<table>
<thead>
<tr>
<th>Title</th>
<th>The supremum of Newton polygons of p-divisible groups with a given p-kernel type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harashita, Shushi</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 (2009), 2009: 9-19</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214912</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
The supremum of Newton polygons of p-divisible groups with a given p-kernel type

Shushi Harashita

27 October 2009

Abstract

We show that there exists the supremum of Newton polygons of p-divisible groups with a given p-kernel type, and provide an algorithm determining it. This is an unpolarized analogue of Oort conjecture related to determining the generic Newton polygon of each Ekedahl-Oort stratum in the moduli space of principally polarized abelian varieties.

1 Introduction

Let \mathcal{A}_g be the moduli space (over \mathbb{Z}) of principally polarized abelian varieties of dimension g. It is well-known that

$$\mathcal{A}_g(\mathbb{C}) = \text{Sp}_{2g}(\mathbb{Z}) \backslash \mathbb{H},$$

where \mathbb{H} is the Siegel upper half space

$$\mathbb{H} = \{ Z \in M_g(\mathbb{C}) \mid Z = Z^\dagger, \text{Im } Z > 0 \}.$$

From now on we write $\mathcal{A}_g := \mathcal{A}_g \otimes \mathbb{F}_p$. Here is an expectation (so-called a paving of \mathcal{A}_g):

1. There exists a natural decomposition of \mathcal{A}_g into finitely many locally closed subschemes:

 $$\mathcal{A}_g = \coprod_{\nu} \mathcal{T}_{\nu}.$$

2. Each \mathcal{T}_{ν} can be beautifully described.

Here this decomposition should be a decomposition by natural invariants of p-divisible groups of abelian varieties.
Let S be a connected scheme. Let p be a prime number. A p-divisible group over S of height h is an inductive system

$$X = \lim_{i \in \mathbb{N}} X_i,$$

of finite locally free group schemes X_i of rank p^i over S such that

$$X_i = X_{i+1}[p],$$

where $G[N] := \text{Ker}(N : G \to G)$. For example

$$\mathbb{Q}_p/\mathbb{Z}_p, \quad \mathbb{G}_m[p^\infty], \quad A[p^\infty]$$

with an abelian scheme A over S, where

$$G[p^\infty] = \lim_{i \in \mathbb{N}} G[p^i].$$

Let k be an algebraically closed field of characteristic p. We have two invariants of a p-divisible group X over k.

1. $\mathcal{N}(X) :=$ the isogeny class (= Newton polygon) of X, Dieudonné-Manin classification (1963);

2. $\mathcal{E}(X) :=$ the isomorphism class of $X[p]$, Kraft’s classification (1975).

We want to estimate $\mathcal{N}(X)$ from $\mathcal{E}(X)$.

Today’s aim: Let w be any p-kernel type. We give a combinatorial algorithm determining the Newton polygon $\xi(w)$ satisfying

$$\forall X, \quad \mathcal{E}(X) = w \implies \mathcal{N}(X) < \xi(w),$$

$$\exists Y, \quad \mathcal{E}(Y) = w \quad \text{and} \quad \mathcal{N}(Y) = \xi(w).$$

The existence of the optimal upper bound $\xi(w)$ is non-trivial.

The (principally) polarized case - Sp_{2g} (2007):

The problem obtained by replacing “p-divisible group” by “principally polarized p-divisible group”. We use the moduli space \mathcal{A}_g of principally polarized abelian varieties and the theory on stratifications on \mathcal{A}_g.

The unpolarized case - GL_r (Today):

No natural moduli space!

Instead we treat families of p-divisible groups and families of F-zips, and consider stratifications on those.
Geometric meaning in the polarized case:

\[\mathcal{A}_g = \prod_{\xi} \mathcal{W}_\xi^0 \] : Newton polygon stratification,

\[\mathcal{A}_g = \prod_{w} \mathcal{S}_w \] : Ekedahl-Oort stratification,

\[\mathcal{W}_\xi^0 := \{ A \in \mathcal{A}_g | \mathcal{N}(A) = \xi \}, \]

\[\mathcal{S}_w := \{ A \in \mathcal{A}_g | \mathcal{E}(A) = w \}. \]

Open problem:

(1) When \(\mathcal{W}_\xi^0 \cap \mathcal{S}_w = \emptyset \)?

(2) Can \(\mathcal{W}_\xi^0 \cap \mathcal{S}_w \) be beautifully described?

Today’s aim in the pol. case \(\iff \) When \(\mathcal{S}_w \subset \overline{\mathcal{W}_\xi^0} \)?

\section{Preliminaries}

\subsection{The Dieudonné theory}

Let \(K \) be a perfect field. Let \(A_K \) denote the ring

\[W(K)[\mathcal{F}, \mathcal{V}]/(\mathcal{F}a - a^\sigma \mathcal{F}, \mathcal{V}a^\sigma - a\mathcal{V}, \mathcal{FV} - p, \mathcal{VF} - p), \]

where \(\sigma \) is the Frobenius map \(W(K) \to W(K) \).

\textbf{Definition 2.1.} A Dieudonné module (DM) over \(K \) is a left \(A_K \)-module which is finitely generated as a \(W(K) \)-module.

\textbf{Theorem 2.2} (Dieudonné theory). \textit{There are categorical equivalences:}

\[\mathbb{D} : \{ \text{p-divisible groups}/K \} \simeq \{ \text{DM}/K \text{ free as } W(K) \text{-mod.} \} \]

\[\mathbb{D} : \{ \text{fin. } p\text{-group sch.}/K \} \simeq \{ \text{DM}/K \text{ of fin. length} \} \]

\subsection{Minimal p-divisible groups}

For a pair \((m, n) \) of coprime non-negative integers, we define a \(p \)-divisible group \(H_{m,n} \) over \(\mathbb{F}_p \) by

\[\mathbb{D}(H_{m,n}) = \bigoplus_{i=0}^{m+n-1} \mathbb{Z}_p e_i \]

with \(\mathcal{F}e_i = e_{i+n}, \mathcal{V}e_i = e_{i+m} \) and \(e_{i+m+n} = pe_i \ (i \in \mathbb{Z}_{\geq 0}) \).

Let \(\xi \) be a Newton polygon \(\sum_{i=1}^t (m_i, n_i) \) (a formal sum).

\textbf{Definition 2.3.} A \textit{minimal } \(p\)-\textit{divisible group} of \(\xi \) is the \(p \)-divisible group

\[H(\xi) = \bigoplus_{i=1}^{t} H_{m_i, n_i}. \]
2.3 Newton polygons

A Newton polygon $\xi = \sum_{i=1}^{t} (m_i, n_i)$ is regarded as a lower convex polygon with $(m_i + n_i)$ slopes $\lambda_i := m_i / (m_i + n_i)$ ($\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{t-1} \leq \lambda_t$).

$\zeta < \xi \iff \forall$ point of ζ is above or on ξ.

Let X be a p-divisible group over $k = \overline{k}$. We write $\mathcal{N}(X) = \xi$ if X is isogenous to $H(\xi)$.

Theorem 2.4 (Dieudonné-Manin classification). We have a natural bijection:

$\mathcal{N} : \{p\text{-divisible groups over } k\}/\text{isog.} \simeq \{\text{Newton polygons}\}$.

We call ξ symmetric if $\lambda_i + \lambda_{t+1-i} = 1$. Note $\mathcal{N}(A) := \mathcal{N}(A[p^\infty])$ for $A \in \mathcal{A}_g(k)$ is symmetric.

2.4 Final elements in the Weyl groups

Let W_G denote the Weyl group of $G = \text{GL}_r$ or Sp_{2g}.

$W_{\text{GL}_r} = \text{Aut}\{1, \ldots, r\}$,

$W_{\text{Sp}_{2g}} = \{w \in W_{\text{GL}_{2g}} \mid w(i) + w(2g + 1 - i) = 2g + 1\}$.

We define a subset $J W_G$ of W_G by

$J W_{\text{GL}_r} := \left\{ w \in W_{\text{GL}_r} \mid w^{-1}(1) < \cdots < w^{-1}(d), \begin{array}{c} w^{-1}(d + 1) < \cdots < w^{-1}(r) \end{array} \right\}$,

$J W_{\text{Sp}_{2g}} := \{ w \in W_{\text{Sp}_{2g}} \mid w^{-1}(1) < \cdots < w^{-1}(g) \}$,

where $J = \{s_1, \ldots, s_{r-1}\} \setminus \{s_d\}$ resp. $J = \{s_1, \ldots, s_g\} \setminus \{s_g\}$.

An element of $J W_G$ is called a final element of W_G.

A BT$_1$ over S is a finite locally free group scheme G over S such that

$\text{Ker}(F : G \to G(p)) = \text{Im}(V : G(p) \to G)$,

$\text{Im}(F : G \to G(p)) = \text{Ker}(V : G(p) \to G)$.

Let k be an algebraically closed field of characteristic p.

Theorem 2.5 (Kraft, Oort, Moonen, Wedhorn).

$\{\text{BT}_1 \text{'s over } k \text{ of rank } p^r \text{ and dimension } d\}_{/\simeq} \simeq J W_{\text{GL}_r}$

$\{\text{polarized BT}_1 \text{'s over } k \text{ of rank } p^{2g}\}_{/\simeq} \simeq J W_{\text{Sp}_{2g}}$.

Note that G over k is a BT$_1$ if and only if $G \simeq X[p]$ for a p-divisible group X over k. A polarization on G is a non-degenerate alternating form $\mathbb{D}(G) \otimes_k \mathbb{D}(G) \to k$ satisfying $\langle FX, y \rangle = \langle x, V y \rangle^\sigma$ for all $x, y \in \mathbb{D}(G)$.
3 The polarized case

3.1 Stratifications on \(\mathcal{A}_g \)

Let \(\mathcal{A}_g \) be the moduli space of principally polarized abelian varieties of dimension \(g \) in characteristic \(p \).

\[
\mathcal{A}_g = \coprod_{\xi} \mathcal{W}_{\xi}^0 : \text{Newton polygon stratification,}
\]

\[
\mathcal{A}_g = \coprod_{w} \mathcal{S}_w : \text{Ekedahl-Oort stratification,}
\]

where we define

\[
\mathcal{W}_{\xi}^0 := \{ A \in \mathcal{A}_g | \mathcal{N}(A) = \xi \},
\]

\[
\mathcal{S}_w := \{ A \in \mathcal{A}_g | \mathcal{E}(A) = w \}.
\]

3.2 Oort’s conjecture

Conjecture 3.1 (Oort).

\[
\mathcal{W}_{\xi}^0 \cap \mathcal{S}_w \neq \emptyset \implies \mathcal{Z}_\xi \subseteq \overline{\mathcal{S}_w}.
\]

Here \(\mathcal{Z}_\xi \) is defined to be

\[
\mathcal{Z}_\xi = \{ A \in \mathcal{A}_g | A[p^\infty]_\Omega \simeq H(\xi)[\Omega] \text{ for some } \Omega = \overline{\Omega} \},
\]

which is shown to be a closed subset of \(\mathcal{W}_{\xi}^0 \). We call \(\mathcal{Z}_\xi \) the central stream of \(\xi \). Oort showed

\[
\mathcal{Z}_\xi = \{ A \in \mathcal{A}_g | A[p]_\Omega \simeq H(\xi)[p]_\Omega \text{ for some } \Omega = \overline{\Omega} \}
\]

\[
= \mathcal{S}_{\mu(\xi)},
\]

where \(\mu(\xi) \) is the \(p \)-kernel type \(\mathcal{E}(H(\xi)) \) of \(H(\xi) \).

3.3 Irreducibility of Ekedahl-Oort strata

The irreducibility of \(\mathcal{S}_w \) depends on whether \(\mathcal{S}_w \subset \mathcal{W}_\sigma \).

Theorem 3.2 (Ekedahl - van der Geer). \(\mathcal{S}_w \) is irreducible if \(\mathcal{S}_w \not\subset \mathcal{W}_\sigma \).

Theorem 3.3 (H., to appear in J. Alg. Geom.). \(\mathcal{S}_w \) is reducible for \(p \gg 0 \) if \(\mathcal{S}_w \subset \mathcal{W}_\sigma \).
Definition 3.4. The generic Newton polygon of S_w is defined to be

$$\xi(w) = \text{Newton polygon of a (every) generic point of } S_w.$$

By Grothendieck-Katz, $\xi(w)$ is the optimal upper bound:

$$\forall X, \; E(X) = w \implies N(X) \prec \xi(w),$$

$$\exists Y, \; E(Y) = w \; \& \; N(Y) = \xi(w).$$

3.4 Results

Theorem 3.5 (H., to appear in Ann. Inst. Fourier). For any $w \in \mathcal{J}_{\text{Sp}_{2g}}$, we have

$$\xi(w) = \max_{\prec} \{ \xi \mid Z_\xi \subset \overline{S}_w \}.$$

This gives a combinatorial algorithm determining the generic Newton polygon $\xi(w)$ of S_w. Recall that $Z_\xi = S_{\mu(\xi)}$, where $\mu(\xi)$ is the p-kernel type of $H(\xi)$.

Theorem 3.6 (H., Asian J. Math. (2009)).

$$Z_\xi \subset \overline{Z_\xi} \iff \zeta \prec \xi.$$

Corollary 3.7. Oort’s conjecture is true: $W^0_\xi \cap S_w \neq \emptyset \implies Z_\zeta \subset \overline{S}_w$.

4 The unpolarized case

4.1 Main results

Theorem 4.1 (H.). Let $w \in \mathcal{J}_{\text{GL}}$. The optimal upper bound $\xi(w)$ exists, and

$$\xi(w) = \max_{\prec} \{ \xi \mid \mu(\xi) \subset w \}.$$

This gives a combinatorial algorithm determining $\xi(w)$. See below for what \subset means. Again recall $\mu(\xi) = E(H(\xi))$.

Theorem 4.2 (H.). $\mu(\zeta) \subset \mu(\xi) \iff \zeta \prec \xi.$

Corollary 4.3 (The unpolarized analogue of Oort’s conjecture). If there exists a p-divisible group X with Newton polygon ζ and p-kernel type w, then we have $\mu(\zeta) \subset w$.

Because $\zeta \prec \xi(w)$ and therefore $\mu(\zeta) \subset \mu(\xi(w)) \subset w$.

-14-
4.2 F-zips and displays

Let S be an \mathbb{F}_p-scheme. Let σ be the absolute Frobenius on S. For any \mathcal{O}_S-module M we write $M^{(p)} = \mathcal{O}_S \otimes_{\sigma, \mathcal{O}_S} M$.

Definition 4.4 (Moonen-Wedhorn). An F-zip over S is a quintuple $Z = (N, C, D, \varphi, \dot{\varphi})$ consisting of locally free \mathcal{O}_S-module N and \mathcal{O}_S-submodules C, D of N which are locally direct summands of N, and isomorphisms $\varphi : (N/C)^{(p)} \rightarrow D$ and $\dot{\varphi} : C^{(p)} \rightarrow N/D$.

If $S = \text{Spec}(K)$ with a perfect field K, then $f_{\text{BT}1}$’s over K give a correspondence $\{\text{BT}_1 \text{’s over } K\} \sim \{F\text{-zips over } K\}$ sending G to $(\mathcal{D}(G), VN, FN, \mathcal{F}, \mathcal{V}^{-1})$.

From now on we write $W = W_{GL_r}$ and $J W = J W_{GL_r}$.

Definition 4.5. Let $w, w' \in J W$. We say $w \lhd w'$ if there is an F-zip over a valuation ring such that the special fiber is of type w and the generic fiber is of type w'.

Theorem 4.6 (Wedhorn). (1) \lhd gives an ordering on $J W$.

(2) There exists a combinatorial algorithm determining whether $w \lhd w'$ for concretely given w and w'.

One can show that

Lemma 4.7. Let $w, w' \in J W_{GL_r}$. If $w \lhd w'$, then we have $\xi(w) < \xi(w')$.

Let R be a commutative ring. Let F and V be the Frobenius and Verschiebung on $W(R)$. Put $I_R = V W(R)$.

A display over R is a quadruple $(P, Q, \mathcal{F}, \mathcal{V}^{-1})$ of

(i) P: a finitely generated projective $W(R)$-module;

(ii) Q : a submodule of P such that \exists decomposition $P = L \oplus T$ such that $Q = L \oplus I_R T$;

(iii) $\mathcal{F} : P^{(p)} \rightarrow P$ and $\mathcal{V}^{-1} : Q^{(p)} \rightarrow P$: $W(R)$-linear maps.

Theorem 4.8 (Zink). Assume R is an excellent local ring or of finite type over a field of char. p. Then

$\{\text{nilpotent displays over } R\} \simeq \{\text{formal } p\text{-div. gp. over } R\}$.

An F-zip over R is the mod I_R-reduction of a display over R.

-15-
4.3 The existence of $\xi(w)$

In the polarized case, the existence of $\xi(w)$ follows from the irreducibility of Ekedahl-Oort strata. Instead we prove

Lemma 4.9. There exists an irreducible catalogue of p-divisible groups with a given p^m-kernel type: Let $m \in \mathbb{N}$, and let u be a p^m-kernel type. There exists a p-divisible group X over an irreducible scheme S of finite type over k such that

1. every geometric fiber X_s is of p^m-kernel type u;
2. For any p-divisible group X with p^m-kernel type u, there exists a geometric point $s \in S$ such that $X \simeq X_s$.

This (for $m = 1$) proves that the optimal upper bound $\xi(w)$ exists. Indeed the Newton polygon of the generic fiber of X satisfies all the properties of $\xi(w)$.

Proof. Let $(P, Q, \mathcal{F}, \mathcal{V}^{-1})$ be a display over k, and $P = L \oplus T$ be a normal decomposition. Let

(a) $G := \text{GL}(P)$ the general linear group over $W(k)$;
(b) H: the paraholic subgroup of G stabilizing Q;
(c) \mathcal{D}_m: the group scheme over k representing the functor

$$\text{Alg}_k \rightarrow \text{Set} : R \mapsto G(W_m(R));$$

(d) \mathcal{H}_m: the group scheme over k representing the functor

$$\text{Alg}_k \rightarrow \text{Set} : R \mapsto H(W_m(R)).$$

We have that \mathcal{D}_m and \mathcal{H}_m are connected smooth affine group schemes over k, see Vasiu [J. Alg. Geom. (2008)]. For any truncated Barsotti-Tate group of level m (BT_m) with codim. c and dim. d, its Dieudonné module is written as $(P/p^mP, g\mathcal{F}, \mathcal{V}g^{-1})$ for some $g \in \mathcal{D}_m$. Let

$$\text{BT}_m(k) = \{\text{BT}_m \text{ over } k \text{ of codim. } c \text{ and dim. } d\}/\simeq.$$

Vasiu introduced an action:

$$\mathbb{T}_m : \mathcal{H}_m \times_k \mathcal{D}_m \longrightarrow \mathcal{D}_m,$$

and showed that

$$\{\mathbb{T}_m\text{-orbits}\} \simeq \text{BT}_m(k).$$
Now we can construct an irreducible catalogue of p-divisible groups with p^m-kernel type u.

Choose an integer $N \geq m$ so that $X[p^N] \simeq Y[p^N]$ implies $X \simeq Y$ for any p-divisible groups X and Y over k. Let π be the natural map $\mathcal{D}_N \to \mathcal{D}_m$, and let τ be a section of $\mathcal{D} \to \mathcal{D}_N$. Let \mathbb{O}_u be the \mathbb{T}_m-orbit associated to u. Since \mathcal{H}_m is irreducible, \mathbb{O}_u is irreducible. Since π is smooth with connected fibers, $\pi^{-1}(\mathbb{O}_u)$ is also irreducible. Let S be the image of $\pi^{-1}(\mathbb{O}_u)$ by τ. Then S is irreducible and of finite type over k. By Zink’s display theory, we have a p-divisible group \mathcal{X} over S. Clearly \mathcal{X} satisfies the required properties.

4.4 Outline of the proof (1st slope theory and induction)

Let $w \in \mathbb{J}_{\text{GL}_r}$. Set $\nu_w(i) = \{a \leq i \mid w(a) > d\}$. We define a map

$$\Psi_w : \{1, \ldots, r\} \to \{1, \ldots, r\}$$

by $\Psi_w(i) = d + i$ if $w(i) = i$ and $\Psi_w(i) = \nu_w(i)$ otherwise. Let

$$\mathcal{D} = \text{Im} \Psi_w^k \text{ for } k \gg 0,$$
$$\mathcal{C} = \mathcal{D} \cap \{d + 1, \ldots, r\}.$$

Theorem 4.10 (H., J. Pure Appl. Algebra (2009)). (1) The last slope of $\xi(w)$ is equal to $\rho(w) := \#\mathcal{C} / \#\mathcal{D}$.

(2) $\rho(w) = \max\{m/(m + n) \mid H_{m,n}[p] \hookrightarrow G_w\}.$

The first slope $\lambda(w)$ of $\xi(w)$ is equal to $1 - \rho(w')$.

$$\lambda(w) = \min\{m/(m + n) \mid G_w \hookrightarrow H_{m,n}[p]\}.$$

To show the main theorem, it suffices to show

Proposition 4.11. Assume that w is not minimal. Then there exists a non-constant family of isogenies of p-divisible groups

$$H(\xi(w))_S \longrightarrow \mathcal{X}$$

over S such that the isomorphism type of $\mathcal{X}_s[p]$ is w for every geometric point s of S.

The main theorem follows from this proposition:

Proof of Prop. \Rightarrow the main theorem. We first claim that the main theorem

$$\xi(w) = \max\{\zeta \mid \mu(\zeta) \subset w\}$$ (1)
is equivalent to
\[\mu(\xi(w)) \subset w. \] (2)

Obviously (1) implies (2). Conversely suppose (2). Put \(\star = \{ \zeta \mid \mu(\zeta) \subset w \} \). Clearly (2) says \(\xi(w) \in \star \). Let \(\zeta \) be any element of \(\star \), i.e., \(\mu(\zeta) \subset w \). Then \(\xi(\mu(\zeta)) \prec \xi(w) \). Note that \(\xi(\mu(\zeta)) = \zeta \) by the theory (Oort) on the minimal \(p \)-divisible groups. Thus we have \(\zeta \prec \xi(w) \).

From this claim it suffices to prove Prop. \(\Rightarrow \) (2). The proof is by induction of \(w \) w.r.t. \(\frac{1}{2}w \). If \(w \) is minimal, we have \(\mu(\xi(w)) = \mu(w) = w \). Assume \(w \) is not minimal. We now assume Proposition, which is paraphrased as \(\dim S_w(M) > 0 \), where \(M \) is the moduli space (over \(k \)) of isogenies \(H(\xi(w)) \to Y \). Choose an irreducible component \(\mathcal{I} \) of \(M \) such that \(\dim S_w(\mathcal{I}) > 0 \). It is known that \(\mathcal{I} \) is projective and \(S_w(\mathcal{I}) \) is quasi-affine. Take a point \(\in \mathcal{I} \cap \partial S_w(\mathcal{I}) \). Let \(w' \) be the \(p \)-kernel type of the point. Clearly \(w' \) satisfies \(\xi(w') \subset w' \). Then \(\xi(\mu(\zeta(\mu(\zeta)))) = \zeta \) by the theory (Oort) on the minimal \(p \)-divisible groups. Thus we have \(\zeta \prec \xi(w') \).

Outline of the proof of Proposition: By the existence of \(\xi(w) \), there exists a \(p \)-divisible group \(X \) such that \(X[p] \) is of type \(w \) and the Newton polygon of \(X \) is \(\xi(w) \).

Step 1: We extract a simple first-slope part \(X_1 \) from \(X \):

\[\begin{array}{cccc}
0 & \longrightarrow & X'_0 & \longrightarrow & X & \longrightarrow & X_1 & \longrightarrow & 0 \\
& & \phi_0 & & & \longrightarrow & & & \\
\end{array} \]

Then the first-slope theory shows that \(X_1 \simeq H_{n,m} \).

Take these \(p \)-kernels:

\[\begin{array}{cccc}
0 & \longrightarrow & X'_0[p] & \longrightarrow & X[p] & \longrightarrow & X_1[p] & \longrightarrow & 0 \\
& & \phi_0 & & & \longrightarrow & & & \\
\end{array} \] (exact)

Step 2: Find a generic part \(S \) of the hom-space \(\Hom(X[p], X_1[p]) \) whose \(\phi : X[p]_S \to X_1[p]_S \) makes

\[\begin{array}{cccc}
0 & \longrightarrow & G & \longrightarrow & X[p]_S & \longrightarrow & X_1[p]_S & \longrightarrow & 0 \\
& & \phi & & \longrightarrow & & & & \\
\end{array} \] (exact)

so that \(G \) is a geometrically-constant BT\(_1 \) over \(S \).

Step 3: We extend this to a complex over \(S' \) (finite/\(S' \)):

\[\begin{array}{cccc}
0 & \longrightarrow & X'_0[S'] & \longrightarrow & X & \longrightarrow & X_1[S'] & \longrightarrow & 0 \\
& & \phi & & \longrightarrow & & & & \\
\end{array} \] (exact),

so that we have a non-constant family \(X \to S' \).

5 Expectations

Note \(\mathcal{W}_\xi^0 \) has complicated singularities in general. We have a natural decomposition

\[\mathcal{W}_\xi^0 = \coprod \mathcal{W}_\xi^0 \cap S_w. \]
Open problem: Can $\mathcal{W}_\xi^0 \cap S_w$ be beautifully described? (regular?)

Note $\mathcal{W}_\xi^0 \cap S_w$ is regular for $g \leq 3$. At least we expect:

Expectation 5.1. $\mathcal{W}_\xi^0 \cap S_w$ would be beautifully described.

Here $\xi(w)$ is the generic Newton polygon of S_w. We have investigated the case $\xi(w) = \sigma$, i.e., $S_w \subset \mathcal{W}_\sigma$:

Theorem 5.2 (H., to appear in J. Algebraic Geom.). For any $w' \in \overline{W}_e$ with $c \leq [g/2]$, there exists a finite surjective morphism

$$G(\mathbb{Q}) \backslash X(w') \times G(\mathbb{A}_f)/K \to \bigcup_{t(w) = w'} S_w,$$

which is bijective on geometric points.

Here $X(w')$ is the (generalized) Deligne-Lusztig variety:

$$\{ P \in \text{Sp}_{2c} / P_0 \mid {}^h P = P_0, {}^h \text{Fr}(P) = w' P_0 \text{ for } \exists h \in \text{Sp}_{2c} \},$$

and G is a certain quaternion unitary group over \mathbb{Q}.

Department of Mathematics, Graduate School of Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan.
E-mail address: harasita at math.kobe-u.ac.jp