
ON THE GIT STABILITY OF POLARIZED VARIETIES
-A SURVEY-

YUJI ODAKA

Abstract. “When a polarized variety is (GIT) stable?” is con-
cretely studied, under the background of the existence of the
“canonical metric” and the problem of moduli construction. This
is also a survey to the algebraic aspect of the field, which lies be-
tween algebraic geometry and differential geometry, written as the
proceeding of the Kinosaki algebraic geometry conference 2010.

1. Introduction

We start from differential geometric background. As Calabi conjec-
tured in 1950s [Cal54], now it is widely recognized that

Theorem 1.1. Kähler-Einstein metric exists on
(i)([Aub76], [Yau78]) a projective manifold X with c1(X) < 0,
(ii)([Yau78]) (or) a compact Kähler manifold c1(X) = 0 with any

fixed Kähler class.

The Kähler-Einstein metric is a kind of “canonical” Kähler metric
which has a constant scalar curvature, generalizing a Kähler metric
on a compact Riemann surface obtained by uniformization. For exam-
ple, if the automorphisms fixing the Kähler class form a discrete group,
they are isometry with respect to the Kähler-Einstein metric, due to
the uniqueness modulo the connected component of the automorphism
group. In this sense of “canonicity”, we might say that this is opening
a way connecting differential geometry to algebraic geometry. Such a
metric could exist only on complex manifolds of type (i), (ii) or Fano
manifolds. However, it is known for decades that a Fano manifold does
not necessarily have a Kähler-Einstein metric due to the obstructions
of Matsushima [Mat57] and Futaki [Fut83].

On the other hand, it seems that Yau has further imagined that the
its existence should be equivalent to a sort of GIT stability in general
(cf. e. g. [Yau90]), from his estimates on “approximating solutions”
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(made by the continuity method on the complex Monge-Ampère equa-
tion). It was known as a folklore status, made to mathematically rig-
orous conjecture firstly by Tian [Tia97], reformulated and generalized
by Donaldson [Don02].

Fujiki [Fuj90] and Donaldson [Don97], [Don04] introduced the follow-
ing (infinite dimensional) moment map picture for explanation, which
treats more general “canonical” metric; that is a Kähler metric with
constant scalar curvature (cscK) (or more general “extremal Kähler
metric”). We note that if we fix a Kähler class, which is proportional
to the first Chern class c1(X), it is equivalent to the Kähler-Einstein
metric.

Let us fix a compact connected differential manifold and a symplectic
form (X,ω). Consider the space C of all compatible complex structures,
acted by a group D of symplectomorphisms. Then, the (normalized)
scalar curvature would be a moment map from C with a certain natural
symplectic structure, with a certain subgroup DP of D. The equiva-
lence relation between abstractly isomorphic polarized complex man-
ifolds can be thought of as a sort of the action of “complexification”
of DP (although the complexification is not defined). Therefore, the
following is a natural conjecture as an infinite dimensional example of
a version of Kempf-Ness’ figure of the correspondence of GIT quotient
and the symplectic quotient of the zero set of the moment map [KN79],
[Kir84].

Philosophy 1.2. For a polarized manifold (X,L), cscK metric with
Kähler class c1(L) exists if and only if it is GIT stable in some sense.

The historically original notion of GIT stability for polarized varieties
is asymptotic (Hilbert or Chow) stability, which was studied intensively
by Mumford, Gieseker in 1960s-70s. We remark that asymptotic Chow
stability and asymptotic Hilbert stability is actually equivalent, due
to [Mab08] (cf. [Od09a] for a simplified proof in one page). For these
notions, the following is proved.

Theorem 1.3 ([Don01]). (X,L) with cscK metric and discrete auto-
morphism group is asymptotically stable.

The proof is based on the well known fact that, for an embedded pro-
jective manifold X ⊂ P, the existence of balanced metric is equivalent
to Chow stability, and regard cscK as their limit. The converse of The-
orem 1.3 now seems to be known that it is false by Julius Ross and
Julien Keller [JK].
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To make the philosophy 1.2 in precise form, Tian introduced the
notion of K-stability in [Tia97] which is reformulated by Donaldson in
[Don02] and the following conjecture is formulated.

Conjecture 1.4 (cf. [Yau90], [Tia97], [Don02]). Let (X,L) be a polar-
ized projective manifold. X has a Kähler metric with constant scalar
curvature (cscK metric) with Kähler class c1(L) if and only if (X,L)
is K-polystable.

One direction of Conjecture 1.4, i. e. that the existence of cscK implies
K-polystability, is settled by [Tia97], [Don05], [CT08], [Stp08], and in
full generality by [Mab08] and [Mab09].

Roughly speaking, the asymptotic stability of (X,L) is just the sta-
bility of embedded X ⊂ P(H0(X,L⊗a) for a ≫ 0. On the other
hand, K-stability is defined as positivity of all Donaldson-Futaki in-
variants which corresponds to each test configuration, the “geometriza-
tion” of one parameter subgroup of GL(H0(X,L⊗a)) for a ≫ 0. The
Donaldson-Futaki invariant is a kind of GIT-weight. A formula of
Donaldson-Futaki invariant is firstly obtained by Xiaowei Wang in
[Wan08].

The author’s work presented in the talk is summarised as

(i) (independently but lator) obtained the following different
version of the formula of the Donaldson-Futaki invariants
for semi -test configurations of specific type, which is enough
for showing K-stability (resp. K-semistability). The point is
that it is applicable, and described in terms of closed sub-
schemes. This is an extension of Ross-Thomas’ theory.

(ii) as an application of the formula, established the effects of
singularities, with the language of discrepancy, introduced
along the minimal model program (MMP). The proof itself
uses the existence of certain birational model. This extends the
work of Mumford and Shah in 1970s, for curves and surfaces.

(iii) as other applications of the formula, we established “alge-
braically counterparts” of the results of the existence of
Kähler-Einstein metrics by Aubin, Yau and Tian. (For Tian’s,
I coworked with Yuji Sano. ) We can admit mild singularities.

Now, we recall the definitions of the stability notions. We note that
“∗-unstable” means “not ∗-semistable”. The readers who are not inter-
ested in technical details, might be able to skip the definitions. Please
consult [Don02, Chapter 2, especially 2.3], [RT07, Section 3] or [Od09a]
for more related informations.

First, we review the definition of asymptotic stabilities.
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Definition 1.5. A polarized scheme (X,L) is said to be asymptot-
ically Chow stable (resp. asymptotically Hilbert stable, asymptotically
Chow semistable, asymptotically Hilbert semistable), if for an arbitrary
m ≫ 0, ϕm(X) ⊂ P(H0(X,L⊗m)) is Chow stable (resp. Hilbert stable,
Chow semistable, Hilbert semistable), where ϕm is the closed immer-
sion defined by the complete linear system |L⊗m|.

To define the K-stability, we review the concept of test configura-
tion following Donaldson [Don02]. Our notation (and even expression)
almost follows [RT07], so we refer to it for details.

Definition 1.6. A test configuration (resp. semi test configuration) for
a polarized scheme (X,L) is a polarized scheme (X ,L) with:

(i) a Gm action on (X ,L)
(ii) a proper flat morphism α : X → A1

such that α is Gm-equivariant for the usual action on A1:

Gm × A1 −→ A1

(t, x) 7−→ tx,

L is relatively ample (resp. relatively semi ample), and
(X ,L)|α−1(A1−{0}) isGm-equivariantly isomorphic to (X,Lr)×(A1−{0})
for some positive integer r, called exponent, with the natural action of
Gm on the latter and the trivial action on the former.

Proposition 1.7 ([RT07, Proposition 3.7]). In the above situation, a
one-parameter subgroup of GL(H0(X,L⊗r)) is equivalent to the data of
a test configuration with exponent r of (X,L) for r ≫ 0.

We will call the test confinguration which corresponds to a one pa-
rameter subgroup, called the DeConcini-Procesi family. (Its curve case
already appears in [Mum65, Chapter 4 §6].) Therefore, the test config-
uration can be regarded as geometrization of one-parameter subgroup.
This is a quite essential point for our study, as in Ross and Thomas’
slope theory [RT06], [RT07].

Let (X,L) be an n-dimensional polarized variety. A test con-
figuration (resp. a semi test configuration) for (X,L) is a polarize
scheme (X ,L) with a Gm-action on (X ,L) and a proper flat morphism
Π: X → A1 such that (i) Π is Gm-equivariant for the multiplicative
action of Gm on A1, (ii) L is relatively ample (resp. relatively semi-
ample), and (iii) (X ,L) |Π−1(A1−{0}) is Gm-equivariantly isomorphic to
(X,L⊗r)× (A1 − {0}) for some positive integer r. If X ≃ X × A1, we
call (X ,L) a product test configuration. Moreover, if Gm acts trivially,
we call it a trivial test configuration. Let P (k) := dimH0(X,L⊗k),
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which is a polynomial in k of degree n due to Riemann-Roch theorem.
Since the Gm-action preserves the central fibre X0 of X , Gm acts also
on H0(X0,L⊗K |X0), where K ∈ Z>0. Let w(Kr) be the weight of
the induced action on the highest exterior power of H0(X0,L⊗K |X0),
which is a polynomial of K of degree n + 1 due to the Mumford’s
droll Lemma (cf. [Mum77, Lemma 2.14]) and Riemann-Roch theorem.
Here, the total weight of an action of Gm on some finite-dimensional
vector space is defined as the sum of all weights, where the weights
mean the exponents of eigenvalues which should be powers of t ∈ A1.
Let us take rP (r)-th power and SL-normalize the action of Gm on
(Π∗L)|{0}, then the corresponding normalized weight on (Π∗L⊗K)|{0} is
w̃r,Kr := w(k)rP (r)−w(r)kP (k), where k := Kr. It is a polynomial of

form
∑n+1

i=0 ei(r)k
i of degree n+1 in k for k ≫ 0, with coefficients which

are also polynomial of degree n+1 in r for r ≫ 0 : ei(r) =
∑n+1

j=0 ei,jr
j

for r ≫ 0. Since the weight is normalized, en+1,n+1 = 0. The coefficient
en+1,n is called the Donaldson-Futaki invariant of the test configura-
tion, which we denote by DF(X ,L). For an arbitrary semi test con-
figuration (X ,L) of order r, we can also define the Donaldson-Futaki
invariant as well by setting w(Kr) as the total weight of the induced
action on H0(X ,L⊗K)/tH0(X ,L⊗K) (cf. [RT07]). We say that (X,L)
is K-stable (resp. K-semistable) if and only if DF > 0 (resp. DF ≥ 0)
for any non-trivial test configuration. We also say that (X,L) is K-
polystable if and only if DF ≥ 0 for any non-trivial test configuration
and DF = 0 only if a test configuration is a product test configuration.

We make a small remark on an extension of the framework above.
If we take a test configuration (resp. semi test configuration) (X ,L),
we can think of a new test configuration (resp. semi test configura-
tion) (X ,L⊗a) with a ∈ Z>0. From the definition of Donaldson-Futaki
invariant above, we easily see that DF((X ,L⊗a)) = an DF((X ,L)).
Therefore, we can define K-stability (also K-polystability and K-
semistability) of a pair (X,L) of a projective scheme X and an ample
Q-line bundle L.

We refer to [Od09a], [Od09b], [Od10], and [OS10] for the details and
proofs of our works. We should confess here that this short survey,
titled as like that, is still biased and focused on the viewpoint of the
author’s study done so far.

2. A generalization of Ross-Thomas’ theory

The following explicit algebro-geometric formula of Donaldson-
Futaki invariants is given by Xiaowei Wang.
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Theorem 2.1. ([Wan08, Proposition 19]) For any (ample) test
configuration (X ,M) of a polarized variety (X,L), if we denote its nat-
ural compactification as (X̄ ,M̄), the corresponding Donaldson-Futaki
invariant is the following ;

DF (X ,M) =
1

2(n!)((n+ 1)!)

{
−n(Ln−1.KX)(M̄n+1)+(n+1)(Ln)(M̄n.KX̄/P1)

}
.

Here, KX̄/P1 means the divisor KX̄ − f ∗KP1 with the projection

f : X̄ → P1.

The definition of “natural compactification” follows the trivialization
of X \ Π−1(0). Please refer to [Wan08] for the detail and the proof.
From this formula, we can say that, at least in principle, the original
Futaki invariants or the Futaki charactor of X can be recovered in
algebro-geometric way, by using the fiber bundles over P1 with fiber
isomorphic to X.

Our version of the formula is the following, which is a little lengthy.

Theorem 2.2. ([Od09a]) For any flag ideal J ⊂ OX×A1 (cf. [Od09a]),
consider the “semi” test configuration (BlJ (X × A1) =: B,L(−E))
of blow up type with (relatively) “semi”ample L(−E) where Π−1J =
OB(−E). Here, Π: B → X × A1 is the blowing up morphism. Let

us write its natural compactification as (BlJ (X × P1) =: B̄,L(−E))
and let pi (i = 1, 2) be the projection from X × P1. Then, if B is
Gorenstein in codimension 1, the Donaldson-Futaki invariant of the
semi test configuration can be expanded in the following way;

2(n!)((n+ 1)!)DF (B,L(−E))

= −n(Ln−1.KX)((L − E)
n+1

) + (n+ 1)(Ln)((L(−E))
n
.KB̄/P1)

= −n(Ln−1.KX)((L − E)
n+1

) + (n+ 1)(Ln)((L(−E))
n
.Π∗(p∗1KX))

+ (n+ 1)(Ln)((L(−E))
n
.KB̄/X×P1).

Here, KB̄/X×P1 means KB̄ − Π∗KX×P1.

The point is that the formula seems to be more applicable, and
also expressed in viewpoints of the closed subscheme of X or X × A1,
yielding the concept of “destabilizing subscheme”, with an analogy to
the theory on vector bundles. We will explain its effectivity lator on.
A flag ideal J ⊂ OX×A1 means a coherent ideal of the form

J = I0 + I1t+ I2t
2 + · · ·+ IN−1t

N−1 + (tN),

where I0 ⊂ I1 ⊂ · · · IN−1 ⊂ OX is a sequence of coherent ideals ofX (cf.
[Od10, Definition 3.1]). The formula (ii) is useful by its form. Let us
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recall that we named the former line (two terms) the “canonical divisor
part” which is the intersection numbers with canonical divisorKX or its
pull back and the latter line (one term) the “discrepancy term” which
reflects the singularities of X. Namely the canonical divisor part is
defined as

−n(Ln−1.KX)((L − E)
n+1

) + (n+ 1)(Ln)((L(−E))
n
.Π∗(p∗1KX)),

which we denote DFcdp(B,L(−E)) and the discrepancy term is defined
as

DFdt(B,L(−E)) := (n+ 1)(Ln)((L(−E))
n
.KB̄/X×P1).

We note that this discrepancy term is non-negative if X has only semi-
log-canonical singularities (cf. [Od09a]). That is one of the points for
the applications.

Remark 2.3. The theory of Ross-Thomas’ “slope” treats N = 1 case,
i.e. when the ideal is of the form J = I +(t), of the above formula. In
that sense, our formula is the extension of their theory. Their idea is
to describe the corresponding Donaldson-Futaki invariant as µ(X,L)−
µc(I, (X,L)), as an analogy to the theory of slope for vector bundles
by Mumford and Takemoto. Therefore, in particular, they describe the
invariants in terms of cohomological quantities of X and their ideal and
its blow up (not that of X × A1 or its blow up).

We remark that, however, it is later observed [PR07] that all the
Donaldson-Futaki invariants of 2 points blow up of projective plane of
such type is positive (i.e. slope stable), but it is K-unstable. Therefore,
the slope theory is not enough to check K-(semi)stability. On the other
hand, we further note here that for some more general (but not all)
flag ideals J , not necessarily of the simplest form J = I + (t), we can
also write the corresponding Donaldson-Futaki invariants by using the
cohomological quantity ofX and their ideals, similarly as in the original
Ross-Thomas’ slope theory. For example, we can do it for the case
of weighted blow up, just by imitating the calculation of Donaldson-
Futaki invariants in [RT07].

The following says that it suffices to consider all semi test configurations
only type of (B,L(−E)) in order to show K-stability. We note that
this is obtained as an application of [RT07, (proof of) Proposition 5.1,
Remark 5.2].

Proposition 2.4 ([Od10, Proposition 2.2]). (X,L) is K-stable if and
only if DF (B,L(−E)) > 0 for all flag ideals and r ∈ Z>0 such that B
is Gorenstein in codimension 1 and L(−E) is semi-ample.
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We just explain one quite trivial example of applications. If (X,L) is
semi-log-canonical polarized Calabi-Yau varieties, the canonical divisor
part vanishes and the discrepancy term is always non-negative for semi-
log-canonical X as we noted. Therefore, such (X,L) is K-semistable
by our formula ([Od09a]). From now on, we will see some more results
obtained by applying the formula.

The author hopes and expects that, since the formula is given explic-
itly, it would be applied to study more and more classes of polarized
varieties, creating stage where algebro-geometric theories on higher di-
mensional varieties (or singularities) play important roles.

3. K-stability results

As direct applications of the formula 2.2, we obtained

Theorem 3.1 ([Od09a], [Od10]). (i) A semi-log-canonical canonically
polarized variety (X,OX(KX)), is K-stable.

(ii) A log-terminal polarized variety (X,L) with numerically trivial
canonical divisor KX is K-stable.

(iii) A semi-log-canonical polarized variety (X,L) with numerically
trivial canonical divisor KX is K-semistable.

These results “corresponds” to the existence of Kähler-Einstein metrics
on Calabi-Yau manifolds and smooth canonical model by Aubin and
Yau 1.1. We note that these yields many orbifold counterexamples to
the former folklore conjecture that “K-(poly)stability implies asymp-
totic (poly)stability” which also implies that Theorem 1.3 of Donaldson
does not hold for orbifolds ([Od10]).

For Fano case, by taking the relation with Seshadri constants into
account, we obtain the following theorem purely algebro-geometrically
by using the formula 2.2. This is a joint work with Yuji Sano (Kyushu
university).

Theorem 3.2 ([OS10]). Let X be a (log-canonical) Q-Fano variety
with dim(X) = n and suppose that lct(X) > n

n+1
(resp. lct(X) ≥ n

n+1
).

Then, (X,OX(−KX)) is K-stable (resp. K-semistable).

Here, lct(X) is the global log canonical threshold and defined in the
following way.

lct(X) = inf
D≡−KX

lct(X,D),

where D is an effective Q divisor, which is numerically equivalent to
−KX . We note that there are G-equivariant version of statements in
our paper [OS10].
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This theorem “corresponds” to the existence of Kähler-Einstein met-
rics on Fano manifolds under the condition of α-invariants, which is an-
alytically defined but equal to the global log canonical threshold, due
to Tian in [Tia87]. His original proof depends on the a priori estimates
on the approximation of solutions obtained by the continuity methods,
as in Yau’s argument [Yau78].

4. Effects of singularities

Mumford [Mum77] and Shah [Sha81], [Sha86] observed that “if there
is some bad singularities, a polarized variety is unstable” and make
concrete analysis on 1 and 2 dimensional cases. We generalize it in the
following (best possible) form.

Theorem 4.1 ([Od09b], [Od10]). If (X,L) is K-semistable, X has only
normal crossing singularities in codimension 1. Furtheremore, X only
admit semi-log-canonical singularities for dim(X) ≤ 3.

We note that K-semistability is almost the weakest stability notions
among all introduced (cf. [Od10]). The notion of semi-log-canonicity
is the higher dimensional generalization of “smooth or ordinary double
point” for curves, defined in terms of the “discrepancy” of canonical
divisors among the original singularities and its resolution. For an
arbitrary dimension, we also have many results stating that “Theorem
4.1 holds under certain condition”. Please consult [Od09a] and [Od10]
for the details.

The proof is done by constructing the destabilizing one parameter
subgroup of GL(H0(X,L⊗k))) for k ≫ 0 geometrically by using a bira-
tional model of X (the relative log canonical model of log resolution).
Therefore the difficulty for the full settlement comes from the need to
(partially) establish non-normal analogue of MMP. We carried out it
partially by using technical but fundamental lemmas by Kollár [Kol10,
(23), (53)] to glue a normal (log-canonical) variety to a non-normal
(semi-log-canonical) variety (cf. [Od10]).

5. K-stability, moduli and the CM line bundle

Originally, the theory of GIT stability is introduced for the purpose
of algebro-geometric construction of the moduli of curves by Mumford
[Mum65]. General type surface case was treated by [Gie77]. The study
on higher dimensional case is difficult and is still far from complete
settlement. As far as the author knows, it is known for more than
two decades (see [She83]) that for dimension higher than 1, there are
canonically polarized varieties, which are “good” degenerations which
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should be on the boundary of compactified moduli but asymptotically
unstable. After that observation, the GIT approach was abandaned
for a while and another way, without direct relation to stability, to
construct moduli was developed and recently completed for general
type varieties (cf. e. g. [Kov05]). It seems that Professor János Kollár,
as one of the big leaders in the construction, is writing a book on this
matter (partly available on his webpage as [Kol10]).

In a viewpoint of moduli construction, our Theorem 3.1 (i) and The-
orem 4.1 can be summarized as follows.

Theorem 5.1. For a variety X with dim(X) ≤ 3 whose canonical
class KX is ample, the followings are equivalent.

(i)X is semi-log-canonical.
(ii)X is a member parametrized by the (disjoint union of) projec-

tive moduli recently constructed by many peoples’ contribution (cf. e. g.
[Kov05]), without GIT theory.

(iii)(X,KX) is K-stable.
(iv)(X,KX) is K-semistable.

Therefore it is quite natural to expect that more generally

“Conjecture” 5.2. K-polystable polarized varieties form quasi-
projective moduli indeed, and the CM line bundle is ample on it.

The CM line bundle is the line bundle on the base scheme of family
of polarized varieties, which is generally introduced in [PT06] whose
GIT weight just coincides with the Donaldson-Futaki invariants which
defines K-stability.

This resuscitate the idea of GIT stability in the moduli theory of
higher dimensional varieties, which corresponds to the differential geo-
metric figure pictured by Fujiki [Fuj90] and Donaldson [Don97] for
smooth case, as we explained in the introduction. The CM line bundle
have a Hermitian metric whose associated first Chern form is the gener-
alization of Weil-Petersson metric which should be positive. Essen-
tially this story is realized analytically by Fujiki-Schumacher [FS90].
Our dream above is therefore, to algebrize these figures, admitting
(nearly) semi-log-canonical singularities. We note here that, for higher
dimensional cases, the definition of moduli functor is also a problem
to be solved, because of the subtlety of the singularities (cf. [Kov05]).
Therefore, “Conjecture” 5.2 should be formulated in more precise form.
We have only some more partial observations toward the establishment
of Conjecture 5.2, and are planning to prepare another paper in future.
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