Resolution of dihedral orbifolds

Alvaro Nolla de Celis, alnolla@gmail.com (Nagoya University)

Let $G \subset GL(2, \mathbb{C})$ be the following small binary dihedral group:

$$G = \left\langle \alpha = \begin{pmatrix} \varepsilon & 0\\ 0 & \varepsilon^a \end{pmatrix}, \ \beta = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} : \ \varepsilon^{2n} = 1, \ (2n, a) = 1, \ a^2 \equiv 1 \pmod{2n} \right\rangle$$

where $A = \langle \alpha \rangle = \frac{1}{2n}(1, a)$ is a maximal normal of index 2, and we consider the minimal resolution $Y \to \mathbb{C}^2/G$.

Y = G-Hilb (\mathbb{C}^2) : Moduli space parametrising G-clusters ([Ishii]) = $\mathcal{M}_{\theta}(Q, R)$: Moduli of θ -stable representations of the bound McKay quiver

Definition: Let $G \subset GL(2, \mathbb{C})$ be a finite subgroup. A *G*-graph is a subset $\Gamma \subset \mathbb{C}[x, y]$ such that it contains dim ρ elements in each irreducible representation ρ .

Motivation: For any G-cluster $\mathcal{Z} \in G$ -Hilb(\mathbb{C}^2), the basis of $\mathcal{O}_{\mathcal{Z}}$ as a vector space is a G-graph. Given a G-graph Γ , all the G-clusters with Γ as basis for $\mathcal{O}_{\mathcal{Z}}$ form an open set $U_{\Gamma} \subset G$ -Hilb(\mathbb{C}^2), and the collection of distinguished $\{U_{\Gamma_i}\}_{i \in I}$ covers G-Hilb(\mathbb{C}^2).

General construction

• Fact: G-Hilb(\mathbb{C}^2) = G/A-Hilb(A-Hilb(\mathbb{C}^2)).

• The symmetry of the continued fraction $\frac{2n}{a}$ implies that (i) the coordinates along the exceptional divisor $E \subset A$ -Hilb(\mathbb{C}^2) are also symmetric, and (ii) β is an involution on the middle curve $E_m \cong \mathbb{P}^1$ on the exceptional divisor on A-Hilb(\mathbb{C}^2).

• Every G-graph Γ is either the unique extension of the union of two symmetric A-graphs, or it comes from a choice on the special irreducible representations ρ_q^+ and ρ_q^- .

Orbifold McKay quiver

Let Irr $A = \{\rho_0, \ldots, \rho_{2n-1}\}$ the irreducible representations of A. The McKay quiver of $A = \frac{1}{2n}(1, a)$ can be written on a torus, and the quotient $G/A \cong \mathbb{Z}/2 = \langle \beta \rangle$ acts on Irr A by conjugation. Then

Fixed points $\rho_j \in \operatorname{Irr} A$ by β become two 1-dimensional representations ρ_j^+ and ρ_j^- . Free orbits $\{\rho_r, \rho_{ar}\}$ by β become one 2-dimensional representation V_r .

Explicit description of a open cover of Y

Let (Q, R) the bound McKay quiver, $\mathbf{d} = (\dim \rho_i)_{i \in Q_0}$ the dimension vector and the generic stability condition $\theta = (-\sum_{\rho_i \in \operatorname{Irr} G} \dim \rho_i, 1..., 1)$. This choice of θ implies that there exist $\dim \rho_j$ nonzero paths from the distinguished source ρ_0^+ to every other irreducible representation ρ_j .

Any G-graph Γ produces the choices for nonzero maps in the representation space of (Q, R). Therefore, given any G-graph Γ we can associate an open set $M_{\Gamma} \subset \mathcal{M}_{\theta}(Q, R)$, and the $\{M_{\Gamma_i}\}_{i \in I}$ covers $\mathcal{M}_{\theta}(Q, R)$.

Using the relations R of Q the equations of M_{Γ} are explicitly obtained.

Example: Let $G = \langle \frac{1}{12}(1,7), \beta \rangle$. The minimal resolution Y consists of 5 open sets given by the G-graphs $\Gamma_2, \ldots, \Gamma_5$. For instance, for the G-graph Γ_0 we have:

and M_{Γ_1} is given by $(cd = (1 + cd^2)E) \subset \mathbb{C}^3$

Remaining open sets for $\mathcal{M}_{\theta}(Q, R)$ as hypersurfaces in \mathbb{C}^3 :

 $\begin{array}{l} M_{\Gamma_2}: \ b_2^+E=(b_2^++1)D^+\\ M_{\Gamma_3}: \ b_2^-G=(b_2^-+1)D^-\\ M_{\Gamma_4}: \ ef=(e^2f-1)D_+\\ M_{\Gamma_5}: \ gh=(g^2h-1)D_- \end{array}$