Resolution of dihedral orbifolds

Author(s)
Celis, Alvaro Nolla De

Citation
代数幾何学シンポジウム記録 代数幾何学シンポジウム記録 代数幾何学シンポジウム記録

URL
http://hdl.handle.net/2433/214901

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Resolution of dihedral orbifolds

Alvaro Nolla de Celis, alnolla@gmail.com
(Nagoya University)

Let \(G \subset \text{GL}(2, \mathbb{C}) \) be the following small binary dihedral group:

\[
G = \left\langle \alpha = \left(\begin{array}{cc} \varepsilon & 0 \\ 0 & \varepsilon^{-a} \end{array} \right), \beta = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) : \varepsilon^{2n} = 1, (2n, a) = 1, a^2 \equiv 1 \pmod{2n} \right\rangle
\]

where \(A = \langle \alpha \rangle = \frac{1}{2n}(1, a) \) is a maximal normal of index 2, and we consider the minimal resolution \(Y \rightarrow \mathbb{C}^2/G \).

\[
Y = \text{G-Hilb}(\mathbb{C}^2) : \text{Moduli space parametrising G-clusters ([Ishii])}
\]

\[
= \mathcal{M}_\theta(Q, R) : \text{Moduli of } \theta\text{-stable representations of the bound McKay quiver}
\]

Definition: Let \(G \subset \text{GL}(2, \mathbb{C}) \) be a finite subgroup. A **G-graph** is a subset \(\Gamma \subset \mathbb{C}[x, y] \) such that it contains \(\text{dim } \rho \) elements in each irreducible representation \(\rho \).

Motivation: For any \(G \)-cluster \(Z \in \text{G-Hilb}(\mathbb{C}^2) \), the basis of \(\mathcal{O}_Z \) as a vector space is a G-graph. Given a G-graph \(\Gamma \), all the G-clusters with \(\Gamma \) as basis for \(\mathcal{O}_Z \) form an open set \(U_\Gamma \subset \text{G-Hilb}(\mathbb{C}^2) \), and the collection of distinguished \(\{ U_\Gamma \}_{\Gamma} \) covers G-Hilb(\mathbb{C}^2).

General construction

- **Fact:** \(\text{G-Hilb}(\mathbb{C}^2) = G/A\text{-Hilb}(A\text{-Hilb}(\mathbb{C}^2)) \).
- The symmetry of the continued fraction \(\frac{2n}{a} \) implies that (i) the coordinates along the exceptional divisor \(E \subset A\text{-Hilb}(\mathbb{C}^2) \) are also symmetric, and (ii) \(\beta \) is an involution on the middle curve \(E_m \cong \mathbb{P}^1 \) on the exceptional divisor on \(A\text{-Hilb}(\mathbb{C}^2) \).
- Every G-graph \(\Gamma \) is either the unique extension of the union of two symmetric A-graphs, or it comes from a choice on the special irreducible representations \(\rho_\beta^+ \) and \(\rho_\beta^- \).

\[
\langle \beta \rangle \subset A\text{-Hilb}(\mathbb{C}^2) \Rightarrow \mathbb{C}^2/A
\]

\[
\begin{array}{c}
\Gamma \\
\rho_\beta^+ \rho_\beta^- \\
G\text{-Hilb}(\mathbb{C}^2) \\
A\text{-Hilb}(\mathbb{C}^2)/\langle \beta \rangle
\end{array}
\]

\[
\begin{array}{c}
\uparrow \\
(1, 1) \times 2 \text{ singularities}
\end{array}
\]

Orbifold McKay quiver

Let \(\text{Irr } A = \{ \rho_0, \ldots, \rho_{2n-1} \} \) the irreducible representations of \(A \). The McKay quiver of \(A = \frac{1}{2n}(1, a) \) can be written on a torus, and the quotient \(G/A \cong \mathbb{Z}/2 = \langle \beta \rangle \) acts on \(\text{Irr } A \) by conjugation. Then

\[
\text{McKay quiver of } G = \mathbb{Z}/2\text{-orbifold of the McKay quiver of } A
\]

Fixed points \(\rho_j \in \text{Irr } A \) by \(\beta \) become two 1-dimensional representations \(\rho_j^+ \) and \(\rho_j^- \). Free orbits \(\{ \rho_i^+, \rho_i^- \} \) by \(\beta \) become one 2-dimensional representation \(V_r \).

Explicit description of a open cover of \(Y \)

Let \((Q, R) \) the bound McKay quiver, \(d = (\text{dim } \rho_i)_{i \in Q_0} \) the dimension vector and the generic stability condition \(\theta = (-\sum_{i \in Q_0} C_i \text{dim } \rho_i, 1, \ldots, 1) \). This choice of \(\theta \) implies that there exist \(\text{dim } \rho_i \) nonzero paths from the distinguished source \(\rho_0^+ \) to every other irreducible representation \(\rho_j \).

Any G-graph \(\Gamma \) produces the choices for nonzero maps in the representation space of \((Q, R)\). Therefore, given any G-graph \(\Gamma \) we can associate an open set \(M_\Gamma \subset \mathcal{M}_\theta(Q, R) \), and the \(\{ M_\Gamma \}_{\Gamma} \) covers \(\mathcal{M}_\theta(Q, R) \).

Using the relations \(R \) of \(Q \) the equations of \(M_\Gamma \) are explicitly obtained.

Example: Let \(G = \langle \frac{1}{2}(1, 7), \beta \rangle \). The minimal resolution \(Y \) consists of 5 open sets given by the G-graphs \(\Gamma_2, \ldots, \Gamma_5 \). For instance, for the G-graph \(\Gamma_0 \) we have:

\[
\begin{array}{c}
\Gamma_0 \\
\rho_0^+ \rho_0^- \\
G\text{-Hilb}(\mathbb{C}^2) \\
A\text{-Hilb}(\mathbb{C}^2)/\langle \beta \rangle
\end{array}
\]

and \(M_{\Gamma_1} \) is given by \((cd = (1 + ca^2)E) \subset \mathbb{C}^3 \)

Remaining open sets for \(\mathcal{M}_\theta(Q, R) \) as hypersurfaces in \(\mathbb{C}^3 \):

- \(M_{\Gamma_2} : b_2^x E = (b_2^x + 1)D^+ \)
- \(M_{\Gamma_3} : b_3^2 G = (b_3^2 + 1)D^- \)
- \(M_{\Gamma_4} : \varepsilon f = (\varepsilon f - 1)D_x \)
- \(M_{\Gamma_5} : gh = (g^2 h - 1)D_- \)