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1. Introduction

This talk is based on joint a work with Yuji Sano.
Let M be a compact complex manifold with c1(M) > 0, i.e. a Fano manifold,

with dimM = m.
The first Chern class c1(M) is represented as a de Rham class by a closed positive

(1, 1)-form

ω =
√
−1
2π

m∑
i,j=1

gij̄ dzi ∧ dzj ,

with (gij̄) a positive definite Hermitian matrix.
It is well known, or by definition, that

dω = 0 ⇐⇒ ω is a Kähler form.

We regard c1(M) as a Kähler class (the space of Kähler forms).
On the other hand, by the theory of characteristic classes (Chern-Weil Theory),

c1(M) is represented by a Ricci form

Ricω := −
√
−1
2π

∂∂ log det(gij̄)

and its coefficient

Rij̄ := − ∂2

∂zi∂zj
log det(gij̄)

is called the Ricci curvature.

DEF : ω is called a Kähler-Einstein metric if

Ricω = ω

or equivalently
Rij̄ = gij̄ .

But in general Ricω 6= ω, and we have for some smooth function h

Ricω = ω +
√
−1
2π

∂∂h.

Problem : Find another ω̃ such that

Ric
eω = ω̃.

If we put

ω̃ = ω +
√
−1

2π
∂∂ϕ,
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the Einstein equation
Ric

eω = ω̃

is equivalent to the complex Monge-Ampère equation

det(gij̄ + ∂2ϕ
∂zi∂zj̄ )

det(gij̄)
= e−ϕ+h.

Thus, starting from arbitrary ω ∈ c1(M), finding a Kähler-Einstein metric with
ω̃ ∈ c1(M) is reduced to solving the non-linear PDE

det(gij̄ + ∂2ϕ
∂zi∂zj̄ )

det(gij̄)
= e−ϕ+h.

Conjecture (Yau-Tian-Donaldson) :
The existence of a Kähler-Einstein metric will be
equivalent to GIT stability (K-polystability).

2. Obstructions

On the one hand there are obstructions to ∃ of K-E metrics by Matsushima,
the speaker, Bando-Mabuchi, Chen-Tian-Donaldson-Stoppa-Mabuchi, ... as below.

Matsushima (1956) : If M admits a K-E metric then the Lie algebra h(M) of
all holomorphic vector fields is reductive.

Futaki (1983) : ∃ Lie algebra character f : h(M) → C such that if ∃ K-E
metric then f = 0. This f is called the so-called “Futaki invariant”, and the precise
definition will be given below.

Bando-Mabuchi (1987) : K-energy is bounded from below.

Chen-Tian, Donaldson, Stoppa, Mabuchi, ... : Existence of K-E =⇒
K-stability.

The definition of K-stability is roughly stated as follows.

Definition
M is K-stable. ⇐⇒
For all C∗-equivariant degenarations (test configurations) of M , the central fiber
has positive Donaldson’s Futaki invariant. (The minus of the Futaki invariant is
the invariant used as the analogy to the numerical criterion of GIT.)

M is K-polystable. ⇐⇒
For all C∗-equivariant degenarations (test configurations) of M , the central fiber
has non-negative Futaki invariant, and the equality occurs only when the test con-
figuration is a product M ×C with non-trivial C∗-action on M . (In this case Futaki
invariant necessarily vanishes because we may also consider the opposite C∗-action.)

Definition of f : Recall that

ω =
√
−1
2π

∑
i,j

gij̄ dzi ∧ dzj ,
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ρω = −
√
−1
2π

∂∂ log det(gij̄),

and

ρω − ω =
√
−1
2π

∂∂h, h ∈ C∞(M).

Then f is defined by

f(X) =
∫

M

Xh ωm

for X ∈ h(M).

Theorem (1) f is independent of ω ∈ c1(M).
(2) f 6= 0 implies nonexistence of KE metric.

The definition of f was reformulated by Donaldson only using algebraic geometry
in a way that can be applied to schemes. But I will not go into the detail here.

3. Known existence results

So far, I talked about obstructions. Next, I turn to Existence Results of K-E
metrics, due to Siu, Tian, Nadel and their variants.

Siu (1988) : Enough symmetries =⇒ ∃ K-E metric .

Tian (1987) : α(M) > m
m+1 =⇒ ∃ K-E metric.

Nadel (1988) :
@ of K-E metric =⇒ ∃ of proper multiplier ideal sheaf.
i.e. @ of proper multiplier ideal sheaf =⇒ ∃ of K-E metric.

Demailly-Kollàr(2001) :
Simplification of Nadel’s arguments, applications to orbifolds.

Boyer-Galicki, Kollàr :
Applications to Sasaki-Einstein metrics.

Demailly-Kollàr version of multiplier ideal sheaves
Let ψ be an ωg-plurisubharmonic function , i.e., a real-valued upper semi-continuous
function satisfying ωg +

√
−1
2π ∂∂̄ψ ≥ 0 in the current sense. The multiplier ideal

sheaf with respect to ψ is the ideal sheaf defined by the following presheaf

Γ(U, I(ψ)) = {f ∈ O(U) |
∫

U

|f |2e−ψdV < ∞}

where U is an open subset of M .

To prove the existence of KE metric, we consider the family of Monge-Ampére
equations

det(gij̄ + ϕij̄)
det(gij̄)

= e−tϕ+h

for t ∈ [0, 1].
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If there is no KE metric, there exists t0 < 1 such that {ϕt} is the solution
{ϕt}0≤t<t0 and that

inf
M

(ϕt − sup
M

ϕt) → −∞

as t → t0. Note that solutions exist on open set of t’s by Banach space implicit
function theorem.

This is because of

Theorem(Yau)
If {ϕt} is bounded in C0 then {ϕt} is bounded in C3.

Thus if {ϕt} is bounded in C0 then {ϕt} is uniformly bounded and equi-continuous
up to second order derivatives.

Thus by Ascoli-Arzela, a suitable subsequence {ϕt} converges to the solution ϕt0

of the Monge-Ampère equation for t = t0. Then the set of t’s such that a solution
ϕt exits is a non-empty open and closed subset of t’s. Thus we have a solution for
t = 1. This is a contradiction because we assume there is no KE metric.

Therefore we must have
inf
M

(ϕt − sup
M

ϕt) → −∞

as t → t0.

Let M be a Fano manifold of dimension m.
Let G be a compact subgroup of Aut(M).
Assume that M does not a G-invariant Kähler-Einstein metric.
Let γ ∈ (m/(m+1), 1). This number (m/(m+1) arises from an analytic inequality
for Minge-Ampère equations, called the Harnack inequality. This is too much to
talk about here, and the audience should take it granted as something necessary
from PDE theory.
Then there exists a sequence {ϕtk

}∞k=1 such that
² tk → t0 as k → ∞,
² there exists ϕ∞ = limk→∞(ϕtk

− supM ϕtk
) in L1-topology, which is an ωg-psh

function, and
² I(γϕ∞) is a proper multiplier ideal sheaf, i.e, I(γϕ∞) is neither 0 nor OM .

4. The relation between the MIS and the invariant f

Now I turn to the question I want to raise in This talk :
What is the relation between the MIS and the invariant f ?

There has been an answer to this question by Nadel stated as
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Theorem (Nadel, 1995)
Suppose M does not admit a K-E metric, and let V be the support of the MIS.
For v ∈ h(M) with f(v) = 0 we have

V 6⊂ Zero+(v) := {p ∈ Zero(v) | <((div(v))(p) > 0}.
Here div(v)volg = Lvvolg. Notice that div(v) is independent of the choice of g
along Zero(v).

We extend this in several ways.

² to get some more informations on Fano manifolds,

² to show the existence of MIS for Kähler-Ricci solitons,

² to study the MIS arising from the non-convergence of Kähler-Ricci flow and study
the relation between MIS and f .

So, we study three types of MIS.

KE-MIS : due to Nadel, arising from the failure of solving Monge-Ampère equa-
tions for Kähler-Einstein metrics by continuity method.

KRS-MIS : Arising from the failure of solving Monge-Ampère equations for Kähler-
Ricci solitons by continuity method.

KRF-MIS : Arising from the failure of convergence of Kähler-Ricci flow.

Let M be a Fano manifold,
G be a compact subgroup of Aut(M),
T r maximal torus of G.
For any G-invariant Kähler metric g with

ωg :=
√
−1
2π

gij̄dzi ∧ dzj ∈ c1(M)

consider the Hamiltonian T r-action with the moment map µg : M → tr∗.
For ξ ∈ tr we put

D≤0(ξ) := {y ∈ µ(M) | < y, ξ > ≤ 0}.

Theorem (Futaki-Sano)
Suppose M does not admit a K-E metric, and let V be the support of the KE-
MIS. Let ξ ∈ tr ⊂ h(M) satisfy f(vξ) > 0 where vξ is the holomorphic vector field
corresponding to ξ. Then

µg(V ) 6⊂ D≤0(ξ)
for any G-invariant Kähler metric g in c1(M).
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Corollary
Let M be the one-point blow-up of CP2. Then V is the exceptional divisor. This
V destabilizes slope stability in the sense of Ross-Thomas.

Definition (Slope stability w.r.t. V ⊂ M):
Put M = blow up of M × C along V × 0.
The central fiber is regarded as a degenaration of M .
Compute Donaldson’s algebraic reformulation of f .
If it has the right sign for any V , then M is said to be slope stable.

Outline of Proof of Theorem 2

Let h ∈ C∞(M) satisfy Ricg − ωg = i∂∂h.
Suppose

det(gij̄ + ϕij̄)
det(gij̄)

= e−tϕ+h

has solutions only for t ∈ [0, t0), t0 < 1.

Then we have a MIS with support V .

Fact 1 : (Nadel, based on earlier estimates by Siu and Tian)
Let K ⊂ M − V be a compact subset. Then∫

K

ωm
gt

→ 0

as t → t0.

Fact 2 :
µg(p) ∈ D≤0(ξ) ⇐⇒ (div(vξ))(p) ≥ 0

where
div(vξ)(ehωm) = Lvξ

(ehωm).
Fact 3 :

t

t − 1
f(vξ) =

∫
M

div(vξ)ωm
t .

By Fact 3 and our assumption f(vξ) > 0, we have for t ∈ (δ, t0) with t0 < 1∫
M

div(vξ)ωm
t =

t

t − 1
f(vξ) < −C

with C > 0 independent of t. Suppose µg(V ) ⊂ D≤0(ξ) = {div(vξ) ≥ 0}.
Choose ² > 0 small and put

W² := {p ∈ M |div(vξ)(p) ≤ −²}.

Then W² ⊂ M − V compact. Apply Fact 1 to W² to get∫
Wε

ωm
gt

→ 0

as t → t0.
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But then

−C ≥
∫

M

div(vξ)ωm
t =

∫
M−Wε

div(vξ)ωm
t +

∫
Wε

div(vξ)ωm
t

≥ −2²vol(M, g)

as t → t0, a contradiction ! This completes the proof.

KRS-MIS
Let M be a Fano manifold. Choose ωg ∈ c1(M). Let v ∈ hr(M) be in the reductive
part hr(M) of h(M).

Definition : We say (g, v) is a Kähler-Ricci soliton
⇐⇒ Ric(ωg) − ωg = Lv(ωg).

Then =(v) is necessarily Killing.

Start with an initial metric g0 with ω0 := ωg0 ∈ c1(M). Let h0 and θv,0 be the
smooth functions such that

Ric(ω0) − ω0 = i∂∂h0,

∫
M

eh0ωm
0 =

∫
M

ωm
0 ,

ivω0 = i∂θv,0,

∫
M

eθv,0ωm
0 =

∫
M

ωm
0 .

Consider for t ∈ [0, 1]

det(g0
ij̄ + ϕtij̄) = det(g0

ij̄)e
h0−θv,0−vϕt−tϕt .

The solution for t = 1 gives the Kähler-Ricci soliton.
Zhu has shown that t = 0 always has a solution.
Implicit function theorem shows for some ² > 0, all t ∈ [0, ²) have a solution.

Suppose we only have solutions on [0, t∞), t∞ < 1.
Let θv,g satisfy

ivωg = i∂θv,g,

∫
M

eθv,gωm
g =

∫
M

ωm
g .

Definition :

fv(w) =
∫

M

w(hg − θv,g)eθv,gωm
g

This fv is independent of g with ωg ∈ c1(M).

Theorem (Tian-Zhu) There exists a unique v ∈ hr(M) such that

fv(w) = 0 for all w ∈ hr(M).

Theorem (F-Sano)
Let K be the compact subgroup such that k ⊗ C = hr(M). Suppose there is no
KRS. Then we get MIS and its support Vv satisfies

Vv 6⊂ Z+(w) for ∀w ∈ hr(M).
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We can apply this to prove the existence of KRS on the one point blow-up of CP2.

KRF-MIS

Theorem (Phong-Sesum-Sturm)
One gets MIS from the failure of convergence of normalized Kähler-Ricci flow:

∂g

∂t
= −Ric(g) + g.

If we put gtij̄ = gij̄ + ϕtij̄ the Ricci flow is equivalent to

∂ϕt

∂t
= log

det(gij̄ + ϕtij̄)
det(gij̄)

+ ϕt − h0

ϕ0 = c0

Yanir Rubinstein modified Phong-Sesum-Sturm’s MIS using the idea of Demailly-
Kollàr:

ϕt −
∫

M

ϕtω
m −→ ϕ∞ almost psh

as t → ∞.
Let Vγ be the MIS for ψ = γϕ∞, γ ∈ ( m

m+1 , 1), defined by

Γ(U, I(ψ)) = { f ∈ OM (U) |
∫

U

|f |2 e−ψ ωm
g < ∞}.

This MIS satisfies
Hq(M, I(ψ)) = 0 for ∀q > 0.

Yuji Sano’s work:

Let M be a toric Fano manifold, and put

TR = Tm, TC = (C∗)m,

NR = JtR.

Let W (M) = N(TC)/TC be the Weyl group.

Theorem (Wang-Zhu) There exists a KRS (gKRS , vKRS).

Theorem (Sano) Suppose dimN
W (M)
R = 1. Let σt = exp(tvKRS), 0 < γ < 1

and ω a TR-invariant Kähler form. Then the support of Rubinstein’s KRF-MIS of
exponent γ is equal to the support of the MIS of exponent γ obtained from the
Kähler potentials of {(σ−1

t )∗ω}.

Using this Sano computed the support of KRF-MIS for various γ on some examples.
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