<table>
<thead>
<tr>
<th>Title</th>
<th>Stability conditions and the autoequivalence group on K3 surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawatani, Kotaro</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 2010: 117-117</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214922</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
\section{1. Stability conditions}

Let X be a projective manifold over \mathbb{C}.

\begin{itemize}
\item \textbf{μ-stability}: $E \in \text{Coh}(X)$, $\omega \in \text{Amp}(X)$
\end{itemize}

Generalize E is μ-stable $\iff \forall F \subset E$, $\deg \omega F < \deg \omega E$

\begin{itemize}
\item Bridgeland’s stability: $E^* \in D^b(\text{Coh}(X))$, $\sigma \in \text{Stab}(D^b(X))$
\end{itemize}

$\sigma = (A, Z)$, t-structure of $A : D^b(X) (\subseteq \text{fullsub abelian category})$, $Z : K(D^b(X)) \to \mathbb{C}$, group hom.

E^* is σ-stable $\iff \forall F^* \subset E^* \arg Z(F^*) < \arg Z(E^*)$

\section{2. Known Results}

\begin{itemize}
\item \textbf{Trivial} \hspace{1cm} non-emptiness of $\text{Amp}(X)$
\item \textbf{Difficult} \hspace{1cm} non-emptiness of $\text{Stab}(X) (= \text{Stab}(D^b(X)))$.
\end{itemize}

cf. • When X is a K3 or an abelian surface $\text{Stab}(X) \neq \emptyset$

• When X is a 3-dim Calabi-Yau $???

In the following, we assume that X is a K3 or an abelian surface.

$\text{Stab}(X) \supset \text{Stab}^\dagger(X) \supset U(X)$

$\{ \sigma \in \text{Stab}(X) | \forall O \text{ is } \sigma\text{-stable} \}$

\section{3. Motivation}

\begin{itemize}
\item $\text{Stab}(X)$ is defined on the category $D^b(X)$.
\item For $U(X)$ what’s happen when we change X preserving $D(X)$?
\end{itemize}

cf. For some X, $\exists Y$ s.t. $Y \not\cong X$ but $\Phi : D^b(Y) \cong D^b(X)$.

\begin{itemize}
\item Question
\end{itemize}

Does there exist an equivalence $\Phi : D^b(Y) \to D^b(X)$, so that $\Phi_* U(Y) = U(X)$?

\begin{itemize}
\item Partial Answer $(X: \text{Abelian surface.})$
\end{itemize}

$\forall \Phi : D^b(Y) \to D^b(X), \Phi_* (U(Y)) = U(X)$.

\section{4. Main Results}

\begin{itemize}
\item \textbf{Theorem 1.} (= Answer)
\end{itemize}

Let X and Y be projective K3 surfaces, and $\Phi : D^b(Y) \cong D^b(X)$ an equivalence. If $\Phi_* (U(Y)) \equiv U(X)$ then

$$\Phi(-) = M \otimes f_*(-)[n].$$

where $M \in \text{Pic}(X)$, $f : Y \cong X$, $[n] : n$-times shift.

We define the subgroup $\text{Aut} D^b(X)^{U(X)}$ of $\text{Aut}(D^b(X))$ by

$$\text{Aut}(D^b(X))^{U(X)} := \{ \Phi \in \text{Aut}(D^b(X)) | \Phi_* (U(X)) = U(X) \}.$$

\begin{itemize}
\item \textbf{Corollary 2.}
\end{itemize}

$$\text{Aut}(D^b(X))^{U(X)} = (\text{Aut}(X) \times \text{Pic}(X)) \times \mathbb{Z}[1]$$