The supremum of Newton polygons of *p*-divisible groups with a given *p*-kernel type

Shushi Harashita

27 October 2009

Abstract

We show that there exists the supremum of Newton polygons of pdivisible groups with a given p-kernel type, and provide an algorithm determining it. This is an unpolarized analogue of Oort conjecture related to determining the generic Newton polygon of each Ekedahl-Oort stratum in the moduli space of principally polarized abelian varieties.

1 Introduction

Let \mathcal{A}_g be the moduli space (over \mathbb{Z}) of principally polarized abelian varieties of dimension g. It is well-known that

$$\mathcal{A}_{g}(\mathbb{C}) = \operatorname{Sp}_{2g}(\mathbb{Z}) \setminus \mathbb{H},$$

where \mathbb{H} is the Siegel upper half space

$$\mathbb{H} = \{ Z \in \mathcal{M}_a(\mathbb{C}) \mid Z = {}^t Z, \operatorname{Im} Z > 0 \}.$$

From now on we write $\mathcal{A}_g := \mathcal{A}_g \otimes \mathbb{F}_p$. Here is an expectation (so-called a paving of \mathcal{A}_q):

(1) There exists a natural decomposition of \mathcal{A}_g into nitely many locally closed subschemes:

$$\mathcal{A}_g = \coprod_
u \mathcal{T}_
u$$

(2) Each \mathcal{T}_{ν} can be beautifully described.

Here this decomposition should be a decomposition by natural invariants of p-divisible groups of abelian varieties.

Let S be a connected scheme. Let p be a prime number. A p-divisible group over S of height h is an inductive system

$$X = \varinjlim_{i \in \mathbb{N}} X_i, \qquad X_i \subset X_{i+1}$$

of nite locally free group schemes X_i of rank p^{ih} over S such that

$$X_i = X_{i+1}[p^i],$$

where $G[N] := \operatorname{Ker}(N : G \to G)$. For example

$$\mathbb{Q}_p/\mathbb{Z}_p, \quad \mathbb{G}_m[p^\infty], \quad A[p^\infty]$$

with an abelian scheme A over S, where

$$G[p^{\infty}] = \varinjlim_{i \in \mathbb{N}} G[p^i].$$

Let k be an algebraically closed eld of characteristic p. We have two invariants of a p-divisible group X over k.

- (1) $\mathcal{N}(X) :=$ the isogeny class (= Newton polygon) of X, Dieudonné-Manin classi cation (1963);
- (2) $\mathcal{E}(X) :=$ the isomorphism class of X[p], Kraft's classi cation (1975).

We want to estimate $\mathcal{N}(X)$ from $\mathcal{E}(X)$.

Today's aim: Let w be any p-kernel type. We give a combinatorial algorithm determining the Newton polygon $\xi(w)$ satisfying

$$\forall X, \quad \mathcal{E}(X) = w \implies \mathcal{N}(X) \prec \xi(w), \\ \exists Y, \quad \mathcal{E}(Y) = w \quad \text{and} \quad \mathcal{N}(Y) = \xi(w).$$

The existence of the optimal upper bound $\xi(w)$ is non-trivial. The (principally) polarized case - Sp_{2g} (2007):

The problem obtained by replacing "*p*-divisible group" by "principally polarized *p*-divisible group". We use the moduli space \mathcal{A}_g of principally polarized abelian varieties and the theory on stratic cations on \mathcal{A}_g .

The unpolarized case - GL_r (Today):

No natural moduli space!

Instead we treat families of p-divisible groups and families of F-zips, and consider stratic cations on those.

Geometric meaning in the polarized case:

$$\mathcal{A}_{g} = \coprod_{\xi} \mathcal{W}_{\xi}^{0} : \text{Newton polygon strati cation,}$$
$$\mathcal{A}_{g} = \coprod_{w} \mathcal{S}_{w} : \text{Ekedahl-Oort strati cation,}$$
$$\mathcal{W}_{\xi}^{0} := \{A \in \mathcal{A}_{g} \mid \mathcal{N}(A) = \xi\},$$
$$\mathcal{S}_{w} := \{A \in \mathcal{A}_{g} \mid \mathcal{E}(A) = w\}.$$

Open problem:

(1) When $\mathcal{W}^0_{\mathcal{E}} \cap \mathcal{S}_w = \emptyset$?

(2) Can $\mathcal{W}^0_{\mathcal{E}} \cap \mathcal{S}_w$ be beautifully described?

Today's aim in the pol. case \iff When $\mathcal{S}_w \subset \overline{\mathcal{W}_{\mathcal{E}}^0}$?

Preliminaries 2

2.1The Dieudonné theory

Let K be a perfect eld. Let A_K denote the ring

$$W(K)[\mathcal{F},\mathcal{V}]/(\mathcal{F}a-a^{\sigma}\mathcal{F},\mathcal{V}a^{\sigma}-a\mathcal{V},\mathcal{F}\mathcal{V}-p,\mathcal{V}\mathcal{F}-p),$$

where σ is the Frobenius map $W(K) \to W(K)$.

Definition 2.1. A Dieudonné module (DM) over K is a left A_K -module which is nitely generated as a W(K)-module.

Theorem 2.2 (Dieudonné theory). There are categorical equivalences:

$$\mathbb{D}: \{p\text{-}divisible \ groups/K\} \simeq \{DM/K \ free \ as \ W(K)\text{-}mod.\}$$

 \mathbb{D} : {fin. p-group sch./K} \simeq {DM/K of fin. length}

2.2Minimal *p*-divisible groups

For a pair (m, n) of coprime non-negative integers, we de ne a p-divisible group $H_{m,n}$ over \mathbb{F}_p by

$$\mathbb{D}(H_{m,n}) = \bigoplus_{i=0}^{m+n-1} \mathbb{Z}_p e_i$$

with $\mathcal{F}e_i = e_{i+n}$, $\mathcal{V}e_i = e_{i+m}$ and $e_{i+m+n} = pe_i$ $(i \in \mathbb{Z}_{\geq 0})$. Let ξ be a Newton polygon $\sum_{i=1}^t (m_i, n_i)$ (a formal sum).

Definition 2.3. A minimal p-divisible group of ξ is the p-divisible group

$$H(\xi) = \bigoplus_{i=1}^{n} H_{m_i, n_i}.$$

t

2.3 Newton polygons

A Newton polygon $\xi = \sum_{i=1}^{t} (m_i, n_i)$ is regarded as a lower convex polygon with $(m_i + n_i)$ slopes $\lambda_i := m_i / (m_i + n_i)$ $(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{t-1} \leq \lambda_t)$.

 $\zeta \prec \xi \iff \forall \text{point of } \zeta \text{ is above or on } \xi.$

Let X be a p-divisible group over $k = \overline{k}$. We write $\mathcal{N}(X) = \xi$ if X is isogenous to $H(\xi)$.

Theorem 2.4 (Dieudonné-Manin classi cation). We have a natural bijection:

 $\mathcal{N}: \{p\text{-divisible groups over } k\}/isog. \simeq \{Newton \ polygons\}.$

We call ξ symmetric if $\lambda_i + \lambda_{t+1-i} = 1$. Note $\mathcal{N}(A) := \mathcal{N}(A[p^{\infty}])$ for $A \in \mathcal{A}_g(k)$ is symmetric.

2.4 Final elements in the Weyl groups

Let W_G denote the Weyl group of $G = GL_r$ or Sp_{2q} .

$$W_{\mathrm{GL}_r} = \operatorname{Aut}\{1, \dots, r\}, W_{\mathrm{Sp}_{2g}} = \{ w \in W_{\mathrm{GL}_{2g}} \mid w(i) + w(2g+1-i) = 2g+1 \}.$$

We de ne a subset ${}^{J}W_{G}$ of W_{G} by

$${}^{\mathrm{J}} \mathrm{W}_{\mathrm{GL}_{r}} := \left\{ w \in \mathrm{W}_{\mathrm{GL}_{r}} \mid w^{-1}(1) < \dots < w^{-1}(d), \\ w^{-1}(d+1) < \dots < w^{-1}(r) \right\},$$

$${}^{\mathrm{J}} \mathrm{W}_{\mathrm{Sp}_{2g}} := \left\{ w \in \mathrm{W}_{\mathrm{Sp}_{2g}} \mid w^{-1}(1) < \dots < w^{-1}(g) \right\},$$

where $J = \{s_1, ..., s_{r-1}\} \setminus \{s_d\}$ resp. $J = \{s_1, ..., s_g\} \setminus \{s_g\}.$

An element of ${}^{\rm J}{\rm W}_{\rm G}$ is called a ${}^{\rm nal}{\rm element}$ of ${\rm W}_{\rm G}$.

A BT₁ over S is a nite locally free group scheme G over S such that

$$\operatorname{Ker}(F: G \to G^{(p)}) = \operatorname{Im}(V: G^{(p)} \to G),$$

$$\operatorname{Im}(F: G \to G^{(p)}) = \operatorname{Ker}(V: G^{(p)} \to G).$$

Let k be an algebraically closed eld of characteristic p.

Theorem 2.5 (Kraft, Oort, Moonen, Wedhorn).

 $\{BT_1 \text{ 's over } k \text{ of rank } p^r \text{ and dimension } d\}_{\simeq} \simeq {}^JW_{GL_r}$ $\{polarized BT_1 \text{ 's over } k \text{ of rank } p^{2g}\}_{\simeq} \simeq {}^JW_{SD_{2g}}.$

Note that G over k is a BT_1 if and only if $G \simeq X[p]$ for a p-divisible group X over k. A polarization on G is a non-degenerate alternating form $\mathbb{D}(G) \otimes_k \mathbb{D}(G) \to k$ satisfying $\langle \mathcal{F}x, y \rangle = \langle x, \mathcal{V}y \rangle^{\sigma}$ for all $x, y \in \mathbb{D}(G)$. 4

3 The polarized case

3.1 Stratifications on \mathcal{A}_g

Let \mathcal{A}_g be the moduli space of principally polarized abelian varieties of dimension g in characteristic p.

$$\mathcal{A}_{g} = \prod_{\xi} \mathcal{W}_{\xi}^{0} : \text{Newton polygon strati cation,}$$
$$\mathcal{A}_{g} = \prod_{w} \mathcal{S}_{w} : \text{Ekedahl-Oort strati cation,}$$

where we de ne

$$\mathcal{W}_{\xi}^{0} := \{ A \in \mathcal{A}_{g} \mid \mathcal{N}(A) = \xi \}, \\ \mathcal{S}_{w} := \{ A \in \mathcal{A}_{g} \mid \mathcal{E}(A) = w \}.$$

3.2 Oort's conjecture

Conjecture 3.1 (Oort).

$$\mathcal{W}^0_{\xi}\cap\mathcal{S}_w
eq \emptyset \quad \Rightarrow \quad \mathcal{Z}_{\xi}\subset\overline{\mathcal{S}_w}$$

Here \mathcal{Z}_{ξ} is de ned to be

$$\mathcal{Z}_{\xi} = \{ A \in \mathcal{A}_g \mid A[p^{\infty}]_{\Omega} \simeq H(\xi)_{\Omega} \text{ for some } \Omega = \overline{\Omega} \},\$$

which is shown to be a closed subset of \mathcal{W}^0_{ξ} . We call \mathcal{Z}_{ξ} the central stream of ξ . Oort showed

$$\begin{aligned} \mathcal{Z}_{\xi} &= \{ A \in \mathcal{A}_g \mid A[p]_{\Omega} \simeq H(\xi)[p]_{\Omega} \text{ for some } \Omega = \overline{\Omega} \} \\ &= \mathcal{S}_{\mu(\xi)}, \end{aligned}$$

where $\mu(\xi)$ is the *p*-kernel type $\mathcal{E}(H(\xi))$ of $H(\xi)$.

3.3 Irreducibility of Ekedahl-Oort strata

The irreducibility of \mathcal{S}_w depends on whether $\mathcal{S}_w \subset \mathcal{W}_{\sigma}$.

Theorem 3.2 (Ekedahl - van der Geer). S_w is irreducible if $S_w \not\subset W_{\sigma}$.

Theorem 3.3 (H., to appear in J. Alg. Geom.). \mathcal{S}_w is reducible for $p \gg 0$ if $\mathcal{S}_w \subset \mathcal{W}_{\sigma}$.

Definition 3.4. The generic Newton polygon of \mathcal{S}_w is defined to be

 $\xi(w) =$ Newton polygon of a (every) generic point of \mathcal{S}_w .

By Grothendieck-Katz, $\xi(w)$ is the optimal upper bound:

$$\forall X, \quad \mathcal{E}(X) = w \implies \mathcal{N}(X) \prec \xi(w), \\ \exists Y, \quad \mathcal{E}(Y) = w \quad \& \quad \mathcal{N}(Y) = \xi(w).$$

3.4 Results

Theorem 3.5 (H., to appear in Ann. Inst. Fourier). For any $w \in {}^{J}W_{Sp_{2g}}$, we have

$$\xi(w) = \max_{\prec} \{ \xi \mid \mathcal{Z}_{\xi} \subset \overline{\mathcal{S}_w} \}.$$

This gives a combinatorial algorithm determining the generic Newton polygon $\xi(w)$ of \mathcal{S}_w . Recall that $\mathcal{Z}_{\xi} = \mathcal{S}_{\mu(\xi)}$, where $\mu(\zeta)$ is the *p*-kernel type of $H(\xi)$.

Theorem 3.6 (H., Asian J. Math. (2009)).

 $\mathcal{Z}_{\zeta} \subset \overline{\mathcal{Z}_{\xi}} \quad \Leftrightarrow \quad \zeta \prec \xi.$

Corollary 3.7. Oort's conjecture is true: $\mathcal{W}^0_{\zeta} \cap \mathcal{S}_w \neq \emptyset \Rightarrow \mathcal{Z}_{\zeta} \subset \overline{\mathcal{S}_w}$.

4 The unpolarized case

4.1 Main results

Theorem 4.1 (H.). Let $w \in {}^{J}W_{GL_{r}}$. The optimal upper bound $\xi(w)$ exists, and

$$\xi(w) = \max\{\xi \mid \mu(\xi) \subset w\}.$$

This gives a combinatorial algorithm determining $\xi(w)$. See below for what \subset means. Again recall $\mu(\xi) = \mathcal{E}(H(\xi))$.

Theorem 4.2 (H.). $\mu(\zeta) \subset \mu(\xi) \quad \Leftrightarrow \quad \zeta \prec \xi.$

Corollary 4.3 (The unpolarized analogue of Oort's conjecture). If there exists a p-divisible group X with Newton polygon ζ and p-kernel type w, then we have $\mu(\zeta) \subset w$.

Because $\zeta \prec \xi(w)$ and therefore $\mu(\zeta) \subset \mu(\xi(w)) \subset w$.

4.2 *F*-zips and displays

Let S be an \mathbb{F}_p -scheme. Let σ be the absolute Frobenius on S. For any \mathcal{O}_S -module M we write $M^{(p)} = \mathcal{O}_S \otimes_{\sigma, \mathcal{O}_S} M$.

Definition 4.4 (Moonen-Wedhorn). An *F*-zip over *S* is a quintuple $Z = (N, C, D, \varphi, \dot{\varphi})$ consisting of locally free \mathcal{O}_S -module *N* and \mathcal{O}_S -submodules C, D of *N* which are locally direct summands of *N*, and isomorphisms $\varphi : (N/C)^{(p)} \to D$ and $\dot{\varphi} : C^{(p)} \to N/D$.

If S = Spec(K) with a perfect eld K, then

 $\{BT_1 \text{ 's over } K\} \xrightarrow{\sim} \{F\text{-zips over } K\}$

sending G to $(\mathbb{D}(G), \mathcal{V}N, \mathcal{F}N, \mathcal{F}, \mathcal{V}^{-1})$.

From now on we write $W = W_{GL_r}$ and ${}^{J}W = {}^{J}W_{GL_r}$.

Definition 4.5. Let $w, w' \in {}^{\mathrm{J}} W$. We say $w \subset w'$ if there is an *F*-zip over a valuation ring such that the special ber is of type w and the generic ber is of type w'.

Theorem 4.6 (Wedhorn). (1) \subset gives an ordering on ^JW.

(2) There exists a combinatorial algorithm determining whether $w \subset w'$ for concretely given w and w'.

One can show that

Lemma 4.7. Let $w, w' \in {}^{\mathrm{J}}\mathrm{W}_{\mathrm{GL}_r}$. If $w \subset w'$, then we have $\xi(w) \prec \xi(w')$.

Let R be a commutative ring. Let F and V be the Frobenius and Verschiebung on W(R). Put $I_R = {}^V W(R)$.

A display over R is a quadruple $(P, Q, \mathcal{F}, \mathcal{V}^{-1})$ of

- (i) P: a nitely generated projective W(R)-module;
- (ii) Q: a submodule of P such that \exists decomposition $P = L \oplus T$ such that $Q = L \oplus I_R T$;
- (iii) $\mathcal{F}: P^{(p)} \to P$ and $\mathcal{V}^{-1}: Q^{(p)} \twoheadrightarrow P: W(R)$ -linear maps.

Theorem 4.8 (Zink). Assume R is an excellent local ring or of finite type over a field of char. p. Then

{nilpotent displays over R} \simeq {formal *p*-div. gp. over R}.

An *F*-zip over *R* is the mod I_R -reduction of a display over *R*.

4.3 The existence of $\xi(w)$

In the polarized case, the existence of $\xi(w)$ follows from the irreducibility of Ekedahl-Oort strata. Instead we prove

Lemma 4.9. There exists an irreducible catalogue of p-divisible groups with a given p^m -kernel type: Let $m \in \mathbb{N}$, and let u be a p^m -kernel type. There exists a p-divisible group \mathcal{X} over an irreducible scheme S of finite type over k such that

- (1) every geometric fiber \mathcal{X}_s is of p^m -kernel type u;
- (2) For any p-divisible group X with p^m -kernel type u, there exists a geometric point $s \in S$ such that $X \simeq \mathcal{X}_s$.

This (for m = 1) proves that the optimal upper bound $\xi(w)$ exists. Indeed the Newton polygon of the generic ber of \mathcal{X} satis all the properties of $\xi(w)$.

Proof. Let $(P, Q, \mathcal{F}, \mathcal{V}^{-1})$ be a display over k, and $P = L \oplus T$ be a normal decomposition. Let

- (a) G := GL(P) the general linear group over W(k);
- (b) H: the paraholic subgroup of G stabilizing Q;
- (c) \mathcal{D}_m : the group scheme over k representing the functor

$$\operatorname{Alg}_k \to \operatorname{Set}: R \mapsto \operatorname{G}(W_m(R));$$

(d) \mathcal{H}_m : the group scheme over k representing the functor

$$\operatorname{Alg}_k \to \operatorname{Set} : R \mapsto \operatorname{H}(W_m(R)).$$

We have that \mathcal{D}_m and \mathcal{H}_m are connected smooth affine group schemes over k, see Vasiu [J. Alg. Geom. (2008)]. For any truncated Barsotti-Tate group of level m (BT_m) with codim. c and dim. d, its Dieudonné module is written as $(P/p^m P, g\mathcal{F}, \mathcal{V}g^{-1})$ for some $g \in \mathcal{D}_m$. Let

$$\mathbf{BT}_m(k) = \{ BT_m \text{ over } k \text{ of codim. } c \text{ and dim. } d \} / \simeq .$$

Vasiu introduced an action:

$$\mathbb{T}_m: \quad \mathcal{H}_m \times_k \mathcal{D}_m \longrightarrow \mathcal{D}_m,$$

and showed that

$$\{\mathbb{T}_m\text{-orbits}\}\simeq \mathbf{BT}_m(k)$$

Now we can construct an irreducible catalogue of *p*-divisible groups with p^m -kernel type *u*.

Choose an integer $N \geq m$ so that $X[p^N] \simeq Y[p^N]$ implies $X \simeq Y$ for any *p*-divisible groups X and Y over k. Let π be the natural map $\mathcal{D}_N \to \mathcal{D}_m$, and let τ be a section of $\mathcal{D} \to \mathcal{D}_N$. Let \mathbb{O}_u be the \mathbb{T}_m -orbit associated to u. Since \mathcal{H}_m is irreducible, \mathbb{O}_u is irreducible. Since π is smooth with connected bers, $\pi^{-1}(\mathbb{O}_u)$ is also irreducible. Let S be the image of $\pi^{-1}(\mathbb{O}_u)$ by τ . Then S is irreducible and of nite type over k. By Zink's display theory, we have a *p*-divisible group \mathcal{X} over S. Clearly \mathcal{X} satis es the required properties.

4.4 Outline of the proof (1st slope theory and induction)

Let $w \in {}^{\mathrm{J}}\mathrm{W}_{\mathrm{GL}_r}$. Set $\nu_w(i) = \sharp\{a \leq i \mid w(a) > d\}$. We de ne a map

$$\Psi_w: \{1, \dots, r\} \to \{1, \dots, r\}$$

by $\Psi_w(i) = d + i$ if w(i) = i and $\Psi_w(i) = \nu_w(i)$ otherwise. Let

$$\mathcal{D} = \operatorname{Im} \Psi_w^k \text{ for } k \gg 0,$$

$$\mathcal{C} = \mathcal{D} \cap \{d+1, \dots, r\}.$$

Theorem 4.10 (H., J. Pure Appl. Algebra (2009)). (1) The last slope of $\xi(w)$ is equal to $\rho(w) := \sharp C / \sharp D$.

(2) $\rho(w) = \max\{m/(m+n) \mid H_{m,n}[p] \stackrel{\exists}{\hookrightarrow} G_w\}.$

The set slope $\lambda(w)$ of $\xi(w)$ is equal to $1 - \rho(w^{\vee})$.

 $\lambda(w) = \min\{m/(m+n) \mid G_w \stackrel{\exists}{\twoheadrightarrow} H_{m,n}[p]\}.$

For the polarized case, see H., J. Alg. Geom. (2007).

To show the main theorem, it suffices to show

Proposition 4.11. Assume that w is not minimal. Then there exists a nonconstant family of isogenies of p-divisible groups

 $H(\xi(w))_S \longrightarrow \mathcal{X}$

over S such that the isomorphism type of $\mathcal{X}_s[p]$ is w for every geometric point s of S.

The main theorem follows from this proposition: *Proof of Prop.* \Rightarrow *the main theorem.* We rst claim that the main theorem

$$\xi(w) = \max\{\zeta \mid \mu(\zeta) \subset w\}$$
(1)

is equivalent to

$$\mu(\xi(w)) \subset w. \tag{2}$$

Obviously (1) implies (2). Conversely suppose (2). Put $\bigstar = \{\zeta \mid \mu(\zeta) \subset w\}$. Clearly (2) says $\xi(w) \in \bigstar$. Let ζ be any element of \bigstar , i.e, $\mu(\zeta) \subset w$. Then $\xi(\mu(\zeta)) \prec \xi(w)$. Note that $\xi(\mu(\zeta)) = \zeta$ by the theory (Oort) on the minimal *p*-divisible groups. Thus we have $\zeta \prec \xi(w)$.

From this claim it suffices to prove Prop. \Rightarrow (2). The proof is by induction of w w.r.t \subset . If w is minimal, we have $\mu(\xi(w)) = \mu(w) = w$. Assume w is not minimal. We now assume Proposition, which is paraphrased as dim $\mathcal{S}_w(\mathcal{M}) >$ 0, where \mathcal{M} is the moduli space (over k) of isogenies $H(\xi(w)) \to Y$. Choose an irreducible component \mathcal{I} of \mathcal{M} such that dim $\mathcal{S}_w(\mathcal{I}) > 0$. It is known that \mathcal{I} is projective and $\mathcal{S}_w(\mathcal{I})$ is quasi-affine. Take a point $\in \mathcal{I} \cap \partial \mathcal{S}_w(\mathcal{I})$. Let w' be the *p*-kernel type of the point. Clearly w' satis es $w' \subseteq w$ and $\xi(w') = \xi(w)$. By the hypothesis of induction we may assume $\mu(\xi(w')) \subset w'$; then $\mu(\xi(w)) = \mu(\xi(w')) \subset w' \subset w$.

Outline of the proof of Proposition: By the existence of $\xi(w)$, there exists a *p*-divisible group X such that X[p] is of type w and the Newton polygon of X is $\xi(w)$.

Step 1: We extract a simple rst-slope part X_1 from X:

$$0 \longrightarrow X'_0 \longrightarrow X \xrightarrow{f_0} X_1 \longrightarrow 0 \quad (exact)$$

Then the rst-slope theory shows that $X_1 \simeq H_{n,m}$. Take these *p*-kernels:

$$0 \longrightarrow X'_0[p] \longrightarrow X[p] \longrightarrow X_1[p] \longrightarrow 0 \quad (exact)$$

Step 2: Find a generic part S of the hom-space $\text{Hom}(X[p], X_1[p])$ whose $\phi: X[p]_S \to X_1[p]_S$ makes

$$0 \longrightarrow G \longrightarrow X[p]_S \xrightarrow{\phi} X_1[p]_S \longrightarrow 0 \quad (\text{exact})$$

so that G is a geometrically-constant BT_1 over S.

Step 3: We extend this to a complex over S' (nite/S):

$$0 \longrightarrow X'_{S'} \longrightarrow \mathcal{X} \xrightarrow{f} X_{1,S'} \longrightarrow 0 \quad (\text{exact}),$$

so that we have a non-constant family $\mathcal{X} \to S'$.

5 Expectations

Note \mathcal{W}^0_{ξ} has complicated singularities in general. We have a natural decomposition

$$\mathcal{W}^0_\xi = \coprod \mathcal{W}^0_\xi \cap \mathcal{S}_w.$$

Expectation 5.1. $\mathcal{W}^0_{\xi(w)} \cap \mathcal{S}_w$ would be beautifully described.

Here $\xi(w)$ is the generic Newton polygon of \mathcal{S}_w . We have investigated the case $\xi(w) = \sigma$, i.e., $\mathcal{S}_w \subset \mathcal{W}_{\sigma}$:

Theorem 5.2 (H., to appear in J. Algebraic Geom.). For any $w' \in \overline{W}'_c$ with $c \leq \lfloor g/2 \rfloor$, there exists a finite surjective morphism

$$G(\mathbb{Q})\backslash X(w') \times G(\mathbb{A}_f)/K \to \bigcup_{\mathfrak{r}(w)=w'} \mathcal{S}_w,$$

which is bijective on geometric points.

Here X(w') is the (generalized) Deligne-Lusztig variety:

$$\{\mathbf{P} \in \operatorname{Sp}_{2c} / \mathbf{P}_0 \mid {}^{h}\mathbf{P} = \mathbf{P}_0, {}^{h}\operatorname{Fr}(\mathbf{P}) = {}^{w'}\mathbf{P}_0 \text{ for } \exists h \in \operatorname{Sp}_{2c} \},\$$

and G is a certain quaternion unitary group over \mathbb{Q} .

Department of Mathematics, Graduate School of Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan.

E-mail address: harasita at math.kobe-u.ac.jp