# CONSTRUCTING FAMILIES OF CONNECTIONS ON ${ m P}^1$ AND au-DIVISORS

Kazunori Miyazaki D1 Kobe Univ.

#### **Abstract**

The moduli of connections on trivial vector bundles over  $P^1$ 

$$egin{aligned} rac{d}{dz}igg(m{y}_1\ m{y}_2igg) &= (rac{A_0}{z} + rac{A_1}{z-1} + rac{A_2}{z-t})igg(m{y}_1\ m{y}_2igg) \end{aligned}$$

does not coincide with the space of initial conditions of Okamoto  $S \setminus Y_{red}$ . There exists a divisor on  $S \setminus Y_{red}$  which does not correspond, called a  $\tau$ -divisor. If we consider the moduli of connections on vector bundles of degree zero over  $P^1$ , then it is isomorphic to  $S \setminus Y_{red}$ . Thus on the  $\tau$ -divisor the type of the vector bundles jumps. In this poster we explain this phenomenon.

## Notation

M: a connected complex analytic manifold  $\mathcal E$ : a holomorphic bundle on  $\mathrm P^1 imes M$ ,  $\mathrm{rank}\, \mathcal E = r$ ,  $\deg \mathcal E_{|\mathrm P^1 imes \{m\}} = 0 \; (orall m \in M)$ 



 $abla : E o E \otimes \Omega^1_{\mathrm{P}^1}(D): ext{ a connection on } \mathrm{P}^1 ext{ with pole divisor } D$ 

## Families of vector bundles on $P^1$

Theorem 1 ( $\tau$ -divisor) The support  $\Theta$  of the sheaf  $\mathrm{R}^1\pi_*\mathcal{E}(-1)$  is the set of points  $m\in M$  such that the restriction of  $\mathcal{E}$  to  $\mathrm{P}^1\times\{m\}$  is not trivial. If  $\Theta\neq\emptyset$  and  $\Theta\neq X$ , then  $\Theta$  is a hypersurface of M.

Theorem 2 (Rigidity of a trivial bundle) If there exists  $m^{\circ} \in M$  such that  $\mathcal{E}^{\circ} := \mathcal{E}_{|\mathrm{P}^1 \times \{m^{\circ}\}}$  is trivial, then there exists an open neighbourhood V of  $m^{\circ}$  such that the restriction of  $\mathcal{E}$  to  $\mathrm{P}^1 \times V$  is trivial. -124-

# Irreducible connections on $P^1$

Definition 1 (Birkhoff-Grothendieck) For any vector bundle E on  $\mathrm{P}^1$  there is an isomorphism  $E\simeq \mathcal{O}_{\mathrm{P}^1}(a_1)\oplus\cdots\oplus \mathcal{O}_{\mathrm{P}^1}(a_r), a_1\geq\cdots\geq a_r.$  We call  $a_1\geq\cdots\geq a_r$  a type and  $\delta(E):=\Sigma_{i=1}^ra_1-a_i$  a defect of the vector bundle  $\mathrm{E}.$ 

Definition 2 (Irreducibility) A connection  $(E,\nabla)$  is irreducible if it satisfies for any subbundle F,  $\nabla F \subset F \otimes \Omega^1_{\mathbf{P}^1}(D)$ 

Proposition 1 (Boundness of a defect) For any irreducible connection  $\nabla:E\to E\otimes\Omega^1_{{
m P}^1}(D)$ , the following inequality holds

$$\delta(E) \leq (\deg D - 2) \frac{r(r-1)}{2}.$$

Later we consider the case  $D=4,\ r=2$  so the possibble types are

$$\mathcal{E}_{|\mathrm{P}^1 imes\{m\}}\simeq egin{cases} \mathcal{O}_{\mathrm{P}^1}\oplus\mathcal{O}_{\mathrm{P}^1}\ \mathcal{O}_{\mathrm{P}^1}(1)\oplus\mathcal{O}_{\mathrm{P}^1}(-1). \end{cases}$$

## Example Painlevè V(0,0,1)

$$egin{align} 
abla &=d+(rac{A_0}{z}+rac{A_1}{z-1}+A_\infty)dz=d+A_zrac{dz}{z(z-1)}\ A_\infty &=\left(egin{align} -rac{t}{2} & 0\ 0 & rac{t}{2} 
ight) \end{aligned}$$

| The singularities $z$       | 0                      | 1                      | $\infty$                                   |
|-----------------------------|------------------------|------------------------|--------------------------------------------|
| Katz invariant              | 0                      | 0                      | 1                                          |
| generalized local exponents | $\pm rac{	heta_0}{2}$ | $\pm rac{	heta_1}{2}$ | $\pm(rac{t}{2}z+rac{	heta_{\infty}}{2})$ |

$$egin{aligned} A_z &= egin{pmatrix} L & M \ z-q-L \end{pmatrix} \ L &= -rac{t}{2}z^2 + rac{1}{2}\left(t- heta_\infty
ight)z + rac{1}{2}\left(tq^2 - tq + heta_\infty q + 2p
ight) \ M &= rac{(q+z-1)(2p+(q-1)qt)^2 + (q-1)(z-1) heta_0^2 - qz heta_1^2 + (q-1)q heta_\infty(4p+2(q-1)qt+(q-z) heta_\infty)}{4(q-1)q} \end{aligned}$$



 $-K_S = Y = 2Y_0 + Y_1 + Y_2 + 2Y_3 + Y_4 + Y_5$ (S,Y): Okamoto-Painlevé pair

## Families of connections on the $\tau$ -divisor

We constructed a families of connections on the au-divisor

$$egin{aligned} A_z &= egin{pmatrix} L & M \ -1 &-L \end{pmatrix}, \;\; L = rac{tz^2}{2} + rac{1}{2} \left( -t + heta_\infty - 2 
ight) z - rac{u_2}{2}, \ M &= rac{1}{4} \left( u_2{}^2 - heta_0^2 
ight) + rac{1}{4} z \left( heta_0^2 - heta_1^2 - \left( 2 u_2 - heta_\infty + 2 
ight) \left( heta_\infty - 2 
ight) 
ight), \end{aligned}$$

where the variable  $u_2$  is the coordinate on the au-divisor.

### Parabolic structures

Fixing the generalized local exponents determinds the moduli space of connections. But to constract a family of connections we fixed the data  $E=\mathcal{O}_{\mathbf{P}^1}\oplus\mathcal{O}_{\mathbf{P}^1}$  and parabolic structure  $l_\infty$ . This causes a jumping phenomenon of the underlying vector bundles and the  $\tau$ -divisor depends on it.

parabolic structure (cyclic vector) 
$$\iff au$$
-divisor

References

[Sab] Sabbah, Isomonodromic deformations and Frobenius manifolds

[PSa] van der Put, M. and M.-H. Saito, Moduli spaces for linear differential equations and the Painlevé equations