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Abstract

In this paper, we consider a natural question how many minimal rational curves
are needed to join two general points on a Fano manifold of Picard number 1. In
particular, we study the minimal length of such chains in the two cases where the
dimension of X is at most 5 and the coindex of X is at most 3.
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1 Introduction

In this paper, we review some results announced at Kinosaki symposium without
detailed proof.

For a Fano manifold, a minimal rational component K is defined to be a domi-
nating irreducible component of the normalization of the parameter space of rational
curves whose degree is minimal among such components and a variety of minimal
rational tangents is the parameter space of the tangent directions of K -curves at a
general point. Nowadays these two objects often appear in the study of Fano man-
ifolds [3, 10]. On the other hand, chains of rational curves play an important role
in the study of Fano manifolds. For instance, Kollár-Miyaoka-Mori [14] and Nadel
[16] independently showed the boundedness of the degree of Fano manifolds of Picard
number 1 by using chains of rational curves. From these viewpoints, it is a natural
question how many rational curves in the family K are needed to join two general
points. We denote by lK the minimal length of such chains of general K -curves. In
this direction, Hwang and Kebekus [4] developed an infinitesimal method to study
the lengths of Fano manifolds via the varieties of minimal rational tangents. They
also dealt with some examples when the varieties of minimal rational tangents and
those secant varieties are simple, such as complete intersections, Hermitian symmetric
spaces and homogeneous contact manifolds. Furthermore the following was obtained.

Theorem 1.1 ([4, 6]). Let X be a prime Fano n-fold of Picard number 1. If the Fano
index iX satisfies n + 1 > iX > 2

3
n, then lK = 2.

A Fano manifold is prime if the ample generator of the Picard group is very ample.
Our original motivation of this paper is to announce a computational result of the

1The author is supported by Research Fellowships of the Japan Society for the Promotion of
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lengths of Fano manifolds of coindex ≤ 3. By the above theorem, it is sufficient to
consider the cases where n ≤ 5, (n, iX) = (6, 4) and X is non-prime.

First we introduce the following:

Theorem 1.2. Let X be a Fano n-fold of Picard number 1, K a minimal rational
component of X and p + 2 the anti-canonical degree of rational curves in K . Then
if p = n − 3 > 0, we have lK = 2 and if (n, p) = (5, 1), we have lK = 3.

By combining this theorem and well-known or easy arguments (see Section 3), we
obtain the following table. In particular, when n ≤ 5, lK depends only on (n, p).

Table A

n p lK n p lK n p lK

3 2 1 4 3 1 5 4 1
3 1 2 4 2 2 5 3 2
3 0 3 4 1 2 5 2 2

4 0 4 5 1 3
5 0 5

On the other hand, the following shows lK does not depend only on (n, p) in
general.

Theorem 1.3. Let X be a Fano manifold of Picard number 1 with coindex 3 and K
a minimal rational component of X. Assume that n := dim X ≥ 6. Then lK = 2
except the case X is a 6-dimensional Lagrangian Grassmannian LG(3, 6). In the case
X = LG(3, 6), we have lK = 3.

As a consequence, we obtain the following table (n ≥ 6).

Table B

X iX lK

Pn n + 1 1
Qn n 2

del Pezzo mfd. of dim. n n − 1 2
Mukai mfd. of dim. n ≥ 7 n − 2 2

Mukai mfd. of dim. 6 4 2 or 3

The contents of this paper are organized as follows: In Sect. 2, we set up our
notation and review some basic facts of deformation theory of rational curves. In
Sect. 3, we explain why Table A and B follow from Theorem 1.2 and 1.3. In Sect. 4,
we introduce a classification result of prime Fano n-folds satisfying iX = 2

3
n and

lK ̸= 2 as the next case of Theorem 1.1. Throughout this paper, we work over the
complex number field.
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2 Deformation theory of rational curves and vari-

eties of minimal rational tangents

First we review some basic facts of deformation theory of rational curves and the
definition of varieties of minimal rational tangents. For detail, we refer to [3, 12] and
follow the conventions of them.

Throughout this paper, unless otherwise noted, we always assume that X is a Fano
manifold of Pic(X) ∼= Z[OX(1)], where OX(1) is the ample generator, and denote by
RatCurvesn(X) the normalization of the space of integral rational curves on X. We
also assume n := dim X ≥ 3. We denote by iX the Fano index of X which is the
integer satisfying ωX

∼= OX(−iX), where ωX is the canonical line bundle of X. We
call n + 1 − iX the coindex of X.

As is well-known, a Fano manifold is uniruled. It is equivalent to the condi-
tion that there exists a free rational curve f : P1 → X. Here we call a rational
curve f : P1 → X free if f ∗TX is semipositive. An irreducible component K of
RatCurvesn(X) is called a minimal rational component if it contains a free rational
curve of minimal anti-canonical degree. We denote by Kx the normalization of the
subscheme of K parametrizing rational curves passing through x. Since each mem-
ber of K is numerically equivalent, we can define the OX(1)-degree of K which is
denoted by dK . We will use the symbol p to denote iXdK − 2. In this setting, the
minimal rational component K satisfies the following fundamental properties.

Proposition 2.1 (cf. [3]). (i) For a general point x ∈ X, Kx is a disjoint union
of smooth projective varieties of dimension p.

(ii) For a general member [f ] of K , f ∗TX
∼= O(2)⊕O(1)p ⊕On−1−p which is called

a standard rational curve. In particular, 0 ≤ p ≤ n − 1.

For a general point x ∈ X, we define the tangent map τx : Kx → P(TxX)2 by
assigning the tangent vector at x to each member of Kx which is smooth at x. We
denote by Cx ⊂ P(TxX) the image of τx, which is called the variety of minimal
rational tangents at x.

Theorem 2.2 ([5, 9]). The tangent map τx : Kx → Cx ⊂ P(TxX) is the normaliza-
tion.

Theorem 2.3 ([2, 8]). If p = n − 1, namely Cx = P(TxX), then X is isomorphic to
Pn.

Theorem 2.4 ([15]). If X is a Fano manifold of n := dim X ≥ 3, the following are
equivalent.

(i) X is isomorphic to a smooth quadric hypersurface Qn.

(ii) The Picard number of X is 1 and the minimal value of the anti-canonical degree
of rational curves passing through a very general point x0 ∈ X is equal to n.

Corollary 2.5. If p = n−2, namely Cx ⊂ P(TxX) is a hypersurface, X is isomorphic
to Qn.

2For a vector space V , P(V ) denotes the projective space of lines through the origin in V .
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3 Table A and B

Notation 3.1. We denote by (d1) ∩ · · · ∩ (dk) ⊂ Pn a smooth complete intersection
of hypersurfaces of degrees d1, . . . , dk, in particular, by (d)k if d = d1 = · · · = dk.
We denote by G(k, n) a Grassmannian of k-planes in Cn, by LG(k, n) a Lagrangian
Grassmannian which is the variety of isotropic k-planes for a non-degenerate skew-
symmetric bilinear form on Cn, by Sk the spinor variety which is an irreducible
component of the Fano variety of k-planes in Q2k. We denote a simple exceptional
linear algebraic group of Dynkin type G simply by G and for a dominant integral
weight ω of G, the minimal closed orbit of G in P(Vω) by G(ω), where Vω is the
irreducible representation space of G with highest weight ω. For example, E7(ω1) is
the minimal closed orbit of an algebraic group of type E7 in P(Vω1), where ω1 is the
first fundamental dominant weight in the standard notation of Bourbaki [1].

3.1 Table A

Theorem 3.2. (= Theorem 1.2) If p = n − 3 > 0, we have lK = 2 and if (n, p) =
(5, 1), we have lK = 3.

From Proposition 2.1, p is at most n − 1 and at least 0. When p = n − 1, X is
isomorphic to Pn (Theorem 2.3). In particular, we have lK = 1. When p = n− 2, X
is isomorphic to Qn (Corollary 2.5). So if p = n − 2, we have lK = 2. Furthermore,
if p = 0, we have lK = n. From these arguments, when n is at most 5, it is enough
to compute lK in the cases where (n, p) = (4, 1), (5, 2) and (5, 1). However in these
cases lK can be computed from Theorem 3.2. Consequently, we obtain the following
table:

Table A

n p lK n p lK n p lK

3 2 1 4 3 1 5 4 1 X = Pn

3 1 2 4 2 2 5 3 2 X = Qn

3 0 3 4 1 2 5 2 2
4 0 4 5 1 3

5 0 5 p = 0 ⇒ lK = n

3.2 Table B

Theorem 3.3. (= Theorem 1.3) For a Fano manifold X of Picard number 1 with
coindex 3, assume that n := dim X ≥ 6. Then lK = 2 except the case X is a 6-
dimensional Lagrangian Grassmannian LG(3, 6). In the case X = LG(3, 6), we have
lK = 3.

Let X be a Fano n-fold of Picard number 1 with coindex ≤ 3. Since we obtained
the list of lK in the case n ≤ 5 (Table A), assume n is at least 6. If the coindex
is equal to 0 or 1, then X is a projective space or a smooth quadric hypersurface
(Kobayashi-Ochiai Theorem [11]).

-4-

4



Lemma 3.4. If the coindex is 2, we have p = n − 3.

Proof. By our assumption, we have iX = n−1. For a minimal rational component K
of X, an equality p+2 = iXdK holds. Furthermore we know n+1 ≥ p+2 = (n−1)dK .
This implies that dK = 1. Thus we have p = n − 3.

When the coindex is 2, we have lK = 2 from Theorem 3.2 and the above Lemma 3.4.
When the coindex is 3 and n ≥ 6, we know the value of lK from Theorem 1.3. As a
consequence, we obtain the following table (n ≥ 6):

Table B

X iX lK

Pn n + 1 1
Qn n 2

del Pezzo mfd. of dim. n n − 1 2
Mukai mfd. of dim. n ≥ 7 n − 2 2

Mukai mfd. of dim. 6 4 2 or 3

From Table A and B, we can compute the lengths of Fano manifolds with coindex
3. In fact, we have the next table:

Table C (coindex 3 case)

n lK

n ≥ 7 2
6 2 or 3
5 3
4 4
3 3

4 Boundary case

Before stating a classification result of prime Fano n-folds satisfying iX = 2
3
n and

lK ̸= 2, recall definitions and set up our notation.

Definition 4.1 (cf. [7, 6]). For a projective manifold X ⊂ PN , we call X conic-
connected if there exists an irreducible conic passing through two general points on
X.

Example 4.2. Let X be a Grassmaniann G(2, 6) ⊂ P14 or its linear section of
dimension n ≥ 6. Then X is a Fano manifold of coindex 3 with the genus g = 8. For
two distinct points x, y ∈ G(2, 6), they correspond to 2-dimensional vector subspaces
Lx, Ly ⊂ C6. Then there exists a 4-dimensional vector subspace V ⊂ C6 which
contains the join < Lx, Ly >. This implies that x, y is contained in a 4-dimensional
quadric Q4 ∼= G(2, 4) ⊂ G(2, 6). So X is conic-connected and lK = 2.
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Definition 4.3. For a projective variety X ⊂ PN , we define the secant variety of
X by the closure of the union of lines passing through distinct two points on X and
denote by S1X.

Remark 4.4. In general, it is easy to see the dimension of the secant variety S1X is
at most 2n + 1. The expected dimension of the secant variety S1X is 2n + 1. When
the dimension of S1X is less than 2n + 1, we say the secant variety S1X defective.

Definition 4.5. Let X ⊂ PN be a non-degenerate smooth projective variety of di-
mension n. X is a Severi variety if it satisfies that 3n = 2(N − 2) and S1X ̸= PN .

Theorem 4.6 ([17]). Each Severi variety is projectively equivalent to one of the
following:

(i) The Veronese surface v2(P2) ⊂ P5.

(ii) The Segre variety P2 × P2 ⊂ P8.

(iii) The Grassmann variety G(P1, P5) ⊂ P14.

(iv) The E6-variety E6(ω1) ⊂ P26.

In particular, Severi varieties are homogeneous.

As an extremal case of Theorem 1.1, we have the following:

Theorem 4.7. Let X be a prime Fano n-fold with iX = 2
3
n. Then lK = 2 except the

following cases:

(i) (3) ⊂ P4 a hypersurface of degree 3.

(ii) (2) ∩ (2) ⊂ P5 a complete intersection of two hyperquadrics.

(iii) G(2, 5) ∩ (1)3 ⊂ P6 a 3-dimensional linear section of G(2, 5).

(iv) LG(3, 6) a Lagrangian Grassmannian.

(v) G(3, 6) a Grassmannian.

(vi) S5 a spinor variety.

(vii) E7(ω7) a rational homogeneous manifold of type E7.

In the cases (i) − (vii) we have lK = 3.

Corollary 4.8. Let X be a prime Fano n-fold of Picard number 1 with iX = 2
3
n and

K a minimal rational component of X. Assume that n ≥ 6. Then the following are
equivalent.

(i) lK ̸= 2.

(ii) lK = 3.

(iii) X ⊂ P(H0(X, OX(1))∨) is not conic-connected.
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(iv) The dimension of the secant variety S1X ⊂ P(H0(X,OX(1))∨) is 2n + 1.

(v) The variety of minimal rational tangents at a general point Cx ⊂ P(TxX) is a
Severi variety.

(vi) X ⊂ P(H0(X,OX(1))∨) is projectively equivalent to one of the manifolds listed
in Theorem 4.7 (iv) − (vii).

This corollary and Theorem 1.1 implies that iX = 2
3
n is a boundary of conic-

connectedness and defectiveness of the secant variety:

Property iX > 2
3
n iX = 2

3
n iX = 2

3
n

lK 2 2 3
Conic-connectedness Yes Yes No

Defectiveness of the secant variety Yes Yes No
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