecomposable representations are classified by strings and bands. Let $\mathcal{L}(\mathbf{F}, \mathbf{F}')$ be the set of linear connected components of the fibre product $\mathbf{F} \times_Q \mathbf{F}'$. An example of the fibre product of two linear shapes can be found below.

Theorem. For linear shapes \mathbf{F} , \mathbf{F}' , non-isomorphic cyclic shapes \mathbf{G} , \mathbf{G}' , and $\Bbbk[T, T^{-1}]$ -modules M, M' the following formulae hold:

$$\begin{split} S_{\mathbf{F}} \otimes S_{\mathbf{F}'} & \bigoplus_{\mathbf{H} \in \mathcal{L}(\mathbf{F}, \mathbf{F}')} S_{\mathbf{H}} \\ S_{\mathbf{F}} \otimes B_{\mathbf{G}}(M, \gamma) & \tilde{\rightarrow} \bigoplus_{\mathbf{H} \in \mathcal{L}(\mathbf{F}, \mathbf{G})} \dim M S_{\mathbf{H}} \\ B_{\mathbf{G}}(M, \gamma) \otimes B_{\mathbf{G}'}(M', \gamma') & \tilde{\rightarrow} \bigoplus_{\mathbf{H} \in \mathcal{L}(\mathbf{G}, \mathbf{G}')} \dim M \dim M' S_{\mathbf{H}} \\ B_{\mathbf{G}}(M, \gamma) \otimes B_{\mathbf{G}}(M', \gamma) & \tilde{\rightarrow} B_{\mathbf{G}}(M \otimes_{\Bbbk} N, \gamma) \oplus \\ & \bigoplus_{\mathbf{H} \in \mathcal{L}(\mathbf{G}, \mathbf{G})} \dim M \dim M' S_{\mathbf{H}} \end{split}$$

Example. $Q: \bullet \overset{\alpha}{\underset{\beta}{\longleftarrow}} \bullet \overset{\gamma}{\bigcirc} \gamma \quad I = \langle \alpha \beta, \gamma^2, (\beta \gamma \alpha)^n \rangle$

