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Abstract

We show that there exists the supremum of Newton polygons of p-
divisible groups with a given p-kernel type, and provide an algorithm
determining it. This is an unpolarized analogue of Oort conjecture
related to determining the generic Newton polygon of each Ekedahl-Oort
stratum in the moduli space of principally polarized abelian varieties.

1 Introduction

Let Ag be the moduli space (over Z) of principally polarized abelian varieties
of dimension g. It is well-known that

Ag(C) = Sp2g(Z)\H,

where H is the Siegel upper half space

H = {Z ∈ Mg(C) | Z = tZ, Im Z > 0}.

From now on we write Ag := Ag ⊗ Fp. Here is an expectation (so-called a
paving of Ag):

(1) There exists a natural decomposition of Ag into finitely many locally
closed subschemes:

Ag =
∐
ν

Tν

(2) Each Tν can be beautifully described.

Here this decomposition should be a decomposition by natural invariants of
p-divisible groups of abelian varieties.
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Let S be a connected scheme. Let p be a prime number. A p-divisible group
over S of height h is an inductive system

X = lim−→
i∈N

Xi, Xi ⊂ Xi+1

of finite locally free group schemes Xi of rank pih over S such that

Xi = Xi+1[p
i],

where G[N ] := Ker(N : G → G). For example

Qp/Zp, Gm[p∞], A[p∞]

with an abelian scheme A over S, where

G[p∞] = lim−→
i∈N

G[pi].

Let k be an algebraically closed field of characteristic p. We have two
invariants of a p-divisible group X over k.

(1) N (X) := the isogeny class (= Newton polygon) of X,
Dieudonné-Manin classification (1963);

(2) E(X) := the isomorphism class of X[p],
Kraft’s classification (1975).

We want to estimate N (X) from E(X).

Today’s aim: Let w be any p-kernel type. We give a combinatorial algorithm
determining the Newton polygon ξ(w) satisfying

∀X, E(X) = w =⇒ N (X) ≺ ξ(w),

∃Y, E(Y ) = w and N (Y ) = ξ(w).

The existence of the optimal upper bound ξ(w) is non-trivial.
The (principally) polarized case - Sp2g (2007):

The problem obtained by replacing “p-divisible group” by “principally
polarized p-divisible group”. We use the moduli space Ag of principally
polarized abelian varieties and the theory on stratifications on Ag.

The unpolarized case - GLr (Today):

No natural moduli space!

Instead we treat families of p-divisible groups and families of F -zips, and
consider stratifications on those.
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Geometric meaning in the polarized case:

Ag =
∐

ξ

W0
ξ : Newton polygon stratification,

Ag =
∐
w

Sw : Ekedahl-Oort stratification,

W0
ξ := {A ∈ Ag | N (A) = ξ},

Sw := {A ∈ Ag | E(A) = w}.
Open problem:

(1) When W0
ξ ∩ Sw = ∅?

(2) Can W0
ξ ∩ Sw be beautifully described?

Today’s aim in the pol. case ⇐⇒ When Sw ⊂ W0
ξ ?

2 Preliminaries

2.1 The Dieudonné theory

Let K be a perfect field. Let AK denote the ring

W (K)[F ,V ]/(Fa − aσF ,Vaσ − aV ,FV − p,VF − p),

where σ is the Frobenius map W (K) → W (K).

Definition 2.1. A Dieudonné module (DM) over K is a left AK-module which
is finitely generated as a W (K)-module.

Theorem 2.2 (Dieudonné theory). There are categorical equivalences:

D : {p-divisible groups/K} ' {DM/K free as W (K)-mod.}
D : {fin. p-group sch./K} ' {DM/K of fin. length}

2.2 Minimal p-divisible groups

For a pair (m,n) of coprime non-negative integers, we define a p-divisible group
Hm,n over Fp by

D(Hm,n) =
m+n−1⊕

i=0

Zpei

with Fei = ei+n, Vei = ei+m and ei+m+n = pei (i ∈ Z≥0).
Let ξ be a Newton polygon

∑t
i=1(mi, ni) (a formal sum).

Definition 2.3. A minimal p-divisible group of ξ is the p-divisible group

H(ξ) =
t⊕

i=1

Hmi,ni
.
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2.3 Newton polygons

A Newton polygon ξ =
∑t

i=1(mi, ni) is regarded as a lower convex polygon
with (mi + ni) slopes λi := mi/(mi + ni) (λ1 ≤ λ2 ≤ · · · ≤ λt−1 ≤ λt).

ζ ≺ ξ ⇐⇒ ∀point of ζ is above or on ξ.

Let X be a p-divisible group over k = k. We write N (X) = ξ if X is isogenous
to H(ξ).

Theorem 2.4 (Dieudonné-Manin classification). We have a natural bijection:

N : {p-divisible groups over k}/isog. ' {Newton polygons}.

We call ξ symmetric if λi + λt+1−i = 1. Note N (A) := N (A[p∞]) for
A ∈ Ag(k) is symmetric.

2.4 Final elements in the Weyl groups

Let WG denote the Weyl group of G = GLr or Sp2g.

WGLr = Aut{1, . . . , r},
WSp2g

= {w ∈ WGL2g | w(i) + w(2g + 1 − i) = 2g + 1}.

We define a subset J WG of WG by

J WGLr :=

{
w ∈ WGLr

∣∣∣∣ w−1(1) < · · · < w−1(d),
w−1(d + 1) < · · · < w−1(r)

}
,

J WSp2g
:= {w ∈ WSp2g

| w−1(1) < · · · < w−1(g)},

where J = {s1, . . . , sr−1} \ {sd} resp. J = {s1, . . . , sg} \ {sg}.
An element of J WG is called a final element of WG.
A BT1 over S is a finite locally free group scheme G over S such that

Ker(F : G → G(p)) = Im(V : G(p) → G),

Im(F : G → G(p)) = Ker(V : G(p) → G).

Let k be an algebraically closed field of characteristic p.

Theorem 2.5 (Kraft, Oort, Moonen, Wedhorn).

{BT1 ’s over k of rank pr and dimension d}/' ' J WGLr

{polarized BT1 ’s over k of rank p2g}/' ' J WSp2g
.

Note that G over k is a BT1 if and only if G ' X[p] for a p-divisible
group X over k. A polarization on G is a non-degenerate alternating form
D(G) ⊗k D(G) → k satisfying 〈Fx, y〉 = 〈x,Vy〉σ for all x, y ∈ D(G).
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3 The polarized case

3.1 Stratifications on Ag

Let Ag be the moduli space of principally polarized abelian varieties of dimen-
sion g in characteristic p.

Ag =
∐

ξ

W0
ξ : Newton polygon stratification,

Ag =
∐
w

Sw : Ekedahl-Oort stratification,

where we define

W0
ξ := {A ∈ Ag | N (A) = ξ},

Sw := {A ∈ Ag | E(A) = w}.

3.2 Oort’s conjecture

Conjecture 3.1 (Oort).

W0
ξ ∩ Sw 6= ∅ ⇒ Zξ ⊂ Sw

Here Zξ is defined to be

Zξ = {A ∈ Ag | A[p∞]Ω ' H(ξ)Ω for some Ω = Ω},

which is shown to be a closed subset of W0
ξ . We call Zξ the central stream of

ξ. Oort showed

Zξ = {A ∈ Ag | A[p]Ω ' H(ξ)[p]Ω for some Ω = Ω}
= Sµ(ξ),

where µ(ξ) is the p-kernel type E(H(ξ)) of H(ξ).

3.3 Irreducibility of Ekedahl-Oort strata

The irreducibility of Sw depends on whether Sw ⊂ Wσ.

Theorem 3.2 (Ekedahl - van der Geer). Sw is irreducible if Sw 6⊂ Wσ.

Theorem 3.3 (H., to appear in J. Alg. Geom.). Sw is reducible for p À 0 if
Sw ⊂ Wσ.
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Definition 3.4. The generic Newton polygon of Sw is defined to be

ξ(w) = Newton polygon of a (every) generic point of Sw.

By Grothendieck-Katz, ξ(w) is the optimal upper bound:

∀X, E(X) = w =⇒ N (X) ≺ ξ(w),

∃Y, E(Y ) = w & N (Y ) = ξ(w).

3.4 Results

Theorem 3.5 (H., to appear in Ann. Inst. Fourier). For any w ∈ J WSp2g
, we

have
ξ(w) = max

≺
{ξ | Zξ ⊂ Sw}.

This gives a combinatorial algorithm determining the generic Newton poly-
gon ξ(w) of Sw. Recall that Zξ = Sµ(ξ), where µ(ζ) is the p-kernel type of H(ξ).

Theorem 3.6 (H., Asian J. Math. (2009)).

Zζ ⊂ Zξ ⇔ ζ ≺ ξ.

Corollary 3.7. Oort’s conjecture is true: W0
ζ ∩ Sw 6= ∅ ⇒ Zζ ⊂ Sw.

4 The unpolarized case

4.1 Main results

Theorem 4.1 (H.). Let w ∈ J WGLr . The optimal upper bound ξ(w) exists,
and

ξ(w) = max
≺

{ξ | µ(ξ) ⊂ w}.

This gives a combinatorial algorithm determining ξ(w). See below for what
⊂ means. Again recall µ(ξ) = E(H(ξ)).

Theorem 4.2 (H.). µ(ζ) ⊂ µ(ξ) ⇔ ζ ≺ ξ.

Corollary 4.3 (The unpolarized analogue of Oort’s conjecture). If there exists
a p-divisible group X with Newton polygon ζ and p-kernel type w, then we have
µ(ζ) ⊂ w.

Because ζ ≺ ξ(w) and therefore µ(ζ) ⊂ µ(ξ(w)) ⊂ w.
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4.2 F -zips and displays

Let S be an Fp-scheme. Let σ be the absolute Frobenius on S. For any
OS-module M we write M (p) = OS ⊗σ,OS

M .

Definition 4.4 (Moonen-Wedhorn). An F -zip over S is a quintuple Z =
(N,C,D, ϕ, ϕ̇) consisting of locally free OS-module N and OS-submodules
C,D of N which are locally direct summands of N , and isomorphisms ϕ :
(N/C)(p) → D and ϕ̇ : C(p) → N/D.

If S = Spec(K) with a perfect field K, then

{BT1 ’s over K} ∼−−−→ {F -zips over K}

sending G to (D(G),VN,FN,F ,V−1).
From now on we write W = WGLr and J W = J WGLr .

Definition 4.5. Let w,w′ ∈ J W. We say w ⊂ w′ if there is an F -zip over a
valuation ring such that the special fiber is of type w and the generic fiber is
of type w′.

Theorem 4.6 (Wedhorn). (1) ⊂ gives an ordering on J W.

(2) There exists a combinatorial algorithm determining whether w ⊂ w′ for
concretely given w and w′.

One can show that

Lemma 4.7. Let w,w′ ∈ J WGLr . If w ⊂ w′, then we have ξ(w) ≺ ξ(w′).

Let R be a commutative ring. Let F and V be the Frobenius and Ver-
schiebung on W (R). Put IR = V W (R).

A display over R is a quadruple (P,Q,F ,V−1) of

(i) P : a finitely generated projective W (R)-module;

(ii) Q : a submodule of P such that ∃ decomposition P = L ⊕ T such that
Q = L ⊕ IRT ;

(iii) F : P (p) → P and V−1 : Q(p) ³ P : W (R)-linear maps.

Theorem 4.8 (Zink). Assume R is an excellent local ring or of finite type
over a field of char. p. Then

{nilpotent displays over R} ' {formal p-div. gp. over R}.

An F -zip over R is the mod IR-reduction of a display over R.
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4.3 The existence of ξ(w)

In the polarized case, the existence of ξ(w) follows from the irreducibility of
Ekedahl-Oort strata. Instead we prove

Lemma 4.9. There exists an irreducible catalogue of p-divisible groups with a
given pm-kernel type: Let m ∈ N, and let u be a pm-kernel type. There exists
a p-divisible group X over an irreducible scheme S of finite type over k such
that

(1) every geometric fiber Xs is of pm-kernel type u;

(2) For any p-divisible group X with pm-kernel type u, there exists a geomet-
ric point s ∈ S such that X ' Xs.

This (for m = 1) proves that the optimal upper bound ξ(w) exists. Indeed
the Newton polygon of the generic fiber of X satisfies all the properties of
ξ(w).

Proof. Let (P,Q,F ,V−1) be a display over k, and P = L ⊕ T be a normal
decomposition. Let

(a) G := GL(P ) the general linear group over W (k);

(b) H: the paraholic subgroup of G stabilizing Q;

(c) Dm : the group scheme over k representing the functor

Algk → Set : R 7→ G(Wm(R));

(d) Hm: the group scheme over k representing the functor

Algk → Set : R 7→ H(Wm(R)).

We have that Dm and Hm are connected smooth affine group schemes over k,
see Vasiu [J. Alg. Geom. (2008)]. For any truncated Barsotti-Tate group of
level m (BTm) with codim. c and dim. d, its Dieudonné module is written as
(P/pmP, gF ,Vg−1) for some g ∈ Dm. Let

BTm(k) = {BTm over k of codim. c and dim. d}/ ' .

Vasiu introduced an action:

Tm : Hm ×k Dm −−−→ Dm,

and showed that
{Tm-orbits} ' BTm(k).
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Now we can construct an irreducible catalogue of p-divisible groups with pm-
kernel type u.

Choose an integer N ≥ m so that X[pN ] ' Y [pN ] implies X ' Y for any
p-divisible groups X and Y over k. Let π be the natural map DN → Dm,
and let τ be a section of D → DN . Let Ou be the Tm-orbit associated to u.
Since Hm is irreducible, Ou is irreducible. Since π is smooth with connected
fibers, π−1(Ou) is also irreducible. Let S be the image of π−1(Ou) by τ . Then
S is irreducible and of finite type over k. By Zink’s display theory, we have a
p-divisible group X over S. Clearly X satisfies the required properties.

4.4 Outline of the proof (1st slope theory and induc-
tion)

Let w ∈ J WGLr . Set νw(i) = ]{a ≤ i | w(a) > d}. We define a map

Ψw : {1, . . . , r} → {1, . . . , r}

by Ψw(i) = d + i if w(i) = i and Ψw(i) = νw(i) otherwise. Let

D = Im Ψk
w for k À 0,

C = D ∩ {d + 1, . . . , r}.

Theorem 4.10 (H., J. Pure Appl. Algebra (2009)). (1) The last slope of ξ(w)
is equal to ρ(w) := ]C/]D.

(2) ρ(w) = max{m/(m + n) | Hm,n[p]
∃

↪→ Gw}.

The first slope λ(w) of ξ(w) is equal to 1 − ρ(w∨).

λ(w) = min{m/(m + n) | Gw

∃³ Hm,n[p]}.
For the polarized case, see H., J. Alg. Geom. (2007).

To show the main theorem, it suffices to show

Proposition 4.11. Assume that w is not minimal. Then there exists a non-
constant family of isogenies of p-divisible groups

H(ξ(w))S −−−→ X

over S such that the isomorphism type of Xs[p] is w for every geometric point
s of S.

The main theorem follows from this proposition:
Proof of Prop. ⇒ the main theorem. We first claim that the main theorem

ξ(w) = max{ζ | µ(ζ) ⊂ w} (1)
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is equivalent to
µ(ξ(w)) ⊂ w. (2)

Obviously (1) implies (2). Conversely suppose (2). Put F = {ζ | µ(ζ) ⊂ w}.
Clearly (2) says ξ(w) ∈ F. Let ζ be any element of F, i.e, µ(ζ) ⊂ w. Then
ξ(µ(ζ)) ≺ ξ(w). Note that ξ(µ(ζ)) = ζ by the theory (Oort) on the minimal
p-divisible groups. Thus we have ζ ≺ ξ(w).

From this claim it suffices to prove Prop. ⇒ (2). The proof is by induction
of w w.r.t ⊂. If w is minimal, we have µ(ξ(w)) = µ(w) = w. Assume w is not
minimal. We now assume Proposition, which is paraphrased as dimSw(M) >
0, where M is the moduli space (over k) of isogenies H(ξ(w)) → Y . Choose
an irreducible component I of M such that dimSw(I) > 0. It is known
that I is projective and Sw(I) is quasi-affine. Take a point ∈ I ∩ ∂Sw(I).
Let w′ be the p-kernel type of the point. Clearly w′ satisfies w′ ( w and
ξ(w′) = ξ(w). By the hypothesis of induction we may assume µ(ξ(w′)) ⊂ w′;
then µ(ξ(w)) = µ(ξ(w′)) ⊂ w′ ⊂ w.

Outline of the proof of Proposition: By the existence of ξ(w), there exists
a p-divisible group X such that X[p] is of type w and the Newton polygon of
X is ξ(w).

Step 1: We extract a simple first-slope part X1 from X:

0 −−−→ X ′
0 −−−→ X

f0−−−→ X1 −−−→ 0 (exact)

Then the first-slope theory shows that X1 ' Hn,m.
Take these p-kernels:

0 −−−→ X ′
0[p] −−−→ X[p]

φ0−−−→ X1[p] −−−→ 0 (exact)

Step 2: Find a generic part S of the hom-space Hom(X[p], X1[p]) whose
φ : X[p]S → X1[p]S makes

0 −−−→ G −−−→ X[p]S
φ−−−→ X1[p]S −−−→ 0 (exact)

so that G is a geometrically-constant BT1 over S.
Step 3: We extend this to a complex over S ′ (finite/S):

0 −−−→ X ′
S′ −−−→ X f−−−→ X1,S′ −−−→ 0 (exact),

so that we have a non-constant family X → S ′.

5 Expectations

Note W0
ξ has complicated singularities in general. We have a natural decom-

position

W0
ξ =

∐
W0

ξ ∩ Sw.
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Open problem: Can W0
ξ ∩ Sw be beautifully described? (regular?)

Note W0
ξ ∩ Sw is regular for g ≤ 3. At least we expect:

Expectation 5.1. W0
ξ(w) ∩ Sw would be beautifully described.

Here ξ(w) is the generic Newton polygon of Sw. We have investigated the
case ξ(w) = σ, i.e., Sw ⊂ Wσ:

Theorem 5.2 (H., to appear in J. Algebraic Geom.). For any w′ ∈ W
′
c with

c ≤ [g/2], there exists a finite surjective morphism

G(Q)\X(w′) × G(Af )/K →
⋃

r(w)=w′

Sw,

which is bijective on geometric points.

Here X(w′) is the (generalized) Deligne-Lusztig variety:

{P ∈ Sp2c / P0 | h P = P0,
hFr(P) = w′

P0 for ∃h ∈ Sp2c},

and G is a certain quaternion unitary group over Q.
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