THE RING OF DIFFERENTIAL OPERATORS ON AN AFFINE TORIC VARIETY

MUTSUMI SAITO

1．Introduction and Motivation

The ring of differential operators was introduced by Grothendieck［6］．Although it may be ugly in general［1］，the ring of differential operators on an affine toric variety has some good features．The aim of this article is to exhibit some of them，in particular，a good structure of the spectrum of its graded ring（with respect to the order filtration）on a scored affine toric variety．In the final section，we consider the characteristic varieties of critical modules，which live in the spectrum of the graded ring．

Let $A:=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)=\left(a_{i j}\right)$ be a $d \times n$ matrix with coefficients in \mathbb{Z} ．We sometimes identify A with the set of its column vectors．We assume that $\mathbb{Z} A=\mathbb{Z}^{d}$ ，where $\mathbb{Z} A$ is the abelian group generated by A ．

For $\boldsymbol{\beta} \in \mathbb{C}^{d}$ ，the A－hypergeometric system with parameter $\boldsymbol{\beta}$ is defined by

$$
M_{A}(\boldsymbol{\beta}):=D / D I_{A}\left(\partial_{x}\right)+D\langle A \theta-\boldsymbol{\beta}\rangle,
$$

where
－$D:=\mathbb{C}\left\langle x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}\right\rangle$ the nth Weyl algebra．
－$I_{A}\left(\partial_{x}\right):=\left\langle\partial_{x}^{u}-\partial_{x}^{v}: A \boldsymbol{u}=A \boldsymbol{v}, \boldsymbol{u}, \boldsymbol{v} \in \mathbb{N}^{n}\right\rangle$ ：the toric ideal．
－$\langle A \theta-\boldsymbol{\beta}\rangle:=\sum_{i=1}^{d} \mathbb{C}[\theta] \sum_{j=1}^{n}\left(a_{i j} \theta_{j}-\beta_{i}\right)$ ：the Euler operators
－ $\mathbb{C}[\theta]:=\mathbb{C}\left[\theta_{1}, \ldots, \theta_{n}\right], \quad \theta_{j}=x_{j} \partial_{x_{j}}$.
After the systematic study of the A－hypergeometric systems by Gel＇fand and his collab－ orators（［3］，［4］，etc．），the systems are also known as GKZ－hypergeometric systems．

In this section，we see that the ring of differential operators on an affine toric variety naturally arises as the algebra of contiguity operators of A－hypergeometric systems［19］．

Suppose that $P \in D$ satisfies
－$I_{A}\left(\partial_{x}\right) P \subseteq D I_{A}\left(\partial_{x}\right)$ ，
－$\langle A \theta-\boldsymbol{\beta}-\boldsymbol{a}\rangle P=P\langle A \theta-\boldsymbol{\beta}\rangle$ ．
Then there exists a D－module homomorphism

$$
M_{A}(\boldsymbol{\beta}+\boldsymbol{a}) \xrightarrow{\times P} M_{A}(\boldsymbol{\beta})
$$

or P is a contiguity operator shifting parameters by \boldsymbol{a}

$$
\operatorname{Hom}_{D}\left(M_{A}(\boldsymbol{\beta}), \mathcal{O}\right) \ni f \mapsto P f \in \operatorname{Hom}_{D}\left(M_{A}(\boldsymbol{\beta}+\boldsymbol{a}), \mathcal{O}\right),
$$

where \mathcal{O} is a D－module of some functions； $\operatorname{Hom}_{D}\left(M_{A}(\boldsymbol{\beta}), \mathcal{O}\right)$ may be identified with the space of solutions of $M_{A}(\boldsymbol{\beta})$ in \mathcal{O} ．

Consider the algebra of contiguity operators

$$
\left\{P \in D: I_{A}\left(\partial_{x}\right) P \subseteq D I_{A}\left(\partial_{x}\right)\right\}
$$

Since $I_{A}\left(\partial_{x}\right)$ operates trivially on $M_{A}(\boldsymbol{\beta})$ for all $\boldsymbol{\beta}$, we consider

$$
\operatorname{Sym}_{A}:=\left\{P \in D: I_{A}\left(\partial_{x}\right) P \subseteq D I_{A}\left(\partial_{x}\right)\right\} / D I_{A}\left(\partial_{x}\right)
$$

Then Sym_{A} is an algebra, and

$$
\operatorname{Sym}_{A}=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \operatorname{Sym}_{A, \boldsymbol{a}},
$$

where

$$
\operatorname{Sym}_{A, \boldsymbol{a}}=\left\{P \in \operatorname{Sym}_{A}:\langle A \theta\rangle P=P\langle A \theta+\boldsymbol{a}\rangle\right\}
$$

Let ι be the anti-automorphism of D defined by

- $\iota\left(x_{j}\right)=\partial_{x_{j}}, \quad \iota\left(\partial_{x_{j}}\right)=x_{j} \quad(\forall j)$,
- $\iota(P Q)=\iota(Q) \iota(P)$.

Note that $\iota\left(\theta_{j}\right)=\iota\left(x_{j} \partial_{x_{j}}\right)=\iota\left(\partial_{x_{j}}\right) \iota\left(x_{j}\right)=x_{j} \partial_{x_{j}}=\theta_{j}$.
Then

$$
\begin{aligned}
\iota\left(\operatorname{Sym}_{A}\right) & =\iota\left(\left\{P \in D: I_{A}\left(\partial_{x}\right) P \subseteq D I_{A}\left(\partial_{x}\right)\right\}\right) / \iota\left(D I_{A}\left(\partial_{x}\right)\right) \\
& =\left\{P \in D: P I_{A}(x) \subseteq I_{A}(x) D\right\} / I_{A}(x) D .
\end{aligned}
$$

This is identified with the ring $D\left(R_{A}\right)$ of differential operators on the affine toric variety defined by A (cf. [10, Theorem 5.13]).

2. Definitions

In this section, we give some basic definitions. Let $\mathbb{N} A$ be the monoid generated by A. Let R_{A} denote the semigroup algebra of $\mathbb{N} A$, i.e.,

$$
R_{A}:=\mathbb{C}[\mathbb{N} A]=\bigoplus_{a \in \mathbb{N} A} \mathbb{C} t^{a} \subseteq \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]
$$

Here and hereafter we use multi-index notation; $t^{a}=t_{1}^{a_{1}} t_{2}^{a_{2}} \cdots t_{d}^{a_{d}}$ for $\boldsymbol{a}={ }^{t}\left(a_{1}, a_{2}, \ldots, a_{d}\right)$. The ring of differential operators of the Laurent polynomial ring $\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]$ equals

$$
\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{d}\right\rangle, \quad \text { where } \partial_{i}=\partial_{t_{i}}
$$

Then the ring of differential operators of R_{A} (or on the affine toric variety defined by A) can be given as a subalgebra of the ring of differential operators on the big torus:

$$
D\left(R_{A}\right)=\left\{P \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{d}\right\rangle: P\left(R_{A}\right) \subset R_{A}\right\}
$$

Let $D_{k}\left(R_{A}\right)$ be the subspace of differential operators of order less or equal to k in $D\left(R_{A}\right)$. Then the graded ring with respect to the order filtration $\left\{D_{k}\left(R_{A}\right)\right\}$ is commutative:

$$
G:=\operatorname{Gr} D\left(R_{A}\right)=\bigoplus_{k=0}^{\infty} D_{k}\left(R_{A}\right) / D_{k-1}\left(R_{A}\right) \subseteq \mathbb{C}\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}, \xi_{1}, \ldots, \xi_{d}\right]
$$

where ξ_{i} denotes the image of ∂_{i}.

3. Finiteness

In general, the ring of differential operators on an affine variety may be neither left or right Noetherian nor finitely generated as an algebra [1]. In this section, we give some results on finiteness of $D\left(R_{A}\right)$.
Theorem $3.1([20]) . D\left(R_{A}\right)$ is a finitely generated \mathbb{C}-algebra.
Theorem 3.2 ([18]). (1) $D\left(R_{A}\right)$ is right Noetherian.
(2) $D\left(R_{A}\right)$ is left Noetherian if $\mathbb{N} A$ is S_{2}.

In [18], we also gave a necessary condition for $D\left(R_{A}\right)$ being left Noetherian.
Definition 3.3. A semigroup $\mathbb{N} A$ is S_{2} if $\mathbb{N} A=\bigcap_{\sigma \text { : facet of } \mathbb{R}_{\geq 0} A}[\mathbb{N} A+\mathbb{Z}(A \cap \sigma)]$.

The following is an example of $\mathbb{N} A$ that does not satisfy the S_{2} condition.
Example 1 (non- S_{2}).
$A=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right)=\left(\begin{array}{cccc}2 & 3 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$. Then

Figure 1. The semigroup $\mathbb{N} A$
In this case,

$$
\mathbb{N} A=\mathbb{N}^{2} \backslash\binom{1}{0}, \quad \text { whereas } \quad \bigcap_{\sigma: \text { facet of } \mathbb{R}_{\geq 0} A}[\mathbb{N} A+\mathbb{Z}(A \cap \sigma)]=\mathbb{N}^{2}
$$

Theorem 3.4 ([19]).

$$
\text { Gr } D\left(R_{A}\right) \text { is Noetherian } \quad \Leftrightarrow \quad \mathbb{N} A \text { is scored. }
$$

Let \mathcal{F} be the set of facets of $\mathbb{R}_{\geq 0} A$. For a facet $\sigma \in \mathcal{F}$, we define the primitive integral support function F_{σ} of σ as the linear form on \mathbb{R}^{d} uniquely determined by the conditions:
(1) $F_{\sigma}\left(\mathbb{R}_{\geq 0} A\right) \geq 0$,
(2) $F_{\sigma}(\sigma)=0$,
(3) $F_{\sigma}\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.

Definition 3.5. The semigroup $\mathbb{N} A$ is said to be scored if

$$
\mathbb{N} A=\bigcap_{\sigma: \text { faceet }}\left\{\boldsymbol{a} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

Remark 3.6.

$$
\mathbb{N} A: \text { scored } \Rightarrow \mathbb{N} A: \mathrm{S}_{2}
$$

Proof. For each facet σ,

$$
\mathbb{N} A \subseteq \mathbb{N} A+\mathbb{Z}(A \cap \sigma) \subseteq\left\{\boldsymbol{a} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

Hence

$$
\mathbb{N} A \subseteq \bigcap_{\sigma \in \mathcal{F}}(\mathbb{N} A+\mathbb{Z}(A \cap \sigma)) \subseteq \bigcap_{\sigma \in \mathcal{F}}\left\{\boldsymbol{a} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

Example 2 (Scored).

$$
A_{3}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3
\end{array}\right) . \text { Then }
$$

Figure 2. The semigroup $\mathbb{N} A_{3}$

$$
\begin{aligned}
& \mathcal{F}=\left\{\sigma_{1}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{1}, \sigma_{3}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{3}\right\}, \\
& F_{\sigma_{1}}\left(s_{1}, s_{2}\right)=s_{2}, F_{\sigma_{3}}\left(s_{1}, s_{2}\right)=3 s_{1}-s_{2} . \\
& F_{\sigma_{1}}(\mathbb{N} A)=\mathbb{N} \backslash\{1\}, F_{\sigma_{3}}(\mathbb{N} A)=\mathbb{N} .
\end{aligned}
$$

We have

$$
\mathbb{N} A=\left\{\boldsymbol{a} \in \mathbb{Z}^{2} \mid F_{\sigma_{1}}(\boldsymbol{a}) \in \mathbb{N} \backslash\{1\}, F_{\sigma_{3}}(\boldsymbol{a}) \in \mathbb{N}\right\} .
$$

Hence $\mathbb{N} A$ is scored.
Example 3 (S_{2} but non-scored). $A_{2}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)=\left(\begin{array}{ccc}2 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$. Then

Figure 3. The semigroup $\mathbb{N} A_{2}$
$\mathcal{F}=\left\{\sigma_{1}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{1}, \sigma_{2}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{2}\right\}$,
$F_{\sigma_{1}}\left(s_{1}, s_{2}\right)=s_{2}, F_{\sigma_{2}}\left(s_{1}, s_{2}\right)=s_{1}$.
$F_{\sigma_{1}}(\mathbb{N} A)=\mathbb{N}, F_{\sigma_{3}}(\mathbb{N} A)=\mathbb{N}$.
We have

$$
\mathbb{N} A \subsetneq\left\{\boldsymbol{a} \in \mathbb{Z}^{2} \mid F_{\sigma_{1}}(\boldsymbol{a}) \in \mathbb{N}, F_{\sigma_{3}}(\boldsymbol{a}) \in \mathbb{N}\right\}=\mathbb{N}^{2}
$$

Hence $\mathbb{N} A$ is not scored.

The Running Example-1.

$d=1, n=2, \quad A=(2,3)$.
This is the smallest non-trivial example; we use this as a running example.
We have the following:

- $\mathbb{N} A=\{0,2,3,4, \ldots\}=\mathbb{N} \backslash\{1\} . \quad \mathbb{R}_{\geq 0} A=\mathbb{R}_{\geq 0}$.
- $\mathcal{F}=\{\{0\}\}, \quad F_{\{0\}}(s)=s ; \quad \mathbb{N} A$ is scored.
- $R_{A}=\mathbb{C}\left[t^{2}, t^{3}\right]$.
- $D\left(R_{A}\right)=\left\{P \in \mathbb{C}\left[t^{ \pm 1}\right]\langle\partial\rangle: P\left(\mathbb{C}\left[t^{2}, t^{3}\right]\right) \subseteq \mathbb{C}\left[t^{2}, t^{3}\right]\right\}$.
- $D\left(R_{A}\right)=\bigoplus_{a \in \mathbb{Z}} D\left(R_{A}\right)_{a}, \quad$ where

$$
D\left(R_{A}\right)_{a}=\left\{P=\sum_{k \in \mathbb{Z}, l \in \mathbb{N}, k-l=a} c_{k, l} t^{k} \partial^{l} \in D\left(R_{A}\right)\right\} .
$$

4. The spectrum

By Theorem 3.4, the spectrum of $\operatorname{Gr} D\left(R_{A}\right)$ is in question, when $\mathbb{N} A$ is scored.
4.1. Weight Decomposition. It is easy to see $s_{i}:=t_{i} \partial_{i} \in D\left(R_{A}\right) \quad(i=1, \ldots, d)$.

For $\boldsymbol{a}={ }^{t}\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in \mathbb{Z}^{d}$, set

$$
D\left(R_{A}\right)_{\boldsymbol{a}}:=\left\{P \in D\left(R_{A}\right):\left[s_{i}, P\right]=a_{i} P \quad \text { for } i=1,2, \ldots, d\right\}
$$

Then $t_{i} \in D\left(R_{A}\right)_{e_{i}}, \quad \boldsymbol{e}_{i}={ }^{t}(0, \ldots, \stackrel{i}{1}, \ldots, 0)$.
Lemma 4.1. (1) $D\left(R_{A}\right)=\bigoplus_{a \in \mathbb{Z}^{d}} D\left(R_{A}\right)_{a}$.
(2) $D_{k}\left(R_{A}\right)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} D_{k}\left(R_{A}\right) \cap D\left(R_{A}\right)_{\boldsymbol{a}}$.
(3) $\operatorname{Gr} D\left(R_{A}\right)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \operatorname{Gr} D\left(R_{A}\right)_{\boldsymbol{a}}$.

Theorem 4.2 ([11]).

$$
D\left(R_{A}\right)_{\boldsymbol{a}}=t^{\boldsymbol{a}} \mathbb{I}(\Omega(\boldsymbol{a})) \quad \text { for all } \boldsymbol{a} \in \mathbb{Z}^{d}
$$

where

$$
\begin{aligned}
\Omega(\boldsymbol{a}) & :=\{\boldsymbol{b} \in \mathbb{N} A: \boldsymbol{b}+\boldsymbol{a} \notin \mathbb{N} A\}=\mathbb{N} A \backslash(-\boldsymbol{a}+\mathbb{N} A) \\
\mathbb{I}(\Omega(\boldsymbol{a})) & :=\left\{f(s) \in \mathbb{C}[s]:=\mathbb{C}\left[s_{1}, \ldots, s_{d}\right]: f \text { vanishes on } \Omega(\boldsymbol{a})\right\} .
\end{aligned}
$$

In particular, $D\left(R_{A}\right)_{\mathbf{0}}=\mathbb{C}[s]$.

The Running Example-2.

$$
\begin{aligned}
& A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\} . \\
& a \in \mathbb{Z} . \quad \Omega(a)=\mathbb{N} A \backslash(-a+\mathbb{N} A) . \quad D\left(R_{A}\right)_{a}=t^{a} \mathbb{I}(\Omega(a)) .
\end{aligned}
$$

- $\Omega(a)=\emptyset \quad(a \in \mathbb{N} A), \quad D\left(R_{A}\right)_{a}=t^{a} \mathbb{C}[s]$.
- $\Omega(1)=\{0\}, \quad D\left(R_{A}\right)_{1}=t s \mathbb{C}[s]=t^{2} \partial \mathbb{C}[s]$.
- $\Omega(-1)=\{0,2\}, \quad D\left(R_{A}\right)_{-1}=t^{-1} s(s-2) \mathbb{C}[s]$.
- $\Omega(-2)=\{0,3\}, \quad D\left(R_{A}\right)_{-2}=t^{-2} s(s-3) \mathbb{C}[s]$.
- $\Omega(-k)=\{0,2, \ldots, k-1\} \cup\{k+1\} \quad(k \geq 3)$,

$$
D\left(R_{A}\right)_{-k}=t^{-k} s(s-2) \cdots(s-(k-1))(s-(k+1)) \mathbb{C}[s] .
$$

Note that $|\Omega(-k)|=k$ if $k \in \mathbb{N} A$.
4.2. \mathbb{Z}^{d}-graded Prime Ideals. From now on, we assume that $\mathbb{N} A$ is scored, and set $G:=\operatorname{Gr} D\left(R_{A}\right)$. By Lemma 4.1, we work on \mathbb{Z}^{d}-graded prime ideals of G.
Corollary 4.3 (to Theorem 4.2).

$$
G=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \overline{t^{\boldsymbol{a}} \mathbb{I}(\Omega(\boldsymbol{a}))}=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \bar{P}_{\boldsymbol{a}} \mathbb{C}[s]
$$

where

$$
\begin{aligned}
p_{\boldsymbol{a}} & :=\prod_{\sigma} \prod_{m \in F_{\sigma}(\mathbb{N} A) \backslash\left(-F_{\sigma}(\boldsymbol{a})+F_{\sigma}(\mathbb{N} A)\right)}\left(F_{\sigma}(s)-m\right), \\
P_{\boldsymbol{a}} & :=t^{\boldsymbol{a}} \cdot p_{\boldsymbol{a}}(s) \\
\bar{P}_{\boldsymbol{a}} & =t^{\boldsymbol{a}} \cdot \prod_{\sigma} F_{\sigma}(s)^{\sharp\left(F_{\sigma}(\mathbb{N} A) \backslash\left(-F_{\sigma}(\boldsymbol{a})+F_{\sigma}(\mathbb{N} A)\right)\right)}
\end{aligned}
$$

Since $G_{\mathbf{0}}=\mathbb{C}[s]$ is a subalgebra of G, the following lemma is immediate.
Lemma 4.4. Let $\mathfrak{P}=\bigoplus_{a \in \mathbb{Z}^{d}} \mathfrak{P}_{\boldsymbol{a}}$ be a \mathbb{Z}^{d}-graded prime ideal of G. Then \mathfrak{P}_{0} is a prime ideal of $G_{\mathbf{0}}=\mathbb{C}[s]$.

Given a prime ideal \mathfrak{p} of $\mathbb{C}[s]$, we shall classify all \mathbb{Z}^{d}-graded prime ideals \mathfrak{P} of G with $\mathfrak{P}_{0}=\mathfrak{p}$.
4.3. Degree and Expected Degree. For $\sigma \in \mathcal{F}$ and $\boldsymbol{a} \in \mathbb{Z}^{d}$, set

- $\operatorname{deg}_{\sigma}(\boldsymbol{a}):=\sharp\left(F_{\sigma}(\mathbb{N} A) \backslash\left(-F_{\sigma}(\boldsymbol{a})+F_{\sigma}(\mathbb{N} A)\right)\right)$,
- $\operatorname{expdeg}_{\sigma}(\boldsymbol{a}):= \begin{cases}0 & \text { if } F_{\sigma}(\boldsymbol{a}) \geq 0 \\ \left|F_{\sigma}(\boldsymbol{a})\right| & \text { if } F_{\sigma}(\boldsymbol{a}) \leq 0\end{cases}$

Then

$$
\overline{P_{\boldsymbol{a}}}=t^{\boldsymbol{a}} \prod_{\sigma \in \mathcal{F}} F_{\sigma}^{\operatorname{deg}_{\sigma}(\boldsymbol{a})}
$$

The Running Example-3.

$A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\}$.
$F_{\{0\}}(s)=s$.

a	\cdots	$-k$	\cdots	-3	-2	-1	0	1	2	3	\cdots
$\operatorname{expdeg}_{\{0\}}(a)$	\cdots	k	\cdots	3	2	1	0	0	0	0	\cdots
$\operatorname{deg}_{\{0\}}(a)$	\cdots	k	\cdots	3	2	$\mathbf{2}$	0	$\mathbf{1}$	0	0	\cdots

$$
G=\bigoplus_{a \in \mathbb{Z}} t^{a} s^{\operatorname{deg}_{\{0\}}(a)} \mathbb{C}[s] \subseteq \mathbb{C}\left[t^{ \pm 1}, \xi\right], \quad s=t \xi
$$

For a fixed prime ideal \mathfrak{p} of $\mathbb{C}[s]$, we define
$\mathcal{F}(\mathfrak{p}):=\left\{\sigma \in \mathcal{F}: F_{\sigma} \in \mathfrak{p}\right\}$,
$\Sigma(\mathfrak{p}):$ the fan determined by the hyperplane arrangement $\{\mathbb{R} \sigma: \sigma \in \mathcal{F}(\mathfrak{p})\}$,
$S(\mathfrak{p}):=\left\{\boldsymbol{a} \in \mathbb{Z}^{d}:\left|F_{\sigma}(\boldsymbol{a})\right| \in F_{\sigma}(\mathbb{N} A) \quad(\right.$ for $\left.\forall \sigma \in \mathcal{F}(\mathfrak{p}))\right\}$.

The Running Example-4.

$A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\}$.
$F_{\{0\}}(s)=s$.

- $\mathfrak{p}=(s-\beta)$: a fixed prime ideal of $\mathbb{C}[s]$
- $\mathcal{F}((s-\beta))=\left\{\sigma \in \mathcal{F}: F_{\sigma} \in(s-\beta)\right\}=\left\{\begin{array}{cl}\{0\} & (\beta=0) \\ \emptyset & \text { (otherwise). }\end{array}\right.$
- $\Sigma((s-\beta))=\left\{\begin{array}{cl}\left\{\mathbb{R}_{\geq 0},\{0\}, \mathbb{R}_{\leq 0}\right\} & (\beta=0) \\ \{\mathbb{R}\} & \text { (otherwise). }\end{array}\right.$
- $S((s-\beta))=\left\{\begin{array}{cl}\mathbb{Z} \backslash\{ \pm 1\} & (\beta=0) \\ \mathbb{Z} & \text { (otherwise). }\end{array}\right.$

For $\boldsymbol{a} \in \mathbb{Z}^{d}$, put

- $\operatorname{deg}_{\mathfrak{p}}(\boldsymbol{a}):=\sum_{\sigma \in \mathcal{F}(\mathfrak{p})} \operatorname{deg}_{\sigma}(\boldsymbol{a})$.
- $\operatorname{expdeg}_{\mathfrak{p}}(\boldsymbol{a}):=\sum_{\boldsymbol{\sigma} \in \mathcal{F}(\mathfrak{p})} \operatorname{expdeg}_{\sigma}(\boldsymbol{a})$.

Then $\operatorname{deg}_{\boldsymbol{m}}(\boldsymbol{a})=\operatorname{deg}\left(p_{\boldsymbol{a}}\right)$, where $\boldsymbol{m}=\left(s_{1}, \ldots, s_{d}\right)$.
Proposition 4.5. (1) $\operatorname{deg}_{\mathfrak{p}}(\boldsymbol{a}) \geq \operatorname{expdeg}_{\mathfrak{p}}(\boldsymbol{a})$.
(2) $\operatorname{deg}_{\mathfrak{p}}(\boldsymbol{a})=\operatorname{expdeg}_{\mathfrak{p}}(\boldsymbol{a})$ if and only if $\boldsymbol{a} \in S(\mathfrak{p})$.
4.4. Classification. For a cone $\tau \in \Sigma(\mathfrak{p})$, we define an ideal $\mathfrak{P}(\mathfrak{p}, \tau)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \mathfrak{P}(\mathfrak{p}, \tau)_{\boldsymbol{a}}$ of G by

$$
\mathfrak{P}(\mathfrak{p}, \tau)_{\boldsymbol{a}}:= \begin{cases}G_{\boldsymbol{a}} \mathfrak{p} & (\boldsymbol{a} \in \tau \cap S(\mathfrak{p})) \\ G_{\boldsymbol{a}} & \text { (otherwise). }\end{cases}
$$

Proposition 4.6. The \mathbb{Z}^{d}-graded ideal $\mathfrak{P}(\mathfrak{p}, \tau)$ is prime.
Theorem 4.7 ([17]). Let \mathfrak{P} be a \mathbb{Z}^{d}-graded prime ideal with $\mathfrak{P}_{0}=\mathfrak{p}$. Then there exists $\tau \in \Sigma(\mathfrak{p})$ such that $\mathfrak{P}=\mathfrak{P}(\mathfrak{p}, \tau)$.
Proposition 4.8. $\mathfrak{P}(\mathfrak{p}, \tau) \subseteq \mathfrak{P}\left(\mathfrak{p}^{\prime}, \tau^{\prime}\right)$ if and only if $\mathfrak{p} \subseteq \mathfrak{p}^{\prime}$ and $\tau \supseteq \tau^{\prime}$.
Proposition 4.9. $\operatorname{dim} G / \mathfrak{P}(\mathfrak{p}, \tau)=\operatorname{dim} \mathbb{C}[s] / \mathfrak{p}+\operatorname{dim} \tau$.

The Running Example-5.

$$
\begin{aligned}
& A=(2,3), \mathbb{N} A=\mathbb{N} \backslash\{1\} . \\
& \bullet \text { Let } a \in \mathbb{Z} . \\
& \bullet \mathfrak{P}\left((s), \mathbb{R}_{\geq 0}\right)_{a}= \\
& \bullet \mathfrak{P}((s),\{0\})_{a}= \begin{cases}G_{a} s & (a \in \mathbb{N} \backslash\{1\}) \\
G_{a} s & (\text { otherwise }) . \\
G_{a} & (a \neq 0)\end{cases} \\
& \bullet \mathfrak{P}\left((s), \mathbb{R}_{\leq 0}\right)_{a}= \begin{cases}G_{a} s & (-a \in \mathbb{N} \backslash\{1\}) \\
G_{a} & (\text { otherwise }) .\end{cases} \\
& \mathfrak{P}\left((s), \mathbb{R}_{\geq 0}\right) \subseteq \mathfrak{P}((s),\{0\}) \supseteq \mathfrak{P}\left((s), \mathbb{R}_{\leq 0}\right) .
\end{aligned}
$$

- $\mathfrak{P}((s-\beta), \mathbb{R})_{a}=G_{a}(s-\beta) \quad(\forall a \in \mathbb{Z}) \quad$ for $\beta \neq 0$.

5. Characteristic Variety

5.1. Critical Modules. We denote by $\operatorname{Kdim} M$ the Krull dimension for the lattice of \mathbb{Z}^{d}-graded $D\left(R_{A}\right)$-submodules in the sense of Rentschler and Gabriel ([2], [13]).

The Krull dimension is defined inductively:

- $\operatorname{Kdim} M=0 \stackrel{\text { def. }}{\Leftrightarrow} M$: Artinian
- $\operatorname{Kdim} M=\delta$ if
$-\operatorname{Kdim} M \neq \delta^{\prime}$ for $\delta^{\prime}<\delta$.
- for every descending chain of \mathbb{Z}^{d}-graded $D\left(R_{A}\right)$-submodules

$$
M=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \cdots
$$

$\operatorname{Kdim} M_{i} / M_{i+1}<\delta$ for all but finitely many i.
Definition 5.1. For a \mathbb{Z}^{d}-graded $D\left(R_{A}\right)$-module M of Krull dimension δ,

$$
M \text { is } \delta \text {-critical } \stackrel{\text { def. }}{\Leftrightarrow} \operatorname{Kdim}(M / N)<\delta \text { for all nonzero } \mathbb{Z}^{d} \text {-graded }
$$

Then the 0 -critical modules are exactly the simple modules. In this sense, a critical module is a generalization of a simple module. The notions of Krull dimension and critical modules enable us to use Artinian type method to Noetherian rings (see e.g. [5], [9], [10]).
Remark 5.2. Let R be a commutative Noetherian ring, and M a finitely generated R module. Then
M is critical $\Leftrightarrow \exists \mathfrak{p} \in \operatorname{Spec}(R)$ s.t. $\operatorname{Ass}(M)=\{\mathfrak{p}\}$, and length ${ }_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)=1$.
Let \mathfrak{p} be a prime ideal of $\mathbb{C}[s]$, and let $\delta=\operatorname{dim} \mathbb{C}[s] / \mathfrak{p}$. Define a \mathbb{Z}^{d}-graded $D\left(R_{A}\right)$ module $L(\mathfrak{p}):=D\left(R_{A}\right) / I(\mathfrak{p})$ by

$$
I(\mathfrak{p})_{\boldsymbol{a}}:= \begin{cases}D\left(R_{A}\right)_{\boldsymbol{a}} \mathfrak{p} & (\mathfrak{p} \sim \mathfrak{p}+\boldsymbol{a}) \\ D\left(R_{A}\right)_{\boldsymbol{a}} & \text { (otherwise) }\end{cases}
$$

where

- $\mathfrak{p} \sim \mathfrak{p}+\boldsymbol{a} \stackrel{\text { def. }}{\Leftrightarrow} \mathbb{I}(\Omega(\boldsymbol{a})) \nsubseteq \mathfrak{p}$ and $\mathbb{I}(\Omega(-\boldsymbol{a})) \nsubseteq \mathfrak{p}+\boldsymbol{a}$,
- $\mathfrak{p}+\boldsymbol{a}=\{f(s-\boldsymbol{a}): f(s) \in \mathfrak{p}\}$.

Then $L(\mathfrak{p})$ is δ-critical [16].

The Running Example-6.

$$
\begin{aligned}
A & =(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\} . \quad \text { Let } \beta \in \mathbb{C}, a \in \mathbb{Z} \\
& \bullet \mathfrak{p}=(s-\beta), \quad \delta=0 .
\end{aligned}
$$

- Let $\beta \notin \mathbb{Z}$. Then $(s-\beta) \sim(s-\beta)+a$ for $\forall a \in \mathbb{Z}$.

$$
I((s-\beta))_{a}=D\left(R_{A}\right)_{a}(s-\beta) \text { for } \forall a \in \mathbb{Z}
$$

- Let $\beta \in \mathbb{N} A$. Then $(s-\beta) \sim(s-\beta)+a \Leftrightarrow \beta+a \in \mathbb{N} A$.

$$
I((s-\beta))_{a}= \begin{cases}D\left(R_{A}\right)_{a}(s-\beta) & (\beta+a \in \mathbb{N} A) \\ D\left(R_{A}\right)_{a} & (\beta+a \notin \mathbb{N} A)\end{cases}
$$

- Let $\beta \in \mathbb{Z} \backslash \mathbb{N} A$. Then $(s-\beta) \sim(s-\beta)+a \Leftrightarrow \beta+a \notin \mathbb{N} A$.

$$
I((s-\beta))_{a}= \begin{cases}D\left(R_{A}\right)_{a}(s-\beta) & (\beta+a \notin \mathbb{N} A) \\ D\left(R_{A}\right)_{a} & (\beta+a \in \mathbb{N} A)\end{cases}
$$

Theorem 5.3 ([16]). Let M be a δ-critical \mathbb{Z}^{d}-graded left $D\left(R_{A}\right)$-module singly generated by $v \in M_{\mathbf{0}}$ with $\mathrm{Ann}_{\mathbb{C}[s]}(v)=\mathfrak{p}$. Then M is isomorphic to $L(\mathfrak{p})$.
5.2. Characteristic Varieties. For a cyclic $D\left(R_{A}\right)$-module $D\left(R_{A}\right) / I$, the support of the G-module $G / \mathrm{Gr} I$, where $\operatorname{Gr} I=\bigoplus_{k=0}^{\infty} I \cap D_{k}\left(R_{A}\right) / I \cap D_{k-1}\left(R_{A}\right)$, is called the characteristic variety $\operatorname{Ch}\left(D\left(R_{A}\right) / I\right)$ of $D\left(R_{A}\right) / I$. For details about characteristic varieties, see any textbook of the theory of D-modules, for example, [7], [8], etc.

Let \mathfrak{p} be a prime ideal of $\mathbb{C}[s]$ homogeneous with respect to s_{1}, \ldots, s_{d}.
Define $\tau(\mathfrak{p}+\boldsymbol{\beta})$ by

$$
\tau(\mathfrak{p}+\boldsymbol{\beta}):=\bigcap_{\sigma \in \mathcal{F}(\mathfrak{p}) ; F_{\sigma}(\boldsymbol{\beta}) \in F_{\sigma}(\mathbb{N} A)}\left(F_{\sigma} \geq 0\right) \cap \bigcap_{\sigma \in \mathcal{F}(\mathfrak{p}) ; F_{\sigma}(\boldsymbol{\beta}) \in \mathbb{Z} \backslash F_{\sigma}(\mathbb{N} A)}\left(F_{\sigma} \leq 0\right) .
$$

Then $\tau(\mathfrak{p}+\boldsymbol{\beta})$ is a union of cones in $\Sigma(\mathfrak{p})$.
Theorem 5.4 ([17]). (1) $\sqrt{\operatorname{Gr} I(\mathfrak{p}+\boldsymbol{\beta})}=\bigcap_{\tau \in \Sigma(\mathfrak{p}), \tau \subseteq \tau(\mathfrak{p}+\boldsymbol{\beta})} \mathfrak{P}(\mathfrak{p}, \tau)$. Hence

$$
\operatorname{Ch}(L(\mathfrak{p}+\boldsymbol{\beta}))=\bigcup_{\tau \in \Sigma(\mathfrak{p}), \tau \subseteq \tau(\mathfrak{p}+\boldsymbol{\beta})} \operatorname{Supp}(G / \mathfrak{P}(\mathfrak{p}, \tau))
$$

(2) The characteristic variety of $L(\mathfrak{p}+\boldsymbol{\beta})$ is irreducible if and only if $\tau(\mathfrak{p}+\boldsymbol{\beta}) \in \Sigma(\mathfrak{p})$. In this case,

$$
\sqrt{\mathrm{Gr} I(\mathfrak{p}+\boldsymbol{\beta})}=\mathfrak{P}(\mathfrak{p}, \tau(\mathfrak{p}+\boldsymbol{\beta})) .
$$

(3) If $F_{\sigma}(\boldsymbol{\beta}) \in \mathbb{Z}$ for all $\sigma \in \mathcal{F}(\mathfrak{p})$, then the characteristic variety of $L(\mathfrak{p}+\boldsymbol{\beta})$ is irreducible.
(4) $\operatorname{Gr} I(\mathfrak{p})=\mathfrak{P}(\mathfrak{p}, \tau(\mathfrak{p}))$.

The Running Example-7.

$$
\begin{gathered}
A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\} . \quad F_{\{0\}}(s)=s . \\
\tau((s-\beta))= \begin{cases}\mathbb{R}_{\geq 0} & (\beta \in \mathbb{N} A) \\
\mathbb{R}_{\leq 0} & (\beta \in \mathbb{Z} \backslash \mathbb{N} A) \\
\mathbb{R}^{\prime} & (\beta \notin \mathbb{Z}) .\end{cases}
\end{gathered}
$$

- $\operatorname{Gr} I((s-\beta))=\mathfrak{P}\left((s), \mathbb{R}_{\geq 0}\right) \quad(\beta \in \mathbb{N} A)$.
- $\sqrt{\operatorname{Gr} I((s-\beta))}=\mathfrak{P}\left((s), \mathbb{R}_{\leq 0}\right) \quad(\beta \in \mathbb{Z} \backslash \mathbb{N} A)$.
- $\sqrt{\operatorname{Gr} I((s-\beta))}=\mathfrak{P}\left((s), \mathbb{R}_{\geq 0}\right) \cap \mathfrak{P}\left((s), \mathbb{R}_{\leq 0}\right) \quad(\beta \notin \mathbb{Z})$.

Example.

Let $A=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]$. There are four facets: $\sigma_{14}, \sigma_{36}, \sigma_{123}, \sigma_{456}$. The primitive integral support functions are $F_{14}(s)=s_{2}, F_{36}(s)=3 s_{1}-s_{2}, F_{123}(s)=s_{3}, F_{456}(s)=$ $s_{1}-s_{3}$.

$$
\begin{gathered}
F_{14}(\mathbb{N} A)=\mathbb{N} \backslash\{1\}, \quad F_{36}(\mathbb{N} A)=\mathbb{N} \\
F_{123}(\mathbb{N} A)=\mathbb{N}, \quad F_{456}(\mathbb{N} A)=\mathbb{N}
\end{gathered}
$$

$$
\begin{aligned}
\tau\left(\mathfrak{m}+{ }^{t}[0,1,0]\right) & =\left(F_{14} \leq 0\right) \cap\left(F_{36} \geq 0\right) \cap\left(F_{123} \geq 0\right) \cap\left(F_{456} \geq 0\right) \\
& =\{\mathbf{0}\}, \quad \text { where } \mathfrak{m}=\left(s_{1}, s_{2}, s_{3}\right) . \\
& \sqrt{\operatorname{Gr} I\left(\mathfrak{m}+{ }^{t}[0,1,0]\right)}=\mathfrak{P}(\mathfrak{m},\{\mathbf{0}\}) .
\end{aligned}
$$

Hence $\operatorname{dim} \operatorname{Ch}\left(L\left(\mathfrak{m}+{ }^{t}[0,1,0]\right)\right)=0$.

Theorem 5.5. Suppose that $\mathbb{N} A$ is scored. Then the following are equivalent:
(1) $\operatorname{dim} \operatorname{Ch}(M) \geq d$ for all nonzero finitely generated \mathbb{Z}^{d}-graded $D\left(R_{A}\right)$-modules M.
(2) $D\left(R_{A}\right)$ is simple.
(3) For all $\boldsymbol{\beta} \in \mathbb{C}^{d}$,
where

$$
\begin{aligned}
& \mathcal{F}_{+}(\boldsymbol{\beta})=\left\{\sigma \in \mathcal{F} \mid F_{\sigma}(\boldsymbol{\beta}) \in F_{\sigma}(\mathbb{N} A)\right\}, \\
& \mathcal{F}_{-}(\boldsymbol{\beta})=\left\{\sigma \in \mathcal{F} \mid F_{\sigma}(\boldsymbol{\beta}) \in \mathbb{Z} \backslash F_{\sigma}(\mathbb{N} A)\right\} .
\end{aligned}
$$

Proof. (2) $\Leftrightarrow(3)$. This is [15, Theorem 7.25].
$(1) \Leftrightarrow(3)$. The condition (1) is equivalent to the condition:

$$
\begin{equation*}
\operatorname{dim} \operatorname{Ch}(L) \geq d \text { for all simple } \mathbb{Z}^{d} \text {-graded } D\left(R_{A}\right) \text {-modules } L . \tag{5.2}
\end{equation*}
$$

Any simple \mathbb{Z}^{d}-graded $D\left(R_{A}\right)$-module is of the form $L(\mathfrak{m}+\boldsymbol{\beta})$ [12, Proposition 3.17], where $\mathfrak{m}=\left(s_{1}, s_{2}, \ldots, s_{d}\right)$ and $\boldsymbol{\beta} \in \mathbb{C}^{d}$. By Proposition 4.9 and Theorem 5.4 (1), $\operatorname{dim} \operatorname{Ch}(L(\mathfrak{m}+$ $\boldsymbol{\beta}))=\operatorname{dim} \tau(\mathfrak{m}+\boldsymbol{\beta})$. Clearly $\operatorname{dim} \tau(\mathfrak{m}+\boldsymbol{\beta})=d$ if and only if (5.1) is satisfied.

References

[1] J. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand: Differential operators on the cubic cone, Russian Math. Surveys 27 (1972), 169-174.
[2] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
[3] I. M. Gel'fand, A. V. Zelevinskii and M. M. Kapranov, Equations of hypergeometric type and Newton polyhedra, Soviet Mathematics Doklady 37 (1988) 678-683.
[4] I. M. Gel'fand, A. V. Zelevinskii and M. M. Kapranov, Hypergeometric functions and toral manifolds, Functional Analysis and its Applications 23 (1989) 94-106.
[5] K. R. Goodearl and R. B. Warfield, An introduction to noncommutative Noetherian rings. London Math. Soc. Student Texts 16, Cambridge, 1989. Univ. Press, Cambridge.
[6] A. Grothendieck and J. Dieudonné, Élements de Géométrie Algébrique IV., Publ. Math. I. H. E. S., 32, 1967.
[7] R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory. Birkhäuser, Basel, 2008.
[8] M. Kashiwara, D-modules and Microlocal Calculus. American Mathematical Society, Providence, 2003.
[9] T. H. Lenagan, Dimension theory of Noetherian rings. In: H. Krause, C. Ringel, ed. Infinite length modules. Trends in Math., Birkhäuser, Basel. (2000), 129-148.
[10] J. C. McConnel and J. C. Robson, Noncommutative Noetherian rings. John Wiley \& Sons, Chichester, 1987.
[11] I. M. Musson, Rings of differential operators on invariants of tori. Trans. Amer. Math. Soc. 303 (1987), 805-827.
[12] I. M. Musson and M. Van den Bergh, Invariants under tori of rings of differential operators and related topics. Mem. Amer. Math. Soc., 650 (1998).
[13] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés, C. R. Acad. Sci. Paris, Sér. A 265 (1967), 712-715.
[14] M. Saito, Isomorphism classes of A-hypergeometric systems, Compos. Math. 128 (2001), 323-338.
[15] M. Saito, Primitive ideals of the ring of differential operators on an affine toric variety. Tohoku Math. J. 59 (2007), 119-144.
[16] M. Saito, Critical modules of the ring of differential operators of affine semigroup algebras, Comm. in Algebra 38 (2010), 618-631.
[17] M. Saito, The spectrum of the Graded Ring of Differential Operators of a Scored Semigroup Algebra, Comm. in Algebra 38 (2010), 829-847.
[18] M. Saito and K. Takahashi, Noetherian properties of rings of differential operators of affine semigroup algebras, Osaka J. Math. 46 (2009), 1-28.
[19] M. Saito and W. N. Traves, Differential algebras on semigroup algebras. AMS Contemporary Math. 286 (2001), 207-226.
[20] M. Saito and W. N. Traves, Finite generations of rings of differential operators of semigroup algebras. J. of Algebra 278 (2004), 76-103.

Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan

E-mail address: saito@math.sci.hokudai.ac.jp

