代数幾何学シンポジウム記録 2010年度 pp.120-120 **Counterexample to variational Torelli for some surfaces of geometric genus 2** Hayashi Nobukatsu, Osaka University 大阪大学D1 林暢克

Motivation

Our purpose is to examine *Torelli type problems* for surfaces with $p_g = 2$, $K^2 = 1$, q = 0, where p_g is the geometric genus, K^2 is self-intersection number of the canonical bundle, and q is the irregularity. It is known in [4] that they are represented as

hypersurfaces of degree 10 in $\mathbb{P}(1, 1, 2, 5)$.

Torelli type problems ask in general whether a period map is injective. They are infinitesimal Torelli, generic Torelli and variational Torelli. It is known that **infinitesimal Torelli theorem**

holds for such surfaces([6]).

Griffiths introduced *IVHS* for the interplay between Hodge structure and geometry.

Variational Torelli asks in general whether a variety is recovered by its **IVHS**. It is known that variational Torelli leads *generic Torelli* ([2]). Moreover, variational Torelli theorem holds for most hypersurfaces ([3],[5]). But our surfaces are

exceptional case in [5].

Notation

 $X := \operatorname{Proj}(\mathbb{C}[x, y, z, w]/(F)),$ $F := w^2 - z^5 - \Phi_4 z^3 - \Phi_6 z^2 - \Phi_8 z - \Phi_{10},$ x, y, z, w: variables of degree 1, 1, 2, 5 respectively, $\Phi_i = \Phi_i(x, y)$: degree *i* for *i* = 4, 6, 8, 10. $S := \mathbb{C}[x, y],$ S^{a} : the degree *a* part of *S*, $G := GL(2, \mathbb{C})$ acts on S canonically in x, y, $\Phi_{4,x} \Phi_{4,y}$ $\Phi_{6,x}$ $\Phi_{6,x} \Phi_{6,y} (\Phi_{8,x} - \frac{3}{5}\Phi_{4,x}\Phi_4) (\Phi_{8,y} - \frac{3}{5}\Phi_{4,y}\Phi_4)$ $\Phi_{8,x} \Phi_{8,y} (\Phi_{10,x} - \frac{2}{5}\Phi_{4,x}\Phi_6) (\Phi_{10,y} - \frac{2}{5}\Phi_{4,y}\Phi_6)$ $\Phi_{10,x} \Phi_{10,y} -\frac{1}{5} \Phi_{4,x} \Phi_8$

Main theorem Variational Torelli problem does *NOT* hold for hypersurfaces of degree 10 in $\mathbb{P}(1, 1, 2, 5)$.

Remark.1.

It is shown that variational Torelli theorem holds for most hypersurfaces([3],[5]).

Theorem

The prolonged period map from parameter space to IVHS for "general" X is identified with the following map:

> $v: (S^4 \oplus S^6 \oplus S^8 \oplus S^{10})/G \to S^{28}/G,$ $(\Phi_4, \Phi_6, \Phi_8, \Phi_{10}) \mapsto \det(A).$

Remark.2.

We can show that the invariant A is related to the rank of the map determined by the differential of the period map for the *fiber* of our surface.

More precisely, when we regard $y \in T_t \mathbb{P}^1$ as the element of Hom $(\mathbf{H}^{0}(\Omega_{\mathbf{C}_{t}}^{1}), \mathbf{H}^{1}(\mathcal{O}_{\mathbf{C}_{t}})),$

 $rank(y) = 2 \Leftrightarrow det(A) \neq 0$, and $rank(y) = 1 \Leftrightarrow rank(A') = 1$, while $rank(y) \leq 2$. Here, $T_t \mathbb{P}^1$ is the tangent space of \mathbb{P}^1 at t for $t \in \mathbb{P}^1$, and A := $\Phi_{10,x} \Phi_{10,y}$

i.e., A' is the submatrix of A.

-120-

Relate A with *Noether-Lefschetz* locus of X. Examine variational Torelli for hypersurfaces

of degree 10*n* in $\mathbb{P}[1, 1, 2n, 5n]$ for $n \ge 2$. • Main theorem shows that IVHS is *not enough* to identify our surfaces. Thus we must find any other information.

IVHS and proof of Main theorem

IVHS is defined by Griffiths et. al. as the differential of the period map. Definition -*IVHS* (infinitesimal variation of Hodge structure) consists of: • a polarised Hodge structure *H* with a bilinear form *b*;

- a vector space T;

• a complex linear map $\delta : T \to \text{End}(H_{\mathbb{C}}, b)$.

We can get the main theorem by using well-known theorem by Griffiths: Theorem(Griffiths) Let *R* be the Jacobian ring of *X*. The *IVHS* for *X* is identified with the

following multiplication maps: δ = the differential of the period map $R^{11} \otimes R^{11} \to R^{22} \cong \mathbb{C},$ $R^{10} \otimes R^1 \rightarrow R^{11}.$

 $rank(Ker(v)) \ge 3$ from the theorem.

Consider the following objects:

 $K := \operatorname{Ker}(R^{10} \otimes R^1 \to R^{11}),$ $M := \begin{cases} \prod_{\lambda \in \Lambda} (x - \lambda y) & (\Lambda : \text{finite}), \end{cases}$ $0 \quad (\Lambda : infinite).$

Then, we can show $M = c \cdot \det(A)$ for some $c \in \mathbb{C}^{\times}$.

References

[1] D. Cox and R. Donagi On the Failure of Variational Torelli for Regular Elliptic Surfaces with a Section, Math. Ann. 273 (1986), 673–683. [2] D.Cox, R.Donagi and L.Tu Variational Torelli implies generic Torelli, Invent. Math. 88-2, (1987), 439-446. [3] R. Donagi, Generic Torelli for projective hypersurfaces, Compos. Math., 50 (1983), 325–353. [4] E. Horikawa, Algebraic surfaces of general type with small c_1^2 , II, Inventiones math, **37** (1976), 121–155. [5] M-H. Saito Weak Global Torelli theorem for certain weighted projective hypersurfaces, Duke. Math. (1986), 67–111. [6] S. Usui, Local Torelli theorem for some non-singular weighted complete intersections, Proc. Intl. Symp. on Algebraic geometry Kyoto, Kinokuniya, (1977), 723-734.

Further problems

 $T := P^{1}(X, T_{X}) = \{\eta \in H^{1}(X, T_{X}) \mid c_{1}(O_{X}(1)) \land \eta = 0\}$

Theorem \implies **Main Theorem**

Sketch of the proof of Theorem

 $\Lambda := \{\lambda \in \mathbb{C} \mid v \otimes (x - \lambda y) \in K \text{ for some } v \in R^{10}\},\$

 \square