0000000000000
20090 0 pp.9-19

The supremum of Newton polygons of
p-divisible groups with a given p-kernel
type
Shushi Harashita
27 October 2009

Abstract

We show that there exists the supremum of Newton polygons of p-
divisible groups with a given p-kernel type, and provide an algorithm
determining it. This is an unpolarized analogue of Oort conjecture
related to determining the generic Newton polygon of each Ekedahl-Oort
stratum in the moduli space of principally polarized abelian varieties.

1 Introduction

Let A, be the moduli space (over Z) of principally polarized abelian varieties
of dimension g. It is well-known that

AQ(C> = SpQg(Z)\EL
where H is the Siegel upper half space
H={ZeM,C)|Z="ZImZ > 0}.

From now on we write A, := A, ® F,. Here is an expectation (so-called a
paving of A,):

(1) There exists a natural decomposition of A4, into nitely many locally
closed subschemes:
A =117

(2) Each 7, can be beautifully described.

Here this decomposition should be a decomposition by natural invariants of
p-divisible groups of abelian varieties.



Let S be a connected scheme. Let p be a prime number. A p-divisible group
over S of height h is an inductive system

X =lim Xi7 Xz C Xi—l—l
E m—
1€N

of nite locally free group schemes X; of rank p™* over S such that
Xi = Xin[p'],
where G[N] := Ker(N : G — G). For example

Qp/Zy, Gn[p™], A[p™]

with an abelian scheme A over S, where
Gp™] = lim G[p'].
ieN

Let k be an algebraically closed eld of characteristic p. We have two
invariants of a p-divisible group X over k.

(1) N(X) := the isogeny class (= Newton polygon) of X,
Dieudonné-Manin classi cation (1963);

(2) £(X) := the isomorphism class of X|[p],
Kraft’s classi cation (1975).

We want to estimate N (X) from E(X).
Today’s aim: Let w be any p-kernel type. We give a combinatorial algorithm
determining the Newton polygon &(w) satisfying

VX, EX)=w = N(X)=<¢&w),

Y, EY)=w and N(Y)=¢(w).

The existence of the optimal upper bound £(w) is non-trivial.
The (principally) polarized case - Spy, (2007):

The problem obtained by replacing “p-divisible group” by “principally
polarized p-divisible group”. We use the moduli space A, of principally
polarized abelian varieties and the theory on strati cations on A,.

The unpolarized case - GL, (Today):

No natural moduli space!

Instead we treat families of p-divisible groups and families of F-zips, and
consider strati cations on those.
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Geometric meaning in the polarized case:

A, = H Wg : Newton polygon strati cation,
3
A, = HSw : Ekedahl-Oort strati cation,

We = {A€ Ay | N(A) = ¢},
Sy = {A€A,|EA)=w).
Open problem:
(1) When W2 NS, = 07
(2) Can WY NS, be beautifully described?

Today’s aim in the pol. case <= When S, C W??

2 Preliminaries

2.1 The Dieudonné theory

Let K be a perfect eld. Let Ax denote the ring
W(K)[F,V]/(Fa —a°F,Va® —aV,FV —p, VF —p),
where o is the Frobenius map W(K) — W(K).

Definition 2.1. A Dieudonné module (DM) over K is a left Ax-module which
is nitely generated as a W (K )-module.

Theorem 2.2 (Dieudonné theory). There are categorical equivalences:
D : {p-divisible groups/ K} ~ {DM/K free as W (K)-mod.}
D: {fin. p-group sch./K} ~{DM/K of fin. length}

2.2 Minimal p-divisible groups

For a pair (m, n) of coprime non-negative integers, we de ne a p-divisible group

H,, over F, by
m+n—1

D(Hmn) = € Zpes
=0

with Fe; = €4, Ve; = €irm and €, min = pe; (i € Z>p).
Let ¢ be a Newton polygon S°¢_, (ms,n;) (a formal sum).

Definition 2.3. A minimal p-divisible group of £ is the p-divisible group

H(f) = @ Hyp, .-
=1
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2.3 Newton polygons
A Newton polygon & = S°1_ (my,n;) is regarded as a lower convex polygon
with (m; + n;) slopes A; :=m;/(m; + 1) (A < Ao <o < A < \y).

( < & <= Vpoint of ( is above or on &.
Let X be a p-divisible group over k = k. We write N'(X) = ¢ if X is isogenous

to H(E).

Theorem 2.4 (Dieudonné-Manin classi cation). We have a natural bijection:
N A{p-divisible groups over k}/isog. ~ { Newton polygons}.
We call ¢ symmetric if A\; + My1-; = 1. Note N(A) := N(A[p™]) for
A e A, (k) is symmetric.
2.4 Final elements in the Weyl groups

Let W¢ denote the Weyl group of G = GL, or Sp,,.

Wer, = Aut{l,...,r},
{we War,, | w(i) +w2g+1—1i)=2g+1}.

WSpgg =
We de ne a subset ' Wq of W by
-1 -1
J ._ wi(1) < <wH(d),
War, = {“’ EWeL | gt 1) <o <w () [
< <w(g)},

JWSPQQ = {w € WSP2g |w_1<1)

where J = {s1,...,s,-1} \ {sa} resp. J = {s1,...,s,} \ {s4}-
An element of ? W¢ is called a nal element of W.
A BT, over S is a nite locally free group scheme G over S such that

Ker(F: G —GP) = Im(V:GY — @),
Im(F:G — G?») = Ker(V:G? = Q).

Let k be an algebraically closed eld of characteristic p.

Theorem 2.5 (Kraft, Oort, Moonen, Wedhorn).

{BT; ’s over k of rank p" and dimension d}/: ~J Wear,

{polarized BT ’s over k of rank p*} )~ ~ " Wsp,, -

Note that G over k is a BT, if and only if G ~ X|[p| for a p-divisible
group X over k. A polarization on G is a non-degenerate alternating form

D(G) @ D(G) — k satisfying (Fz,y) = (x, Vy)? for all z,y € D(G).
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3 The polarized case

3.1 Stratifications on A,

Let A, be the moduli space of principally polarized abelian varieties of dimen-
sion ¢ in characteristic p.

A, = HWQ : Newton polygon strati cation,
3

A, = HSw : Ekedahl-Oort strati cation,

where we de ne

W= {Ae A, | N(A) =¢},
Swi= {A€A,|EA) =uw}

3.2 Oort’s conjecture

Conjecture 3.1 (Oort).
Here Z¢ is de ned to be
Ze={Ac A, | A[p™]q ~ H()q for some Q = Q},

which is shown to be a closed subset of Wg . We call Z; the central stream of
&. Oort showed

Ze = {Aec A, | Apla ~ H(&)[p]g for some Q = Q}
= Sue;
where () is the p-kernel type E(H (€)) of H(E).

3.3 Irreducibility of Ekedahl-Oort strata
The irreducibility of S,, depends on whether S,, C W,.

Theorem 3.2 (Ekedahl - van der Geer). S, is irreducible if S, & W,.

Theorem 3.3 (H., to appear in J. Alg. Geom.). S, is reducible for p > 0 if
Sw CW,.
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Definition 3.4. The generic Newton polygon of S, is de ned to be
&(w) = Newton polygon of a (every) generic point of S,,.

By Grothendieck-Katz, £(w) is the optimal upper bound:

VX, EX)=w = N(X)<&w),
3, EV)=w & N(Y)=Ew).

3.4 Results

Theorem 3.5 (H., to appear in Ann. Inst. Fourier). For any w € 7 Wsp,,» we
have ‘

£(w) = max{€ | Ze € S},

This gives a combinatorial algorithm determining the generic Newton poly-
gon &(w) of S,,. Recall that Z¢ = S,,(¢), where (C) is the p-kernel type of H ().

Theorem 3.6 (H., Asian J. Math. (2009)).
Z,C2 & (=¢

Corollary 3.7. Qort’s conjecture is true: Wg NSy #0 = Z: C Sy

4 The unpolarized case

4.1 Main results

Theorem 4.1 (H.). Let w € ?Wgqr,.. The optimal upper bound &(w) emists,
and

§(w) = max{¢ | p(€) C w}.

This gives a combinatorial algorithm determining {(w). See below for what
C means. Again recall u(§) = E(H(E)).

Theorem 4.2 (H.). pu(¢) C u(§) & (<€

Corollary 4.3 (The unpolarized analogue of Oort’s conjecture). If there exists
a p-divisible group X with Newton polygon ¢ and p-kernel type w, then we have

n(¢) C w.
Because ¢ < &(w) and therefore u(¢) C pu({(w)) C w.
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4.2 F-zips and displays

Let S be an FF,-scheme. Let o be the absolute Frobenius on S. For any
Og-module M we write M® = Og ®e0s M.

Definition 4.4 (Moonen-Wedhorn). An F-zip over S is a quintuple Z =
(N,C,D,p,¢) consisting of locally free Og-module N and Og-submodules
C,D of N which are locally direct summands of N, and isomorphisms ¢ :
(N/C)?) — D and ¢ : C®) — N/D.

If S = Spec(K) with a perfect eld K, then
{BT,’s over K} —— {F-zips over K}

sending G to (D(G), VN, FN, F,V71).
From now on we write W = W, and 7 W =7 Wg, .

Definition 4.5. Let w,w’ € 'W. We say w C w' if there is an F-zip over a
valuation ring such that the special ber is of type w and the generic ber is
of type w'.

Theorem 4.6 (Wedhorn). (1) C gives an ordering on 7 W.

(2) There exists a combinatorial algorithm determining whether w C w' for
concretely given w and w'.

One can show that
Lemma 4.7. Let w,w' € ?Wgqr, . If w C w', then we have &(w) < &(w').

Let R be a commutative ring. Let ¥ and v be the Frobenius and Ver-
schiebung on W(R). Put Iz = VW (R).
A display over R is a quadruple (P, Q,F,V™!) of

(i) P: a nitely generated projective W (R)-module;

(ii) @ : a submodule of P such that 3 decomposition P = L & T such that
Q= L& IgT;

(iii) F: P® — P and V~': QW — P: W(R)-linear maps.

Theorem 4.8 (Zink). Assume R is an excellent local ring or of finite type
over a field of char. p. Then

{nilpotent displays over R} ~ {formal p-div. gp. over R}.

An F-zip over R is the mod [r-reduction of a display over R.
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4.3 The existence of {(w)

In the polarized case, the existence of &(w) follows from the irreducibility of
Ekedahl-Oort strata. Instead we prove

Lemma 4.9. There exists an irreducible catalogue of p-divisible groups with a
giwen p™-kernel type: Let m € N, and let u be a p™-kernel type. There exists
a p-divisible group X over an irreducible scheme S of finite type over k such
that

(1) every geometric fiber Xy is of p™-kernel type u;

(2) For any p-divisible group X with p™-kernel type u, there exists a geomet-
ric point s € S such that X ~ X;.

This (for m = 1) proves that the optimal upper bound &(w) exists. Indeed
the Newton polygon of the generic ber of X satis es all the properties of

§(w).
Proof. Let (P,Q,F,V~!) be a display over k, and P = L & T be a normal
decomposition. Let

(a) G := GL(P) the general linear group over W (k);
(b) H: the paraholic subgroup of G stabilizing Q;

(¢) D,, : the group scheme over k representing the functor

Alg, — Set: R +— G(W,,(R));

(d) Hp,: the group scheme over k representing the functor

Alg, — Set : R — H(W,,(R)).

We have that D,, and H,, are connected smooth affine group schemes over k,
see Vasiu [J. Alg. Geom. (2008)]. For any truncated Barsotti-Tate group of
level m (BT,,) with codim. ¢ and dim. d, its Dieudonné module is written as
(P/p™P, gF,Vg~') for some g € D,,. Let

BT,, (k) = {BT,, over k of codim. ¢ and dim. d}/ ~ .
Vasiu introduced an action:
P]I‘m : Hm Xk:Dm — Dma

and showed that
{T,,-orbits} ~ BT,, (k).
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Now we can construct an irreducible catalogue of p-divisible groups with p™-
kernel type u.

Choose an integer N > m so that X[p"] ~ Y[p"] implies X ~ Y for any
p-divisible groups X and Y over k. Let m be the natural map Dy — D,,,
and let 7 be a section of D — Dy. Let O, be the T,,-orbit associated to w.
Since H,, is irreducible, O, is irreducible. Since 7 is smooth with connected

bers, 771(0,) is also irreducible. Let S be the image of 771(Q,) by 7. Then
S is irreducible and of nite type over k. By Zink’s display theory, we have a
p-divisible group X over S. Clearly X satis es the required properties.

4.4 Outline of the proof (1st slope theory and induc-
tion)
Let w € 7 War,. Set v(i) = #{a <i | w(a) > d}. We de ne a map
Uy {10} —{1,....1)
by Wo(i) = d+ i if w(i) = i and Wy (i) = ve(i) otherwise. Let

D = ImVU* for k>0,
C = Dn{d+1,...,r}.

Theorem 4.10 (H., J. Pure Appl. Algebra (2009)). (1) The last slope of {(w)
is equal to p(w) := 4C/{D.

(2) p(w) = max{m/(m +n) | Hyulp] = Gu}.

The st slope A(w) of £(w) is equal to 1 — p(w").

3
AMw) = min{m/(m +n) | Gu — Hnn[pl}-
For the polarized case, see H., J. Alg. Geom. (2007).
To show the main theorem, it suffices to show

Proposition 4.11. Assume that w is not minimal. Then there exists a non-
constant family of isogenies of p-divisible groups

H(¢(w))s —— &

over S such that the isomorphism type of X[p| is w for every geometric point

s of S.

The main theorem follows from this proposition:
Proof of Prop. = the main theorem. We rst claim that the main theorem

§(w) = max{¢ | pu(¢) C w} (1)
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is equivalent to
p(§(w)) C w. (2)

Obviously (1) implies (2). Conversely suppose (2). Put % = {¢ | u(¢) C w}.
Clearly (2) says {(w) € %. Let ¢ be any element of %, i.e, u(¢) C w. Then
€(p(¢)) < &(w). Note that &£(u(¢)) = ¢ by the theory (Oort) on the minimal
p-divisible groups. Thus we have ¢ < {(w).

From this claim it suffices to prove Prop. = (2). The proof is by induction
of w w.r.t C. If w is minimal, we have p({(w)) = p(w) = w. Assume w is not
minimal. We now assume Proposition, which is paraphrased as dim S,,(M) >
0, where M is the moduli space (over k) of isogenies H({(w)) — Y. Choose
an irreducible component Z of M such that dimS,(Z) > 0. It is known
that Z is projective and S,(Z) is quasi-affine. Take a point € Z N 98, (Z).
Let w’ be the p-kernel type of the point. Clearly w’ satis es w’ C w and
¢(w') = &(w). By the hypothesis of induction we may assume pu(&(w')) C w';

then p(§(w)) = p(€(w')) Cw' Cw.

Outline of the proof of Proposition: By the existence of {(w), there exists
a p-divisible group X such that X|[p] is of type w and the Newton polygon of
X is {(w).

Step 1: We extract a simple rst-slope part X; from X:

0 X! X L0 X, —— 0 (exact)

Then the rst-slope theory shows that X; ~ H,, ,,.
Take these p-kernels:

0 —— Xj[p] — X[p] 2 Xi[p)] —— 0 (exact)

Step 2: Find a generic part S of the hom-space Hom (X |[p], X;[p]) whose
¢ : X[pls — Xi[p]s makes

0 G X[pls —2— Xi[pls —— 0 (exact)

so that GG is a geometrically-constant BT; over S.
Step 3: We extend this to a complex over S (' nite/S):

0 —— XJ, X —L s X9 —— 0 (exact),

so that we have a non-constant family X — 5.

5 Expectations
Note Wg has complicated singularities in general. We have a natural decom-

position

W =[wins..
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Open problem: Can WY N'S,, be beautifully described? (regular?)
Note Wg NS, is regular for g < 3. At least we expect:

Expectation 5.1. Wg(w) N S, would be beautifully described.

Here &(w) is the generic Newton polygon of S,,. We have investigated the
case {(w) = o, i.e., S, C W,

Theorem 5.2 (H., to appear in J. Algebraic Geom.). For any w' € W/C with
c <lg/2], there exists a finite surjective morphism

GQ\X () x G(A)/K — | Sus

r(w)=w’
which 1s bijective on geometric points.

Here X (w') is the (generalized) Deligne-Lusztig variety:
{P €Spy, /Py | "P =Py, "Fr(P) =" Py for 3h € Sp,.},

and G is a certain quaternion unitary group over Q.
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