Resolution of dihedral orbifolds

Alvaro Nolla de Celis，alnolla＠gmail．com
 （Nagoya University）

Let $G \subset \mathrm{GL}(2, \mathbb{C})$ be the following small binary dihedral group：

$$
G=\left\langle\alpha=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{a}
\end{array}\right), \beta=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right): \varepsilon^{2 n}=1,(2 n, a)=1, a^{2} \equiv 1(\bmod 2 n)\right\rangle
$$

where $A=\langle\alpha\rangle=\frac{1}{2 n}(1, a)$ is a maximal normal of index 2 ，and we consider the minimal resolution $Y \rightarrow \mathbb{C}^{2} / G$ ．

$$
\begin{aligned}
Y & =G \text { - } \operatorname{Hilb}\left(\mathbb{C}^{2}\right): \text { Moduli space parametrising G-clusters }([\text { Ishii }]) \\
& =\mathcal{M}_{\theta}(Q, R): \text { Moduli of } \theta \text {-stable representations of the bound McKay quiver }
\end{aligned}
$$

Definition：Let $G \subset \mathrm{GL}(2, \mathbb{C})$ be a finite subgroup．A G－graph is a subset $\Gamma \subset \mathbb{C}[x, y]$ such that it contains $\operatorname{dim} \rho$ elements in each irreducible representation ρ ．

Motivation：For any G－cluster $\mathcal{Z} \in G$－ $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$ ，the basis of $\mathcal{O}_{\mathcal{Z}}$ as a vector space is a G－graph．Given a G－graph Γ ，all the G－clusters with Γ as basis for $\mathcal{O}_{\mathcal{Z}}$ form an open set $U_{\Gamma} \subset G$－ $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$ ，and the collection of distinguished $\left\{U_{\Gamma_{i}}\right\}_{i \in I}$ covers G－ $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$ ．

General construction

－Fact：G－ $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)=G / A-\operatorname{Hilb}\left(A-\operatorname{Hilb}\left(\mathbb{C}^{2}\right)\right)$ ．
－The symmetry of the continued fraction $\frac{2 n}{a}$ implies that（i）the coordinates along the exceptional divisor $E \subset A$－ $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$ are also symmetric，and（ii）β is an involution on the middle curve $E_{m} \cong \mathbb{P}^{1}$ on the exceptional divisor on A－ $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$ ．
－Every G－graph Γ is either the unique extension of the union of two symmetric A－graphs，or it comes from a choice on the special irreducible representations ρ_{q}^{+} and ρ_{q}^{-}．
$\langle\beta\rangle \curvearrowright A-\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$

Orbifold McKay quiver

Let $\operatorname{Irr} A=\left\{\rho_{0}, \ldots, \rho_{2 n-1}\right\}$ the irreducible representations of A ．The McKay quiver of $A=\frac{1}{2 n}(1, a)$ can be written on a torus，and the quotient $G / A \cong \mathbb{Z} / 2=\langle\beta\rangle$ acts on $\operatorname{Irr} A$ by conjugation．Then

McKay quiver of $G=\mathbb{Z} / 2$－orbifold of the McKay quiver of A

Fixed points $\rho_{j} \in \operatorname{Irr} A$ by β become two 1－dimensional representations ρ_{j}^{+}and ρ_{j}^{-}． Free orbits $\left\{\rho_{r}, \rho_{a r}\right\}$ by β become one 2－dimensional representation V_{r} ．

Explicit description of a open cover of Y

Let (Q, R) the bound McKay quiver， $\mathbf{d}=\left(\operatorname{dim} \rho_{i}\right)_{i \in Q_{0}}$ the dimension vector and the generic stability condition $\theta=\left(-\sum_{\rho_{i} \in \operatorname{Irr} G} \operatorname{dim} \rho_{i}, 1 \ldots, 1\right)$ ．This choice of θ im－ plies that there exist $\operatorname{dim} \rho_{j}$ nonzero paths from the distinguished source ρ_{0}^{+}to every other irreducible representation ρ_{j} ．

Any G－graph Γ produces the choices for nonzero maps in the representation space of (Q, R) ．Therefore，given any G－graph Γ we can associate an open set $M_{\Gamma} \subset \mathcal{M}_{\theta}(Q, R)$ ，and the $\left\{M_{\Gamma_{i}}\right\}_{i \in I}$ covers $\mathcal{M}_{\theta}(Q, R)$ ．

Using the relations R of Q the equations of M_{Γ} are explicitly obtained．
Example：Let $G=\left\langle\frac{1}{12}(1,7), \beta\right\rangle$ ．The minimal resolution Y consists of 5 open sets given by the G－graphs $\Gamma_{2}, \ldots, \Gamma_{5}$ ．For instance，for the G－graph Γ_{0} we have：

Remaining open sets for $\mathcal{M}_{\theta}(Q, R)$

$$
\text { as hypersurfaces in } \mathbb{C}^{3}:
$$

$M_{\Gamma_{2}}: b_{2}^{+} E=\left(b_{2}^{+}+1\right) D^{+}$
$M_{\Gamma_{3}}: b_{2}^{-} G=\left(b_{2}^{-}+1\right) D^{-}$
$M_{\Gamma_{4}}: e f=\left(e^{2} f-1\right) D_{+}$
$M_{\Gamma_{5}}: g h=\left(g^{2} h-1\right) D_{-}$

