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1 Introduction

The purpose of this talk is to survey the developemnt of the Nevanlinna theory in higher dimensions, and
to discuss recent results obtained by newly established Second Main Theorems (S.M.T. for abbrevation).
We will also discuss a link to arithmetic problem. The plan of this talk is as follows:

(i) A. Bloch (1926∼), H. Cartan (1928∼): the target P1(C) ⇒ Pn(C).

(ii) H.&J. Weyl (1938∼), A.L. Ahlfors (1941): the target P1(C) ⇒ Pn(C).

(iii) W. Stoll (1953∼): the domain C ⇒ Cm, f : Cm → Pn(C).

(iv) A. Bloch (1926∼): f : C → V , algebraic variety.

(v) Griffiths ét al. (1972∼): f : Cm → V n dominant (f(Cm) ⊃ open subset 6= ∅) into algebraic
variety V .

(vi) Bloch-Ochiai’s Theorem (1926/77): f : C → V with projective algebraic V and q(V ) > dimV must
algebraically degenerate.

(vii) Logarithmic Bloch-Ochiai’s Theorem (Noguchi 1977∼1981): Unifying Borel’s Theorem (1897) and
Bloch-Ochiai’s ⇐ Inequality of S.M.T. type for f : C → V and a divisor D on V ; the extension to
Kähler V by Noguchi-Winkelmann (2002).

2 Conjectures for holomrophic curves

Referring to the above mentioned results, one may pose the following:

Fundamental Conjecture for holomorhic curves. Let X be a smooth compact algebraic variety,
and let D =

∑
j Dj be a reduced s.n.c. (simple normal crossing) divisor on X with smooth Dj. Then,

for an algebraically non-degenerate f : C → X we have

(2.1) Tf (r; L(D)) + Tf (r;KX) ≤
∑

j

N1(r; f∗Dj) + εTf (r)||, ∀ε > 0.
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This implies

Green-Griffiths’ Conjecture (1980). If X is a variety of (log) general type, then every entire
holomeophic curve f : C → X is algebraically degenerate.

This follows from a contradictory inequality: Tf (r) ≤ εTf (r)|| by (2.1). Then Green-Griffiths’ Conjec-
ture implies

Kobayashi Conjecture (1970). If X ⊂ Pn(C) is a general hypersurface of deg X ≥ 2n − 1, then X

is Kobayashi hyperbolic.

The above implication is supported by

Theorem 2.2 (C. Voisin (1996/98)). Let X ⊂ Pn(C) be a general hypersurface of deg ≥ 2n − 1 for
n ≥ 3. Then every subvariety of X is of general type.

3 Yamanoi’s abc Theorem (S.M.T.)

R. Nevanlinna dealt with the distibution of the roots of f(z)− a = 0 for a meromorhic function f and
constant values a. He conjectured the same to hold for moving targets a(z) of small order functions; this
was called Nevanlinna’s Conjecture.

The term “moving target” is due to W. Stoll, but such a study can go back to E. Borel, Acta 1897.
Nevanlinna’s Conjecture was proved with non-truncated counting functions (Osgood (1985), Steinmetz
(1986)), and as well for moving hyperplanes of Pn(C) (M. Ru-W. Stoll (1991)).

In Acta 2004 [12], K. Yamanoi proved the best S.M.T. for meromorphic functions with respect to moving
targets, where the counting functions are truncated to level 1. It is considered to be “abc Theorem” for
meromorphic functions, presented by Carlo Gasbarri at Seminaire Bourbaki in March 2008 (“The strong
abc conjecture over function fields, after McQuillan and Yamanoi”).

Let p : X → S be a surjective morphism between smooth projective algebraic varieties with relative
canonical bundle KX/S .

Theorem 3.1 (Yamanoi, 2004/06). Assume that

• dim X/S = 1 ;

• D ⊂ X is a reduced divisor ;

• f : C → X is algebraically nondegenerate ;

• g = p ◦ f : C → S.

Then for ∀ε > 0, ∃C(ε) > 0 such that

(3.2) Tf (r; L(D)) + Tf (r;KX/S) ≤ N1(r; f∗D) + εTf (r) + C(ε)Tg(r)||ε.

His method consists of the following items:

• Ahlfors’ covering theory;

• Mumford’s theory of the compactification of curve moduli;

• The tree theory for point configurations.
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4 S.M.T. (abc) for semi-abelian varieties

Let A be an algebraic group admitting the representation,

0 → (C∗)t → A → A0 (abelian variety) → 0.

Such A is called a semi-abelian variety. The universal covering Ã ∼= Cn, n = dim A.

N.B. In E. Borel’s case we have that Pn(C)\ {n + 1 hyperplanes in general possition} = (C∗)n.

Let f : C → A be a holomorphic curve, and set

• Jk(A): the k-jet bundle over A; Jk(A) ∼= A × Cnk ;

• Jk(f) : C → Jk(A): the k-jet lift of f ;

• Xk(f): the Zariski closure of the image Jk(f)(C).

• Ik : Jk(A) ∼= A × Cnk → Cnk, the projection.

Lemma 4.1 (Extended Lemma on Logarithmic Derivative, Noguchi 1977).

(i) For a holomorphic curve f : C → A,

TIk◦Jk(f)(r) = O(log+(rTf (r))) ||.

(ii) For a holomorphic curve f : C → Ā into a compactification Ā of A,

m(r; Ik ◦ Jk(f)) def=
∫
|z|=r

log+ ‖Ik ◦ Jk(f)(z)‖ dθ

2π
= O(log+(rTf (r))) ||.

By making use of the jet projection method developed in Noguchi 1981 and Noguchi-Ochiai 1990 we
have the following S¿M.T.

Theorem 4.2 (N.-Winkelmann-Yamanoi, Acta 2002 & Forum Math. 2008, Yamanoi Forum Math. 2004).
Let f : C → A be algebraically non-degenerate.

(i) Let Z be an algebraic reduced subvariety of Xk(f) (k = 0). Then there exists a compactification
X̄k(f) of Xk(f) such that for Jk(f) : C → X̄k(f)

(4.3) TJk(f)(r; ωZ̄) = N1(r;Jk(f)∗Z) + o(Tf (r))||.

(ii) Moreover, if codim Xk(f)Z = 2, then

(4.4) TJk(f)(r; ωZ̄) = o(Tf (r))||.

(iii) If k = 0 and Z is an effective divisor D on A, then Ā is smooth, equivariant, and independent of
f ; furthermore, (4.3) takes the form

(4.5) Tf (r; L(D̄)) = N1(r; f∗D) + o(Tf (r; L(D̄)))||.

N.B. (1) In Noguchi-Winkelmann-Yamanoi Acta 2002, we proved (4.5) with a higher level truncated
counting function Nk(r; f∗D) for some special compactification of A and with a better remainder term
“O(log+(rTf (r)))”.

(2) For the truncation of level 1, the remainder term “εTf (r)” cannot be replaced by “O(log+(rTf (r)))”.

The trunction level 1 in (4.3) and (4.5) implies a number of interesting applications as given in the
next three sections.
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5 Application I: Degeneracy theorems

Here we apply Theorem 4.2 to study the algebraic degeneracy problem for holomorphic curves into
some algebraic varieties.

Theorem 5.1 (Noguchi-Winkelmann-Yamanoi, J. Math. Pure. Appl. 2007). Let X be an algebraic va-
riety such that

(i) The logarithmic irregularity q̄(X) = dimX;

(ii) The logarithmic Kodaira dimension κ̄(X) > 0;

(iii) the quasi-Albanese map X → A is proper.

Then every holomorphic curve f : C → X is algebraically degenerate. Moreover, the normalization of
f(C)

Zar
is a semi-abelian variety which is finite étale over a translate of a proper semi-abelian subvariety

of A.

N.B. The case “q̄(X) > dimX” was “Log Bloch-Ochiai’s Theorem” (Noguchi 1977-’81). The proof for
the case “q̄(X) = dimX” requires the new S. M. Theorem 4.2.

Specializing X ⊂ Pn(C), we have

Theorem 5.2 Let D =
∑q

j=1 Dj ⊂ Pn(C) be an s.n.c. divisor. Assume that q > n and deg D > n + 1.
Then ∀f : C → Pn(C) \ D is algebraically degenerate.

The special case of n = 2, q = 3 was conjecture by M. Green:

Theorem 5.3 (Conjectured by M. Green, 1974). Assume that f : C → P2(C) omits two lines {xi =
0}, i = 1, 2 , and the conic {x2

0 + x2
1 + x2

2 = 0}. Then f is algebraically degenerate.

N.B. Theorem 5.3 is optimal in two senses, the number of irreducible components and the total degree.

(i) The number of irreducible components is 3.

(ii) The total degree is 4.

(iii) The case of 4 lines is due to E. Borel (1897).

(iv) There exists a dominant f : C2 → P2(C) \ D for deg D ≤ 3 (Buzzard-Lu (2000)).

It is likely that the above theorem will remain valid for singular divisors:

Question 1. Let D =
∑q

i=1 Di ⊂ Pn(C) be a divisor in general position (the codimensions of
intersections of Di’s decrease exactly as the number of Di’s), possibly with singularities.
Assume that q > n and deg D > n + 1. Then, is κ̄(Pn(C) \ D) > 0?

It is a very interesting question to decrease the number of irreducible components. The next step is

Question 2. Let D = D1 + D2 ⊂ P2(C) be an s.n.c. divisor with two conics Dj . Then, is an
arbitrary holomorphic curve f : C → P2(C) \ D algebraically degenerate?
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6 Application II: Intersection with zeros of theta

In S. Lang’s “Introduction to Transcendental Numbers”, Addison-Wesley, 1966, he wrote at the last
paragraph of Chap. 3:

“Independently of transcendental problem one can raise an interesting question of algebraic-analytic
nature, namely given a 1-parameter subgroup of an abelian variety (say Zariski dense), is its intersection
with a hyperplane section necessarily non-empty, and infinite unless this subgroup is algebraic?”

In 6 years later, J. Ax (Amer. J. Math. (1972)) took this problem:

Theorem 6.1 Let θ be a reduced theta function on Cm associated with a lattice Γ. Let L be a 1-
dimensional affine subspace of Cm. Then either (θ|L) is constant or has an infinite number of zeros;

(6.2) |{(θ|L) = 0} ∩ ∆(r)| ∼ r2.

N.B. There seems no reference that expicitly states the last part of the aforementioned Lang’s question,
|{(θ|L) = 0}/Γ| = ∞ in the case where the 1-parameter subgroup is Zariski dense. In fact, we deduce
this from the estimate (6.2) (Corvaja-Noguchi [4], 2009). Furthermore we can deduce more explicit, more
general and more geometric statements by making of S.M. Theorem 4.2.

Theorem 6.3 Let A be an abelian variety, let f : C → A be a 1-parameter analytic subgroup with
v = f ′(0), and let D be a reduced divisor on A with the Riemann form H(·, ·). Then

N(r; f∗D) = H(v, v)πr2 + O(log r) = (1 + o(1))N1(r; f∗D).

Theorem 6.4 Let A be a semi-abelian variety of dim A ≥ 2, let f : C → A be an algebraically non-
degenerate holomorphic curve, and let D be a reduced divisor on A.

(i) If the stabilizer St(D) = {a ∈ A; a + D = D} of D is finite, then there exists an irreducible
component D′ ⊂ D such that f(C) ∩ D′ is Zariski dense in D′; in particular, |f(C) ∩ D| = ∞.

(ii) If f is a 1-parameter subgroup and A is abelian, then |f(C) ∩ D| = ∞.

Examples. (1) “|St(D)| < ∞” is necessary. Set A = (C/Z[i])2, and f : z ∈ C → ([z], [z2]) ∈ A and
D = {0} × C/Z[i]. Then |f(C) ∩ D| = {0}.

(2) Set A = C/Z×C/Z[i]), and f : z ∈ C → ([z], [z]) ∈ A and D = {0} ×C/Z[i]. Then |f(C) ∩D| =
{0}.

7 Application III: A new unicity theorem

The following is a famous application of Nevnlinna-Cartan’s S.M.T.

Theorem 7.1 (i) (Unicity Theorem, Nevanlinna n = 1 (1926)) Let f, g : C → P1(C) be non-constant
meromorphic functions. Asuume that there are 5 distinct points {aj}5

j=1 ⊂ P1(C) such that
Supp f∗aj = Supp g∗aj , 1 ≤ j ≤ 5. Then f ≡ g.

(ii) (Fujimoto n ≥ 2 (1975)) Let f, g : C → Pn(C) be holomorphic curves such that at least one of them
is linearly non-degenerate, and let {Hj}3n+2

j=1 be hyperplanes in general position. If f∗Hj = g∗Hj

for all 1 ≤ j ≤ 3n + 2, then f ≡ g.
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There is an arithmetic problem of the similar nature:

Erdös’ Problem (1988) (Unicity problem for arithmetic recurrences). Let x, y be positive integers. Is
it true that

{p; prime, p|(xn − 1)} = {p; prime, p|(yn − 1)},∀n ∈ N

⇐⇒ x = y ?

The answer is Yes:

Theorem 7.2 (Corrales-Rodorigáñez and R. Schoof, JNT 1997; inplicitly, Shinzel 1960).

(i) Suppose that except for finitely many prime p ∈ Z

yn ≡ 1 (mod p) whenever xn ≡ 1 (mod p),∀n ∈ N.

Then, y = xh with some h ∈ N.

(ii) Let E be an elliptic curve defined over a number field k, and let P,Q ∈ E(k). Suppose that except
for finitely many prime p ∈ O(k)

nQ = 0 whenever nP = 0 in E(kp).

Then either Q = σ(P ) with ∃σ ∈ End(E), or both P,Q are torsion points.

In complex analysis, K. Yamanoi proved the following striking unicity theorem in Forum Math. 2004:

Theorem 7.3 (Yamanoi’s Unicity Theorem). Let Ai, i = 1, 2, be abelian varieties, let Di ⊂ Ai be
irreducible divisors such that St(Di) = {0}, and let fi : C → Ai be algebraically nondegenerate. Assume
that f−1

1 D1 = f−1
2 D2 as sets. Then there exists an isomorphism φ : A1 → A2 such that

f2 = φ ◦ f1, D1 = φ∗D2.

N.B. The new point is that we can determine not only f , but the moduli point of a polarized abelian
vareity (A,D) through the distribution of f−1D by an algebraically nondegenerate f : C → A.

We want to generalize this to semi-abelian varieties to have a uniformized theory.

Let Ai, i = 1, 2 be semi-abelian varieties:

0 → (C∗)ti → Ai → A0i → 0.

Let Di be an irreducible divisor on Ai such that St(Di) = {0} just for simplicity; this is not restrictive.

Theorem 7.4 (Corvaja-Noguchi [4], preprint 2009). Let fi : C → Ai (i = 1, 2) be non-degenerate
holomorphic curves. Assume that

(7.5) Supp f∗
1 D1∞

⊂ Supp f∗
2 D2∞

(as germs at ∞),

and that there is a positive constant c such that

(7.6) cN1(r, f∗
1 D1) ≤ N1(r, f∗

2 D2)||.

Then there exists a finite étale morphism φ : A1 → A2 such that

φ ◦ f1 = f2, D1 ⊂ φ∗D2.

If equality holds in (7.5), then φ is an isomorphism and D1 = φ∗D2.
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N.B. Assumption (7.6) is necessary by example.

The following is immediate from Theorem 7.4.

Corollary 7.7 (i) Let f : C → C∗ and g : C → E with an elliptic curve E be holomorphic and
non-constant. Then

f−1{1}
∞

6= g−1{0}
∞

.

(ii) If dim A1 6= dim A2 in Theorem 7.4, then

f−1
1 D1∞

6= f−1
2 D2∞

.

N.B. The difference of value distribution property caused by the infinite cyclic quotient 〈τ〉 cannot be
recovered by the choices of f and g even thoough they are allowed to be arbitrarily transcendental:

C
f→ C∗

↘
g

↓ /〈τ〉

E

8 Arithmetic Recurrence

It is natural to expect an analogue in arithmetic as in the new unicity Theorem 7.4.

For the linear tori we can prove such a result, but the case of a general semi-abeian variety is left to
be an open conjecture. We use the following notaion:

• OS be a ring of S-integers in a number field k;

• G1, G2 be linear tori;

• Di be reduced divisors on Gi defined over k;

• I(Di) be the defining ideals;

• every irreducible component of Di has a finite stabilizer, and St(D2) = {0}.

Theorem 8.1 (Corvaja-N., preprint 2009). Let gi ∈ Gi(OS) be elements generating Zariski-dense sub-
groups. Suppose that for infinitely many n ∈ N,

(8.2) (gn
1 )∗I(D1) ⊃ (gn

2 )∗I(D2).

Then there exists a finite étale morphism φ : G1 → G2, defined over k, and ∃h ∈ N such that φ(gh
1 ) = gh

2

and D1 ⊂ φ∗(D2).

N.B. (i) Theorem 8.1 is deduced from Corvaja-Zannier, Invent. Math. 2002.
(ii) By an example we cannot take h = 1 in general.
(iii) By an example, the condition on the stabilzers of D1 and D2 cannot be omitted.
(iv) Note that inequality (inclusion) (8.2) of ideals is assumed only for an infinite sequence of n, not

necessarily for all large n. On the contrary, we need the inequality of ideals, not only of their supports,
i.e. of the primes containing the corresponding ideals.
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(v) One might ask for a similar conclusion assuming only the inequality of supports. There is some
answer for it, but it is in a weaker form.
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