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Introduction

Hara-Watanabe defined F-pure singularity of a pair

(R, It), where R is a ring of characteristic p > 0,

I an ideal of R and t a positive rational number. It

seemed a positive characteristic analogue of log canon-

ical singularity of a pair. In fact, for a ring R0 of

characteristic zero, an ideal I0 and t ∈ Q>0, if a pair

(R0, It
0) is F-pure after reduction to p for infinitely

many prime p, then the pair (R0, It
0) should be log

canonical! However, (R, Ifpt(I)) is not necessary F-

pure, although (R0, I
lct(I0)
0 ) is always log canonical.

The author wants to generalize F-pure singularity to

satisfy that (R, Ifpt(I)) is always F-pure.

F : R → F∗R : Frobenius map

Def 1 (Hara-Watanabe)(R, It) is F-pure if ∀e ≫ 0,

∃f ∈ I⌊t(pe−1)⌋ such that

fF e : R → F e
∗ R(x 7→ fxpe

)

splits as an R-hom.

Def 2 (Takagi-Watanabe)F-pure thresholds are def.

as

fpt(I) := sup{t ∈ Q|(R, It) is F-pure}

= inf{t ∈ Q|(R, It) is not F-pure.}

We can compute F-purity and fpt(I) by the Following Fed-

der’s type criterion: Suppose that (R, m) is regular local. For

f ∈ R, e ∈ N,

fF e : R → F e
∗ R

splits iff

f ∈ m
[pe] := (gpe

|g ∈ m).

Ex 1 (F-pure thresholds)

I := (x2 + y3) ⊆ R := k[x, y]

p fpt(I)

2 1/2

3 2/3

p ≡ 5(mod6) (5p − 1)/6p

p ≡ 1(mod6) 5/6 = lct(x2 + y3)

For I0 ⊆ R0 :an ideal of f.g. C-algebra R0,

say Ip ⊆ Rp is its reduction to char. p.

(R0, It
0) is F-pure type if ∃ infinitely many prime numbers p

such that (Rp, It
p) is F-pure.

Thm 1 (Hara-Watanabe)

Assume that R0: Q-Gorenstein, normal over C.

(R0, It
0) : F-pure type ⇒ log canonical.

Hara proved (R, (f)fpt(f)) :F-pure, (f): principal.

Ex 2 ((R, Ifpt(I)) : not noc. F-pure)

I := (x2, y2, z2) ⊆ R := k[x, y, z]

Then ∀p > 0,fpt(I) = 3
2
(= lct(I))

p = 2 (R, Ifpt(I)) : NOT F-pure

p: otherwise (R, Ifpt(I)) : F-pure

ν(t) := − min{0, νp(t)}, νp(−) is p-adic valuation

Def 3 (H)(R, It) is p-adically F-pure if ∃ infinitely

many e with pν(t)t(pe − 1) ∈ Z, ∃f ∈ Ipν(t)t(pe−1) such

that

fF e+ν(t) : R → F e+ν(t)
∗ R(x 7→ fxpe+ν(t)

)

splits as an R-hom.

Rem 1We don’t need round down ⌊ ⌋ !

(We don’t kill information of an exponent t.)

Prop 1 (H)

fpt(I) = inf{t ∈ Q|(R, It) is not p-adic. F-pure.}

Prop 2 (H)

F-pure ⇒ p-adic. F-pure.

Ex 3I, R : same as in Ex2. Then ∀p > 0,

(R, Ifpt(I)): p-adic. F-pure.

Thm 2 (H)Suppose that I = (f) is principal.

(R, (f)t′

) is p-adic. F-pure, ∀t′ ≤ t

⇒ (R, (f)t) is F-pure.

p-adic. F-pure type can be defined like F-pure type.

Thm 3 (H)R0: Q-Gorenstein, normal over C.

(R0, It
0) : p-adic. F-pure type ⇒ log canonical.

(Pf. of thm3.) Use Schwede’s sharply F-purity;

(R, It) is sharply F-pure if ∃ infinitely many e, ∃f ∈ I⌈t(pe−1)⌉

such that

fF e : R → F e
∗ R(x 7→ fxpe

)

splits as an R-hom.

He proved sharply F-pure type implies log canonical. For fixed

t, there is only finite prime numbers p such that νp(t) < 0.

If νp(t) ≥ 0, then sharp. F-pure = p-adic. F-pure. Therefore

(R0, It
0) : p-adic. F-pure type ⇔ sharply F-pure type.

(q.e.d.)

Ex 4 ((R, Ifpt(I)) : not nec. p-adic. F-pure)

I := (x2, y2) ⊆ R := k[x, y]

Then ∀p > 0, fpt(I) = 1(= lct(I)).

(R, Ifpt(I)) : p-adic. F-pure if p 6= 2,

: quasi p-adic. F-pure ∀p.

Def 4(R, It) is quasi p-adically F-pure

if ∃ν ≥ 0, ∃ infinitely many e with pνt(pe − 1) ∈ Z,

∃f ∈ Ipνt(pe−1) such that

fF e+ν : R → F e+ν
∗ R(x 7→ fxpe+ν

)

splits as an R-hom.

Thm 4 (H)R := k[x1, · · · , xn], I its monomial ideal.

Then

(R, Ifpt(I)) is quasi p-adic. F-pure.
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