代数幾何学シンポジウム記録 2010年度 pp.121-121

Introduction

Hara-Watanabe defined F-pure singularity of a pair (R, I^t) , where R is a ring of characteristic p > 0, I an ideal of R and t a positive rational number. It seemed a positive characteristic analogue of log canonical singularity of a pair. In fact, for a ring R_0 of characteristic zero, an ideal I_0 and $t \in \mathbb{Q}_{>0}$, if a pair (R_0, I_0^t) is F-pure after reduction to p for infinitely many prime p, then the pair (R_0, I_0^t) should be log canonical! However, $(R, I^{fpt(I)})$ is not necessary Fpure, although $(R_0, I_0^{\mathsf{lct}(I_0)})$ is always log canonical. The author wants to generalize F-pure singularity to satisfy that $(R, I^{\mathsf{fpt}(I)})$ is always F-pure.

$F: R \rightarrow F_*R$: Frobenius map

Def 1 (Hara-Watanabe) (R, I^t) is F-pure if $\forall e \gg 0$, $\exists f \in I^{\lfloor t(p^e-1) \rfloor}$ such that

$$fF^e:R o F^e_*R(x\mapsto fx^{p^e})$$

splits as an *R*-hom.

Def 2 (Takagi-Watanabe) F-pure thresholds are def. as

$$egin{aligned} \mathsf{fpt}(I) &:= \sup\{t \in \mathbb{Q} | (R, I^t) ext{ is F-pure} \} \ &= \inf\{t \in \mathbb{Q} | (R, I^t) ext{ is not F-pure} \end{aligned}$$

We can compute F-purity and fpt(I) by the Following Fedder's type criterion: Suppose that (R, \mathfrak{m}) is regular local. For $f\in R$, $e\in \mathbb{N}$,

$$fF^e:R o F^e_*R$$

splits iff

$$f\in \mathfrak{m}^{[p^e]}:=(g^{p^e}|g\in \mathfrak{m}).$$

Ex 1 (F-pure thresholds)

$I:=(x^2+y^3)\subseteq R:=k[x,y]$		
\boldsymbol{p}	fpt(I)	
2	1/2	
3	2/3	
$p \equiv 5 (\mathrm{mod} 6)$	(5p-1)/6p	
$p \equiv 1 (mod 6)$	5/6	$= \operatorname{lct}(x^2 + y^3)$

P-ADICALLY F-PURE TYPE SINGULARITY (AND QUASI P-ADICALLY F-PURE SINGULARITY)

Daisuke Hirose (Hokkaido University)

hirose@math.sci.hokudai.ac.jp

re.}

For $I_0 \subseteq R_0$:an ideal of f.g. \mathbb{C} -algebra R_0 , say $I_p \subseteq R_p$ is its reduction to char. p. (R_0, I_0^t) is F-pure type if \exists infinitely many prime numbers p such that (R_p, I_p^t) is F-pure. Thm 1 (Hara-Watanabe) Assume that R_0 : Q-Gorenstein, normal over C. (R_0, I_0^t) : F-pure type \Rightarrow log canonical. Hara proved $(R, (f)^{\mathsf{fpt}(f)})$:F-pure, (f): principal. (Pf. of thm3.) Use Schwede's sharply F-purity; Ex 2 $((R, I^{\text{fpt}(I)}) : \text{not noc. F-pure})$ such that $I:=(x^2,y^2,z^2)\subseteq R:=k[x,y,z]$ Then $\forall p > 0$, fpt $(I) = \frac{3}{2}(= \operatorname{lct}(I))$ splits as an *R*-hom. p=2 $(R, I^{\mathsf{fpt}(I)})$: NOT F-pure p: otherwise $(R, I^{fpt(I)})$: F-pure $\nu(t) := -\min\{0, \nu_p(t)\}, \nu_p(-)$ is p-adic valuation (q.e.d.) Def 3 (H) (R, I^t) is p-adically F-pure if \exists infinitely Ex 4 $((R, I^{\text{fpt}(I)}) : \text{not nec. p-adic. F-pure})$ many e with $p^{
u(t)}t(p^e-1)\in\mathbb{Z}$, $\exists f\in I^{p^{
u(t)}t(p^e-1)}$ such that $fF^{e+
u(t)}:R o F^{e+
u(t)}_*R(x\mapsto fx^{p^{e+
u(t)}})$ Then $\forall p > 0$, $\operatorname{fpt}(I) = 1(=\operatorname{lct}(I))$. splits as an *R*-hom. Rem 1 We don't need round down | |! (We don't kill information of an exponent t.) Prop 1 (H)Def $4(R, I^t)$ is quasi p-adically F-pure $fpt(I) = \inf\{t \in Q | (R, I^t) \text{ is not } p\text{-adic. } F\text{-pure.}\}$ Prop 2 (H) $\exists f \in I^{p^{\nu}t(p^e-1)}$ such that **F**-pure \Rightarrow **p**-adic. **F**-pure. splits as an *R*-hom. Ex 3*I*, *R* : same as in Ex2. Then $\forall p > 0$, Then $(R, I^{\mathsf{fpt}(I)})$: p-adic. F-pure.

-121-

Thm 2 (H) Suppose that I = (f) is principal. $(R, (f)^{t'})$ is p-adic. F-pure, $\forall t' \leq t$ $\Rightarrow (R, (f)^t)$ is F-pure.

p-adic. F-pure type can be defined like F-pure type.

Thm 3 (H) R_0 : Q-Gorenstein, normal over \mathbb{C} .

 (R_0, I_0^t) : p-adic. F-pure type \Rightarrow log canonical.

 (R, I^t) is sharply F-pure if \exists infinitely many e, $\exists f \in I^{\lceil t(p^e-1) \rceil}$

 $fF^e:R o F^e_*R(x\mapsto fx^{p^e})$

He proved sharply F-pure type implies log canonical. For fixed t, there is only finite prime numbers p such that $\nu_p(t) < 0$. If $\nu_p(t) \ge 0$, then sharp. F-pure = p-adic. F-pure. Therefore

 (R_0, I_0^t) : p-adic. F-pure type \Leftrightarrow sharply F-pure type.

 $I:=(x^2,y^2)\subseteq R:=k[x,y]$ $(R, I^{\mathsf{tpt}(I)})$: p-adic. F-pure if $p \neq 2$, : quasi p-adic. F-pure $\forall p$.

if $\exists \nu \geq 0$, \exists infinitely many e with $p^{\nu}t(p^e-1) \in \mathbb{Z}$, $fF^{e+
u}:R o F^{e+
u}_*R(x\mapsto fx^{p^{e+
u}})$ Thm 4 (H) $R := k[x_1, \dots, x_n]$, *I* its monomial ideal. $(R, I^{\mathsf{fpt}(I)})$ is quasi p-adic. F-pure.