CONSTRUCTING FAMILIES OF CONNECTIONS ON ${ m P}^1$ AND au-DIVISORS Kazunori Miyazaki D1 Kobe Univ. #### **Abstract** The moduli of connections on trivial vector bundles over P^1 $$egin{aligned} rac{d}{dz}igg(m{y}_1\ m{y}_2igg) &= (rac{A_0}{z} + rac{A_1}{z-1} + rac{A_2}{z-t})igg(m{y}_1\ m{y}_2igg) \end{aligned}$$ does not coincide with the space of initial conditions of Okamoto $S \setminus Y_{red}$. There exists a divisor on $S \setminus Y_{red}$ which does not correspond, called a τ -divisor. If we consider the moduli of connections on vector bundles of degree zero over P^1 , then it is isomorphic to $S \setminus Y_{red}$. Thus on the τ -divisor the type of the vector bundles jumps. In this poster we explain this phenomenon. ## Notation M: a connected complex analytic manifold $\mathcal E$: a holomorphic bundle on $\mathrm P^1 imes M$, $\mathrm{rank}\, \mathcal E = r$, $\deg \mathcal E_{|\mathrm P^1 imes \{m\}} = 0 \; (orall m \in M)$ $abla : E o E \otimes \Omega^1_{\mathrm{P}^1}(D): ext{ a connection on } \mathrm{P}^1 ext{ with pole divisor } D$ ## Families of vector bundles on P^1 Theorem 1 (τ -divisor) The support Θ of the sheaf $\mathrm{R}^1\pi_*\mathcal{E}(-1)$ is the set of points $m\in M$ such that the restriction of \mathcal{E} to $\mathrm{P}^1\times\{m\}$ is not trivial. If $\Theta\neq\emptyset$ and $\Theta\neq X$, then Θ is a hypersurface of M. Theorem 2 (Rigidity of a trivial bundle) If there exists $m^{\circ} \in M$ such that $\mathcal{E}^{\circ} := \mathcal{E}_{|\mathrm{P}^1 \times \{m^{\circ}\}}$ is trivial, then there exists an open neighbourhood V of m° such that the restriction of \mathcal{E} to $\mathrm{P}^1 \times V$ is trivial. -124- # Irreducible connections on P^1 Definition 1 (Birkhoff-Grothendieck) For any vector bundle E on P^1 there is an isomorphism $E\simeq \mathcal{O}_{\mathrm{P}^1}(a_1)\oplus\cdots\oplus \mathcal{O}_{\mathrm{P}^1}(a_r), a_1\geq\cdots\geq a_r.$ We call $a_1\geq\cdots\geq a_r$ a type and $\delta(E):=\Sigma_{i=1}^ra_1-a_i$ a defect of the vector bundle $\mathrm{E}.$ Definition 2 (Irreducibility) A connection (E,∇) is irreducible if it satisfies for any subbundle F, $\nabla F \subset F \otimes \Omega^1_{\mathbf{P}^1}(D)$ Proposition 1 (Boundness of a defect) For any irreducible connection $\nabla:E\to E\otimes\Omega^1_{{ m P}^1}(D)$, the following inequality holds $$\delta(E) \leq (\deg D - 2) \frac{r(r-1)}{2}.$$ Later we consider the case $D=4,\ r=2$ so the possibble types are $$\mathcal{E}_{|\mathrm{P}^1 imes\{m\}}\simeq egin{cases} \mathcal{O}_{\mathrm{P}^1}\oplus\mathcal{O}_{\mathrm{P}^1}\ \mathcal{O}_{\mathrm{P}^1}(1)\oplus\mathcal{O}_{\mathrm{P}^1}(-1). \end{cases}$$ ## Example Painlevè V(0,0,1) $$egin{align} abla &=d+(rac{A_0}{z}+ rac{A_1}{z-1}+A_\infty)dz=d+A_z rac{dz}{z(z-1)}\ A_\infty &=\left(egin{align} - rac{t}{2} & 0\ 0 & rac{t}{2} ight) \end{aligned}$$ | The singularities z | 0 | 1 | ∞ | |-----------------------------|------------------------|------------------------|--| | Katz invariant | 0 | 0 | 1 | | generalized local exponents | $\pm rac{ heta_0}{2}$ | $\pm rac{ heta_1}{2}$ | $\pm(rac{t}{2}z+ rac{ heta_{\infty}}{2})$ | $$egin{aligned} A_z &= egin{pmatrix} L & M \ z-q-L \end{pmatrix} \ L &= - rac{t}{2}z^2 + rac{1}{2}\left(t- heta_\infty ight)z + rac{1}{2}\left(tq^2 - tq + heta_\infty q + 2p ight) \ M &= rac{(q+z-1)(2p+(q-1)qt)^2 + (q-1)(z-1) heta_0^2 - qz heta_1^2 + (q-1)q heta_\infty(4p+2(q-1)qt+(q-z) heta_\infty)}{4(q-1)q} \end{aligned}$$ $-K_S = Y = 2Y_0 + Y_1 + Y_2 + 2Y_3 + Y_4 + Y_5$ (S,Y): Okamoto-Painlevé pair ## Families of connections on the τ -divisor We constructed a families of connections on the au-divisor $$egin{aligned} A_z &= egin{pmatrix} L & M \ -1 &-L \end{pmatrix}, \;\; L = rac{tz^2}{2} + rac{1}{2} \left(-t + heta_\infty - 2 ight) z - rac{u_2}{2}, \ M &= rac{1}{4} \left(u_2{}^2 - heta_0^2 ight) + rac{1}{4} z \left(heta_0^2 - heta_1^2 - \left(2 u_2 - heta_\infty + 2 ight) \left(heta_\infty - 2 ight) ight), \end{aligned}$$ where the variable u_2 is the coordinate on the au-divisor. ### Parabolic structures Fixing the generalized local exponents determinds the moduli space of connections. But to constract a family of connections we fixed the data $E=\mathcal{O}_{\mathbf{P}^1}\oplus\mathcal{O}_{\mathbf{P}^1}$ and parabolic structure l_∞ . This causes a jumping phenomenon of the underlying vector bundles and the τ -divisor depends on it. parabolic structure (cyclic vector) $$\iff au$$ -divisor References [Sab] Sabbah, Isomonodromic deformations and Frobenius manifolds [PSa] van der Put, M. and M.-H. Saito, Moduli spaces for linear differential equations and the Painlevé equations