（AND QUASI P－ADICALLY F－PURE SINGULARITY）

Daisuke Hirose（Hokkaido University）
hirose＠math．sci．hokudai．ac．jp

Introduction

Hara－Watanabe defined F－pure singularity of a pair $\left(R, I^{t}\right)$ ，where R is a ring of characteristic $p>0$ ， I an ideal of R and t a positive rational number．It seemed a positive characteristic analogue of log canon－ ical singularity of a pair．In fact，for a ring R_{0} of characteristic zero，an ideal I_{0} and $t \in \mathbb{Q}>0$ ，if a pair （ R_{0}, I_{0}^{t} ）is F －pure after reduction to p for infinitely many prime p ，then the pair $\left(R_{0}, I_{0}^{t}\right)$ should be log canonical！However，$\left(R, I^{\mathrm{fpt}(I)}\right)$ is not necessary F － pure，although $\left(R_{0}, I_{0}^{\text {Ict }\left(I_{0}\right)}\right)$ is always log canonical． The author wants to generalize F －pure singularity to satisfy that $\left(R, I^{\mathfrak{f p t}(I)}\right)$ is always F －pure．

$$
F: R \rightarrow F_{*} R: \text { Frobenius map }
$$

Def 1 （Hara－Watanabe）$\left(R, I^{t}\right)$ is F－pure if $\forall e \gg 0$ ， $\exists f \in I^{\left\lfloor t\left(p^{e}-1\right)\right\rfloor}$ such that

$$
f F^{e}: R \rightarrow F_{*}^{e} R\left(x \mapsto f x^{p^{e}}\right)
$$

splits as an R－hom．
Def 2 （Takagi－Watanabe）F－pure thresholds are def． as

$$
\begin{aligned}
\operatorname{fpt}(I) & :=\sup \left\{t \in \mathbb{Q} \mid\left(R, I^{t}\right) \text { is F-pure }\right\} \\
& =\inf \left\{t \in \mathbb{Q} \mid\left(R, I^{t}\right) \text { is not F-pure. }\right\}
\end{aligned}
$$

We can compute F－purity and $\mathrm{fpt}(I)$ by the Following Fed－ der＇s type criterion：Suppose that (R, \mathfrak{m}) is regular local．For $f \in R, e \in \mathbb{N}$ ，

$$
f \boldsymbol{F}^{e}: \boldsymbol{R} \rightarrow \boldsymbol{F}_{*}^{e} \boldsymbol{R}
$$

splits iff

$$
f \in \mathfrak{m}^{\left[p^{e}\right]}:=\left(g^{p^{e}} \mid g \in \mathfrak{m}\right)
$$

Ex 1 （F－pure thresholds）

$$
\begin{aligned}
& I:=\left(x^{2}+y^{3}\right) \subseteq R:=k[x, y] \\
& \begin{array}{|c|c|}
\hline p & f p t(I) \\
\hline 2 & 1 / 2 \\
3 & 2 / 3 \\
\hline p \equiv 5(\bmod 6) & (5 p-1) / 6 p \\
\hline p \equiv 1(\bmod 6) & 5 / 6
\end{array}=\operatorname{lct}\left(x^{2}+y^{3}\right)
\end{aligned}
$$

For $I_{0} \subseteq R_{0}$ ：an ideal of f．g．© \mathbb{C}－algebra R_{0} ，
say $I_{p} \subseteq R_{p}$ is its reduction to char．p ．
$\left(R_{0}, I_{0}^{t}\right)$ is F－pure type if \exists infinitely many prime numbers p such that $\left(\boldsymbol{R}_{p}, I_{p}^{t}\right)$ is F－pure．

$$
\begin{aligned}
& \text { Thm } 1 \text { (Hara-Watanabe) } \\
& \text { Assume that } R_{0}: \mathbb{Q} \text {-Gorenstein, normal over } \mathrm{C} \text {. } \\
& \qquad\left(R_{0}, I_{0}^{t}\right): \text { F-pure type } \Rightarrow \text { log canonical. }
\end{aligned}
$$

Hara proved $\left(R,(f)^{\mathrm{fpt}(f)}\right):$ F－pure，(f) ：principal．
$\operatorname{Ex} 2\left(\left(R, I^{\mathrm{fpt}(I)}\right):\right.$ not noc．F－pure）

$$
I:=\left(x^{2}, y^{2}, z^{2}\right) \subseteq R:=k[x, y, z]
$$

Then $\forall p>0, \mathrm{fpt}(I)=\frac{3}{2}(=\operatorname{lct}(I))$

$$
p=2 \quad\left(R, I^{\mathrm{fpt}(I)}\right): \text { NOT F-pure }
$$

$$
p \text { : otherwise }\left(R, I^{\mathrm{fpt}(I)}\right): \text { F-pure }
$$

$\nu(t):=-\min \left\{0, \nu_{p}(t)\right\}, \nu_{p}(-)$ is p －adic valuation
Def $3(\mathbf{H})\left(R, I^{t}\right)$ is p －adically F －pure if \exists infinitely many e with $p^{\nu(t)} t\left(p^{e}-1\right) \in \mathbb{Z}, \exists f \in I^{p^{\nu(t)} t\left(p^{e}-1\right)}$ such that

$$
f \boldsymbol{F}^{e+\nu(t)}: \boldsymbol{R} \rightarrow \boldsymbol{F}_{*}^{e+\nu(t)} \boldsymbol{R}\left(x \mapsto f x^{p^{p+\nu(t)}}\right)
$$

splits as an R－hom．
Rem 1 We don＇t need round down \lfloor 」！
（We don＇t kill information of an exponent t ．）
Prop 1 （H）

$$
\operatorname{fpt}(I)=\inf \left\{t \in \mathbb{Q} \mid\left(R, I^{t}\right) \text { is not } \mathbf{p} \text {-adic. F-pure. }\right\}
$$

Prop 2 （H）

$$
\text { F-pure } \Rightarrow \text { p-adic. F-pure. }
$$

Ex $3 I, R$ ：same as in Ex2．Then $\forall p>0$ ，

$$
\left(R, I^{\mathrm{fpt}(I)}\right): \text { p-adic. F-pure. }
$$

Thm $2(\mathrm{H})$ Suppose that $I=(f)$ is principal．

$$
\left(R,(f)^{t^{\prime}}\right) \text { is p-adic. F-pure, } \forall t^{\prime} \leq t
$$

$$
\Rightarrow\left(R,(f)^{t}\right) \text { is F-pure. }
$$

p－adic．F－pure type can be defined like F－pure type．
Thm $3(\mathrm{H}) R_{0}: \mathbb{Q}$－Gorenstein，normal over \mathbb{C} ．

$$
\left(R_{0}, I_{0}^{t}\right): \text { p-adic. F-pure type } \Rightarrow \text { log canonical. }
$$

（Pf．of thm3．）Use Schwede＇s sharply F－purity；

$\left(R, I^{t}\right)$ is sharply F－pure if \exists infinitely many $e, \exists f \in I^{\left\lceil t\left(p^{e}-1\right)\right\rceil}$ such that

$$
f F^{e}: R \rightarrow F_{*}^{e} R\left(x \mapsto f x^{p^{e}}\right)
$$

splits as an R－hom．
He proved sharply F－pure type implies log canonical．For fixed t ，there is only finite prime numbers p such that $\nu_{p}(t)<0$ ． If $\nu_{p}(t) \geq 0$ ，then sharp．F－pure $=\mathbf{p}$－adic．F－pure．Therefore
$\left(R_{0}, I_{0}^{t}\right):$ p－adic．F－pure type \Leftrightarrow sharply F－pure type．
（q．e．d．）
$\operatorname{Ex} 4\left(\left(R, I^{\mathrm{fpt}(I)}\right):\right.$ not nec．p－adic．F－pure $)$

$$
I:=\left(x^{2}, y^{2}\right) \subseteq R:=k[x, y]
$$

Then $\forall p>0, f p t(I)=1(=\operatorname{lct}(I))$ ．

$$
\begin{aligned}
\left(R, I^{\mathrm{fpt}_{(I)}}\right) & : \text { p-adic. F-pure if } p \neq 2 \\
& \text { : quasi p-adic. F-pure } \forall p
\end{aligned}
$$

Def $4\left(R, I^{t}\right)$ is quasi p－adically F－pure
if $\exists \nu \geq 0, \exists$ infinitely many e with $p^{\nu} t\left(p^{e}-1\right) \in \mathbb{Z}$ ， $\exists f \in I^{p^{\nu} t\left(p^{e}-1\right)}$ such that

$$
f F^{e+\nu}: R \rightarrow F_{*}^{e+\nu} R\left(x \mapsto f x^{p^{e+\nu}}\right)
$$

splits as an R－hom．
Thm $4(\mathrm{H}) R:=k\left[x_{1}, \cdots, x_{n}\right], I$ its monomial ideal．
Then
$\left(R, I^{\mathrm{fpt}(I)}\right)$ is quasi p －adic． F－pure．

