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Triangulated surface, mapping class group and
Donaldson-Thomas theory
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Given a triangulation of a surface, a quiver with a potential is defined
([LF09]). Given a quiver with a potential, a 3-dimensional Calabi-Yau tri-
angulated category is defined ([Gin, KY, Kel]). The mapping class group
of the original surface acts on the derived category. As a consequence, the
associated Donaldson-Thomas theory is “invariant” under the mapping class
group action.

1 QP for a triangulated surface

In this section, we explain how to associate a quiver with a potential for a
triangulated surface. The reader may refer [LF09] for the full details.

1.1 Ideal triangulations of a surface

Let ¥ be a compact connected oriented surface with (possibly non-empty)
boundary and M be a finite set of points on X, called marked points. We
assume that M is non-empty and has at least one point on each connected
component of the boundary of ¥. The marked points that lie in the interior
of 3 will be called punctures, and the set of punctures of (3, M) will be
denoted P. !

We decompose ¥ into “triangles” (in the topological sense) so that each
edge is either

e a curve (which is called an arc) whose endpoints are in M or

'We will always assume that (3, M) is none of the following:
e a sphere with less than five punctures;
e an unpunctured monogon, digon or triangle;
e a once-punctured monogon.

Here, by a monogon (resp. digon, triangle) we mean a disk with exactly one (resp. two,
three) marked point(s) on the boundary.
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e a connected component of X\ M.

A triangle may contains exactly two arcs (see Figure 1). Such a triangle (and
its doubled arc) is said to be self-folded.

Figure 1: A self-folded triangle

Given a triangulation 7 and a (non self-folded) arc i, we can flip i to get
a new triangulation f;(7) (see Figure 2).

7| fz‘(T_)|

Figure 2: A flip of a triangulation

Theorem 1 ([FSTO08]). Any two triangulations are related by a sequence of
flips.

1.2 Quiver for a triangulation

Let 7 be a triangulation. We will define a quiver Q(7) without loops and
2-cycles whose vertex set [ is the set of arcs in 7.

For a (non self-folded?) triangle A and arcs i and j, we define a skew-
symmetric integer matrix B> by

1 A has sides 7 and j, with ¢ following j in the clockwise order,
ij := < —1 the same holds, but in the counter-clockwise order,

0 otherwise.

2We omit the definition of B2 for a self-folded triangle A.

2
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We put

B(7) := Z B4

where the sum is taken over all triangles in 7. Let Q(7) denote the quiver
without loops and 2-cycles associated to the matrix B(7).

Theorem 2 ([FSTO08]). Given a triangulation T and its (non self-folded) arc
1, we have

Q(fi(r)) = pi(Q(7))

where u; denote the mutation of the quiver at the vertex i.

1.3 Potential for a triangulation

For a triangle A in 7, we define a potential wa as in Figure 3. For a puncture

Figure 3: wa

P in 7, we define a potential wp as in Figure 4.
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Figure 4: wp

Finally, we put

w(r) = sz + pr.

Theorem 3 ([LF09]). Given a triangulation T and its (non self-folded) arc
1, we have

w(fi(r)) = pi(w(r))

3

_42-



where ; denote the mutation of the potential at the vertex i in the sense of
[DWZ08].

2 Mapping class group action

2.1 Mapping class group
We define

Diffeo(X, M) := {¢: ¥ — X | ¢: diffeomorphism, ¢|; = idas}.

Let Diffeo(X, M)y denote the connected component of Diffeo(X, M) which
contains idy,. The quotient

MCG(S, M) := Diffeo(S, M) /Diffeo(S, Mg

is called the mapping class group.

2.2 Derived category for a triangulation

Let I'(7) be Ginzburg’s dg algebra associated to the quiver with the potential
(Q(7),w(7)) and D(1) = DI'(7) be the derived category of right dg-modules
over I'. By the result of Keller ([Kel]), I'(7) and T'(f;(7)) are equivalent?.

For a triangulation 7 and an element ¢ € MCG(X, M), we get another tri-
angulation ¢(7). Note that (Q(7),w(7)) and (Q(¢(7)),w(¢(7))) (and hence
D(1) and D(¢(7))) are canonically identified.

By Theorem 1, 7 and ¢(7) are related by a sequence of flips. Each flips
gives a derived equivalence. By composing the derived equivalences, we get
a derived equivalence

Uy: D(1) — D(p(1)) = D(1).

Thanks to the result [FST08, Theorem 3.10], ¥, is independent of the se-
quence of flips and well-defined. Finally we get an action of the mapping
class group on the derived category:

U MCG(S, M) — Aut(D(7)).

3Since we have two derived equivalences, we have to choose one of them. Given a
sequence of flips, we have a canonical choice. See [Nag, §2.2].

4
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2.3 Cluster transformation

We put T'= T(7) := C(x;);e;. We regard this as the fractional field of the
group ring of the Grothendieck group of the derived category D(7).
We define CTy: T(fx(7)) — T(7) by

CTu() — {<xk>—1 (IT(x,)26 + [T(a,)2) i = k.

where Q(i, k) is the nuber of arrows from ¢ to k£ and x is the generator of

T(fi(r))-

In the same way as the previous section, we get
CTy: T(p(1)) — T(7).
Under the identification T'(¢(7)) = T'(7) induced by W4, we get
CT: MCG(2, M) — Aut(T(7)).

3 Donaldson-Thomas theory

Let J, be the Jacobi algebra associated to the quiver with the potential
(Q(7), W(r)). If O3 is non-empty, then J, is finite dimensional ([LF09])%.
Let P! (i € I) be the projective J-module. For v € Z%,, we define

Hilb! (v) := {P! — V | dimV = v}.
This is called the Hilbert scheme®.
Definition. We define DT,: T = T by

DT, (z;) := (x;)"" - Y Eu(Hilbl(v)) -y

where

PRTE | (ARONP § ()

i J
As a direct application of the main theorem in [Nag], we get the following:
Theorem 4. For any element ¢ € MCG(X, M), we have

DT, o CTy = CT, 0 DT,.

If 9 is empty, then we have to take a completion 7' of T' in Theorem 4
5The name comes from the Hilbert scheme in algebraic geometry which parameterizes
quotient sheaves of the structure sheaf.
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